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Abstract

This paper discusses a numerical method for solving a first-kind Volterra integral equations system. Because of the
ill-posedness of these equations, we need to apply an efficient computational method to discrete them to the system
of algebraic equations. An expansion method known as the Chebyshev collocation method, based on the Chebyshev
polynomials of the third kind, is employed to convert the system of integral equations to the linear algebraic system
of equations. By solving the algebraic system, we conclude an approximate solution. Some numerical results support
the accuracy and efficiency of the stated method.
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1 Introduction

System of linear and nonlinear integral equation of the first-kind is appeared in many branches of science and
advanced technology, and since the theoretical solutions are not available for most of these types of problems, numerical
methods are valuable and the focus of study [3, 14, 16, 17, 19]. Daily progress in different fields and modeling of relevant
phenomena causes the creation of different equations, for which it is especially important to find a suitable and efficient
numerical solution [7, 10, 12, 15]. System of first-kind Volterra integral equations is defined by

f(x) =

∫ x

a

k(x, t) u(t)dt, (1.1)

so that

f(x) = [fi(x)],

u(x) = [ui(x)],

k(x, t) = [ki,j(x, t)], i, j = 1, 2, ..., L,

where ki,j(x, t) and fi(x) are known functions and ui(x) are unknown functions, a ∈ R and x is a variable.
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Integral equations appear both in the way of solving differential problems by inverting differential operators, and
in describing phenomena by models that require summations on space or time or both. In the modeling of physics
phenomena, especially quantum mechanics and statistical mechanics, the appearance of integral equations attracts
more attention.

The rest of the manuscript is organized as follows. In Section 2, we explain some basic concepts and describe
the process of implementing the method for approximating the solution of the system of first-kind Volterra integral
equations. In Section 3, we present two examples of the equations studied in this article to test the possibility of
implementing the presented method and the accuracy of the approximate solutions. Finally, we end the article by
stating the conclusion.

2 Basic concepts and method implementation

We express the Chebyshev polynomials of the third-kind on the interval [−1, 1] based on the Chebyshev polynomials
of the first-kind. The Chebyshev polynomial of the third-kind on [−1, 1] of degree n is denoted by Vn and is defined
by [13, 18]

Vn+1(x) = 2xVn(x)− Vn−1(x), n = 1, 2, . . . , (2.1)

so that V0(x) = 1 and V1(x) = 2x − 1. These polynomials are orthogonal with respect to the weight function

ω(x) =

√
1 + x

1− x
. We have the following relationship between the Chebyshev polynomials of the third-kind and the

Chebyshev polynomials of the first-kind,

Vn(x) =

√
2

1 + x
T2n+1

(√
1 + x

2

)
,

and we can obtain the properties and relations of the third-kind from the first-kind with minor changes, where Tn(x)
is the Chebyshev polynomial of the first-kind on [−1, 1] of degree n and these polynomials are given by the following
recursive formula [1],

T0(x) = 1, T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x) n = 1, 2, . . . .

Using the Chebyshev polynomial of the third-kind, we apply the collocation method to convert Eq. (1.1) to an
algebraic system of linear equations AX = b. We approximate ui(x)’s, such that

ui(x) ≃
m∑

k=0

cikVk(x), (2.2)

where Vk(x) is the kth Chebyshev polynomial of the third-kind and cik’s are unknown coefficients which are determined
by solving an algebraic system. By substituting relation (2.2) in Eq. (1.1) we have

f1(x) =

L∑
i=1

∫ x

a

k1i(x, t)
m∑

k=0

cikVk(t)dt,

f2(x) =

L∑
i=1

∫ x

a

k2i(x, t)

m∑
k=0

cikVk(t)dt,

...

fL(x) =

L∑
i=1

∫ x

a

kLi(x, t)

m∑
k=0

cikVk(t)dt.

Because the Chebyshev polynomials are orthogonal polynomials in [−1, 1], we select the following transformation

t =
x− a

2
τ +

x+ a

2
,
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and let

k̄(x, τ) = k(x,
x− a

2
τ +

x+ a

2
),

V̄ (x, τ) =
x− a

2
Vk(

x− a

2
τ +

x+ a

2
),

so that

f1(x) =

L∑
i=1

∫ 1

−1

k̄1i(x, τ)

m∑
k=0

cikV̄k(x, τ)dτ,

f2(x) =

L∑
i=1

∫ 1

−1

k̄2i(x, τ)

m∑
k=0

cikV̄k(x, τ)dτ,

...

fL(x) =

L∑
i=1

∫ 1

−1

k̄Li(x, τ)

m∑
k=0

cikV̄k(x, τ)dτ.

Now, we choose some collocation points such as

xi = −1 +
2i

m
for i = 0, 1, . . . ,m,

which are equidistant, also define system of residual equations by

R1(x) = f1(x)−
L∑

i=1

∫ 1

−1

k̄1i(x, τ)

m∑
k=0

cikV̄k(x, τ)dτ,

R2(x) = f2(x)−
L∑

i=1

∫ 1

−1

k̄2i(x, τ)

m∑
k=0

cikV̄k(x, τ)dτ,

...

RL(x) = fL(x)−
L∑

i=1

∫ 1

−1

k̄Li(x, τ)

m∑
k=0

cikV̄k(x, τ)dτ.

Then, by imposing the conditions

Ri(xj) = 0 for i = 1, 2, . . . , L, j = 0, 1, . . . ,m;

we can conclude algebraic system of linear equations AX = b [2, 8].

For example, for L = 3 we have;
f1(x) =

∫ x

a
k11(x, t)u1(t)dt+

∫ x

a
k12(x, t)u2(t)dt+

∫ x

a
k13(x, t)u3(t)dt,

f2(x) =
∫ x

a
k21(x, t)u1(t)dt+

∫ x

a
k22(x, t)u2(t)dt+

∫ x

a
k23(x, t)u3(t)dt,

f3(x) =
∫ x

a
k31(x, t)u1(t)dt+

∫ x

a
k32(x, t)u2(t)dt+

∫ x

a
k33(x, t)u3(t)dt,

(2.3)

after discretization, the algebraic system of linear equations AX = b is concluded as follow;

A = (aij), i, j = 1, 2, . . . , 3m+ 3,

bT = [f1(x0), f1(x1), . . . , f1(xm), f2(x0), f2(x1), . . . , f2(xm), f3(x0), f3(x1), . . . , f3(xm)],

XT = [c10, c11, . . . , c1m, c20, c21, . . . , c2m, c30, c31, . . . , c3m],

where
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aij =



∫ 1

−1
k̄11(xi−1, τ)V̄j−1(xi−1, τ)dτ,

{
i = 1, 2, . . . ,m+ 1
j = 1, 2, . . . ,m+ 1

∫ 1

−1
k̄12(xi−1, τ)V̄j−m−2(xi−1, τ)dτ,

{
i = 1, 2, . . . ,m+ 1
j = m+ 2,m+ 3, . . . , 2m+ 2

∫ 1

−1
k̄13(xi−1, τ)V̄j−2m−3(xi−1, τ)dτ,

{
i = 1, 2, . . . ,m+ 1
j = 2m+ 3, 2m+ 4, . . . , 3m+ 3

∫ 1

−1
k̄21(xi−m−2, τ)V̄j−1(xi−m−2, τ)dτ,

{
i = m+ 2,m+ 3, . . . , 2m+ 2
j = 1, 2, . . . ,m+ 1

∫ 1

−1
k̄22(xi−m−2, τ)V̄j−m−2(xi−m−2, τ)dτ,

{
i = m+ 2,m+ 3, . . . , 2m+ 2
j = m+ 2,m+ 3, . . . , 2m+ 2

∫ 1

−1
k̄23(xi−m−2, τ)V̄j−2m−3(xi−m−2, τ)dτ,

{
i = m+ 2,m+ 3, . . . , 2m+ 2
j = 2m+ 3, 2m+ 4, . . . , 3m+ 3

∫ 1

−1
k̄31(xi−2m−3, τ)V̄j−1(xi−2m−3, τ)dτ,

{
i = 2m+ 3, 2m+ 4, . . . , 3m+ 3
j = 1, 2, . . . ,m+ 1

∫ 1

−1
k̄32(xi−2m−3, τ)V̄j−m−2(xi−2m−3, τ)dτ,

{
i = 2m+ 3, 2m+ 4, . . . , 3m+ 3
j = m+ 2,m+ 3, . . . , 2m+ 2

∫ 1

−1
k̄33(xi−2m−3, τ)V̄j−2m−3(xi−2m−3, τ)dτ,

{
i = 2m+ 3, 2m+ 4 . . . , 3m+ 3
j = 2m+ 3, 2m+ 4, . . . , 3m+ 3.

3 Numerical Experiments

We use the method presented in Section 2 for two examples, one of which is a system of equations with two
unknown functions and another system with three unknown functions. Our aim is to approximate the solution of Eq.
(1.1) by employing the Chebyshev polynomial of the third-kind together with the collocation approach. We present
some examples of first-kind system of Volterra integral equations which illustrate the accuracy and efficiency of stated
method in comparison with other methods.

Example 3.1. In Eq. (1.1) with a = 0, for L = 2 if let

k11(x, t) = sin(x− 2t)

k12(x, t) = t cos(x− t)

k21(x, t) = xt2

k22(x, t) = et−x

f1(x) =
4
3 sin

4
(
x
2

)
+ 1

2 (xe
x − sin(x))

f2(x) = x
((
x2 − 2

)
sin(x) + 2x cos(x)

)
+ sinh(x)

(3.1)

where the exact solutions are u1(x) = cos(x) and u2(x) = ex, the numerical results for m = 9 and m = 12 are reported
in Table 1. In this table, Eu represents the absolute error of the approximations. In Figures 1 and 2, the results
for m = 10 and m = 15 are shown by using the Chebyshev polynomials of the third-kind basis functions and the

collocation points x = −1,−0.8,−0.6, . . . , 1 and x = −1,−13

15
,−11

15
, . . . , 1, respectively.
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Table 1: Numerical results for Example 3.1

Eu1
Eu2

x m = 9 m = 12 m = 9 m = 12

-1 2.721× 10−3 1.393× 10−4 1.0961× 10−4 7.3153× 10−5

-0.8 3.2173× 10−5 6.6618× 10−6 7.1990× 10−6 5.2955× 10−7

-0.6 6.3122× 10−5 4.4286× 10−6 2.4554× 10−6 4.5564× 10−7

-0.4 4.7988× 10−5 7.1720× 10−6 4.8132× 10−6 8.1277× 10−7

-0.2 3.4338× 10−5 6.7711× 10−6 8.1532× 10−7 4.4437× 10−7

0 9.0221× 10−7 6.9005× 10−7 5.2992× 10−6 2.3222× 10−7

0.2 7.7710× 10−6 1.0255× 10−6 5.5002× 10−6 3.0475× 10−8

0.4 1.8036× 10−5 7.6324× 10−7 3.7760× 10−6 7.8826× 10−7

0.6 3.3946× 10−5 4.4418× 10−6 3.1449× 10−6 6.9553× 10−7

0.8 5.0989× 10−5 5.3372× 10−6 4.0979× 10−5 1.1105× 10−5

1 4.2933× 10−4 7.6441× 10−5 5.2170× 10−5 4.3385× 10−5

u =�x

u1 x)

Approximate solutions with m=10

-1.0 -0.5 0.0 0.5 1.0

0.5

1.0
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2.0

2.5

3.0

Figure 1: The exact solution and approximate solution related to system (3.1) with m = 10

u2( �
x

u1 x)

Approximate solutions with m=15
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Figure 2: The exact solution and approximate solution related to system (3.1) with m = 15
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Example 3.2. We try to solve the system of equations
f1(x) =

∫ x

−1
(x− t)u1(t) dt+

∫ x

−1
(2t+ x− 1)u2(t) dt+

∫ x

−1
cos(x− t)u3(t) dt,

f2(x) =
∫ x

−1

(
t− x2

)
u1(t) dt+

∫ x

−1
et−2xu2(t) dt+

∫ x

−1
(t+ x)u3(t) dt,

f3(x) =
∫ x

−1
e2t+xu1(t) dt+

∫ x

−1

(
t2 − 3x

)
u2(t) dt+

∫ x

−1
cos(t+ 2x)u3(t) dt,

(3.2)

where 

f1(x) =
7x3

3 + x2 + ex− x+ e−x + 1
30 (5 cos(3− x)− 8 cos(4x) + 3 cos(x+ 5)) + 1

3 ,

f2(x) = −e−x
((
ex+1 − 1

)
x2 + x+ 1

)
+ e−2x−1

(
ex+1(2x− 1) + 3

)
+ 1

16 (sin(4x) + 4x cos(4)− 8x cos(4x) + sin(4)− 4 cos(4)),

f3(x) = − 1
6 + x4

2 − 8x3

3 − 3x2 + ex−1
(
ex+1 − 1

)
+ 1

30 (−5 cos(x)− 3 cos(7x) + 5 cos(2x+ 3) + 3 cos(5− 2x)).

(3.3)

and the exact solutions are u1(x) = e−x, u2(x) = 2x + 1 and u3(x) = sin(4x). Absolute errors of the Chebyshev
collocation method with m = 10 and m = 15 are reported in Table 2. Figures 3 and 4 show the results for m = 8
and m = 12 by using the Chebyshev polynomials of the third-kind basis functions and the collocation points x =

−1,−3

4
,−1

2
, . . . , 1 and x = −1,−5

6
,−2

3
, . . . , 1, respectively.

Table 2: Numerical results for Example 3.2

Eu1
Eu2

Eu3

x m = 10 m = 15 m = 10 m = 15 m = 10 m = 15

-1 2.0777× 10−3 3.8512× 10−4 8.5544× 10−5 2.3550× 10−5 4.3420× 10−2 2.4487× 10−3

-0.8 7.3445× 10−4 1.2008× 10−4 5.6090× 10−5 8.8772× 10−6 8.2884× 10−3 6.3555× 10−3

-0.6 5.3444× 10−4 5.3242× 10−5 8.8801× 10−6 4.4339× 10−6 3.0222× 10−2 2.3311× 10−2

-0.4 4.8804× 10−4 4.5662× 10−5 7.6605× 10−5 5.7766× 10−6 2.3304× 10−2 7.1648× 10−3

-0.2 7.7550× 10−5 4.6602× 10−5 7.0743× 10−5 2.0110× 10−5 8.5505× 10−3 5.1997× 10−3

0 2.3225× 10−5 8.6238× 10−6 9.4427× 10−6 3.3379× 10−6 4.4478× 10−3 2.2280× 10−3

0.2 3.3323× 10−4 9.7755× 10−6 8.8808× 10−6 5.7243× 10−6 6.4886× 10−3 6.7744× 10−3

0.4 1.7553× 10−4 5.5505× 10−5 1.0322× 10−5 4.2525× 10−6 3.3385× 10−2 9.3361× 10−3

0.6 4.6629× 10−4 3.7090× 10−5 5.1554× 10−5 6.2774× 10−6 3.0675× 10−2 1.6640× 10−2

0.8 4.1965× 10−5 7.6167× 10−5 6.5072× 10−5 4.2525× 10−5 5.9950× 10−2 6.4433× 10−2

1 3.5569× 10−4 1.1990× 10−4 5.3225× 10−4 4.6346× 10−5 7.0505× 10−3 8.3774× 10−3

u1 ⅇ
-x

u2 +1

u3 x)

Approximate solutions withm=8

-1.0 -0.5 0.0 0.5 1.0

-1

0

1

2

3

4

Figure 3: The exact solution and approximate solution related to system (3.2) and (3.3) with m = 8
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u1 ⅇ
-x

u2 +1

u3 x)

Approximate solutions withm=12

-1.0 -0.5 0.0 0.5 1.0

-1

0

1

2

3

4

Figure 4: The exact solution and approximate solution related to system (3.2) and (3.3) with m = 12

Conclusion

In this paper, a projection method known as collocation method, based on the Chebyshev polynomials of the
third-kind, are chosen to discrete and solve the system of the first-kind integral equations. The presented method has
some advantages; this method is easy to apply, and we need less computations than other methods [4, 5, 6, 9, 11]. By
using this method, we can get high accuracy, by solving an algebraic system of linear equations with rank less than
10× 10, for many systems of integral equations.
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