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In this present work, we examine the fluid of double-layered blood flow through a tapered 
overlapping stenosed artery with a porous wall. This two-layered blood flow problem 
comprises the peripheral layer as Newtonian fluid flows and the central core layer of 
suspension of the erythrocytes as another Newtonian fluid flows and was analytically 
solved which the numerical results are shown graphically and discussed. It was found that 
resistance to flow accelerates with rising slip parameter, blood viscosity, and artery length 
while a rise in Darcy number and radius of the centre core to the tube radius in the 
unobstructed region decreases the resistance to flow.  
Also, the resistance to flow rises with increasing stenosis height whereas it increases with 
a rise in values of artery shape. The wall shear stress drops as the Darcy number accelerates 
and rises with rising viscosity of the blood and slip parameter. Furthermore, fluctuation of 
wall shear stress at the neck of the stenosis drops as the Darcy number increases. Moreover, 
it is observed that the shear stress increases with rising viscosity of the blood and slip 
parameter. This work is able to forecast the major attribute of the physiological flows which 
have played an important role in biomedical researches.  

DOI: 10.22075/jhmtr.2023.24296.1352 

 

Keyw ord s:  

Porous wall; 
Resistance to flow; 
Wall Shear Stress; 
Slip parameter; 
Darcy number. 

 © 2022 Published by Semnan University Press. All rights reserved. 

 

1. Introduction 

The vascular system is an organ system that allows 
blood to transport nutrients and circulate oxygen, 
hormones, blood cells, carbon-II-oxide to and fro the 
cells in the system of the body to provide nourishment 
and preventing stabilization of temperature, diseases 
and sustain homeostasis. Atherosclerosis is a process 
of continuous thickening and hardening of the walls of 
medium-sized and large blood vessels due to the 
deposition of fat on their inner lining. Stenosis growth 
is responsible for many coronary artery diseases such 
as strokes, heart attack, peripheral vascular diseases, 
and death in the world at large. Because of the dangers 
involved, it is very vital to look forward for the 
symptoms that cause blockage of arteries, like the 
Transient Ischemic Attack and stroke, so that adequate 
measures may be observe before the situation gets 
worst. The importance of the hemodynamic factors 
play a vital role in the beginning and the development 
of atherosclerosis which drew the attention of Mann et 
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al. [1]. Stenosis proliferation conditions under various 
flow situations have been addressed by a number of 
researchers such as Asha et al. [2] that studied the 
geometry of stenosis and its effects on the blood flow 
through an artery and Srivastava [3] said that the 
significance of the peripheral layer accelerates as 
blood vessel diameter decelerating., Arun, [4] 
examined the mathematical modelling on blood flow 
under atherosclerotic condition. Two-layered model of 
blood flow through composite stenosed artery was 
investigated by Padma et al [5] they observed that 
existence of peripheral layer is useful in representation 
of diseased arterial system.  

Medhavi [6-8] examined two-phase arterial blood 
flow through a composite stenosis. A macroscopic two-
phase blood flow through a bell-shaped stenosis in an 
artery with a permeable wall was studied by Srivastav 
et al., [9], Babatunde and Dada [10] investigated the 
effects of hematocrit level on wall shear stress and flow 
resistance in a tapered and overlapping stenosed 
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artery with porosity. they observed that the resistance 
to flow increases with increase in either stenosis height 
or artery shapes while the influence of hematocrit level 
has slight decrease. The two-layered (K.L-Newtonian) 
model of blood flow in an artery with six types of mild 
stenoses was examined by Ponalagusamy et al. [11]. 
Puskar R. Pokhrel, [12] studied the analysis of two-
layered blood flow through artery with mild stenosis 
and observed that the pressure gradient of the blood 
flow increases in the ratio of thickness of stenosis with 
radius of artery. 

Eldesoky et al. [13] studied the numerical study of 
unsteady MHD pulsatile flow through a porous 
medium in an artery using Generalized Differential 
Quadrature Method and several scholars. The flowing 
of the blood has been taken as Newtonian fluid, non-
Newtonian fluid, single or two-layered fluid flows by 
different researchers while studying the flows through 
atherosclerosis. It's obvious that blood flow can be 
taken as a one-layered model in a big vessel. However, 
the flow through the small artery is double-layered. 
Bugliarello and Sevilla [14] examined the velocity 
distribution and other characteristics of steady and 
pulsatile  blood flow in fine glass tubes and Titiloye et 
al. [15] studied the mathematical modelling of two-
layered blood flow through a tapered artery with an 
overlapping stenotic condition and observed that there 
is a cell-free plasma layer, for blood flowing through 
small arteries and a core region of suspension of all the 
erythrocytes. 

In a case of overlapping, there is a suturing of a layer 
of tissue above or under another in order to add more 
strength. Chakravarty and Mandal, [16] studied 
mathematical modelling of blood flow in overlapping 
arterial stenosis and observed that the flux decreases 
as the resistive impedance decreasing out of the 
stenotic flow in vivo, the gravity of the overlapping 
stenosis affects the resistive impedance seriously, also 
the wall shear stress accelerates as the amplitude of 
the pressure gradient drops. Sapna et al., [17] 

examined mathematical modelling of blood flows in a 
three-layered stenosed artery, said that the resistance 
to flow and wall shear stress are significantly very low 
for the two-fluid non-Newtonian model than those of 
the two-fluid model. 

The endothelial walls are said to be highly porous 
with ultramicroscopic pores through that filtration 
occurs and fat is believed to rise the porosity of the 
blood vessel wall. Such a rise in permeability results 
from damaged, dilated or inflamed vessel walls. As 
such Rupesh et al [18], examined double-fluid blood 
flows in the stenosed artery with a permeable wall. 

The study, therefore, considers the combined effects 
of a tapered and overlapping stenosed artery with a 
porous wall on the double-layered blood flows. This 
problem considers the flowing blood as a double-
layered Newtonian flow, comprises of a core region of 
suspension of all the erythrocytes taking to be another 
Newtonian fluid flows, the viscosity of which can vary 
depending on the flow situations and a peripheral 
region of Newtonian fluid flows of constant viscosity, 
in a vessel that the wall is porous. The problems were 
solved analytically. 

2. Formulation of the problem 

The laminar, incompressible, and Newtonian 
double-layered flow of blood, comprises of a central 
core layer of red cell suspensions in plasma of radius 
𝑅1 and a peripheral plasma layer of a thickness (𝑅−𝑅1), 
through axisymmetric one-dimensional tapered and 
overlapping stenosed artery is being examined. The 
cylindrical polar coordinate (r, θ, z), is used for any 
point in the fluid, where z is measured along the axis of 
the artery and r and θ along the radial and 
circumferential directions respectively. 

The mathematical representation that corresponds 
to the geometry of this present work is expressed after 
Titiloye et al., [15] as: 

𝑅(𝑧)

𝑅0
= {

(
𝑚𝑧

𝑅0
+ 1) −

𝛿𝑐𝑜𝑠𝜑

𝑅0𝐿0
(𝑧 − 𝑑) {11 −

94

3𝐿0
(𝑧 − 𝑑) +

32

Lo
2 (𝑧 − 𝑑)2 −
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3L0
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3𝐿0
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𝑧

𝑅0
+ 1) ,                                                                                                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 
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(𝑧 − 𝑑) +
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2 (𝑧 − 𝑑)2 −
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3 (𝑧 − 𝑑)3} ,                𝑑 ≤ 𝑧 ≤ 𝑑 +

3𝐿0

2

(
𝑚𝑧

𝑅0
+ 1) 𝛽,                                                                                                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2) 

where R(z), 𝑅0 represent the radius of the tapered arterial segment in the constricted region and the constant radius of 

the normal artery in the non-stenotic region respectively, φ represents the angle of tapering, 
3𝐿0

2
 is the length of 

overlapping stenosis, d denotes the location of the stenosis, δcosφ is taken to be the critical height of the overlapping 
stenosis, β is the ratio of the central core radius to the tube radius outside the stenotic region and m=tanφ represents 
the slope of the tapered vessel. In order to exploring the feasibility of the different shapes of the artery, which classified 
as diverging tapering (φ>0), non-tapered artery (φ = 0), and converging tapering (φ<0). 
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Figure 1. Geometry of a two-layered overlapping stenosed artery [15] 

3. Mathematical Formulation 

The equations of motion for one-dimensional fluid 
flow, steady, laminar in the case of stenosed artery 
(𝛿 ≪ 𝑅0) are described by Sharanet al. [19] as  

𝑑𝑝

𝑑𝑧
=

𝜇𝑝

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕

𝜕𝑟
) 𝑤𝑝 ,    𝑅1(𝑧) ≤ 𝑟 ≤ 𝑅(𝑧), (3) 

𝑑𝑝

𝑑𝑧
=

𝜇𝑐

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕

𝜕𝑟
) 𝑤𝑐 ,             0 ≤ 𝑟 ≤ 𝑅1(𝑧), (4) 

where (r, z) are the radial and axial coordinates in the 
two-dimensional cylindrical polar coordinate system 

and 
𝑑𝑝

𝑑𝑧
 denotes the pressure gradient (𝜇𝑝, 𝑤𝑝) and 

(𝜇𝑐 , 𝑤𝑐) represents the viscosity and velocity of the 
fluid flows in the peripheral layer (𝑅1(𝑧) ≤ 𝑟 ≤ 𝑅(𝑧)) 
and central layer (0 ≤ 𝑟 ≤ 𝑅1(𝑧)), respectively. 

The corresponding boundary conditions given by 
(Beavers, [20]) for the present problem can be 
expressed by [18] as 

𝜕𝑤𝑐

𝜕𝑟
= 0     𝑎𝑡   𝑟 = 0 (5a) 

𝑤𝑝 = 𝑤𝑐    𝑎𝑛𝑑   𝜇𝑝

𝜕𝑤𝑝

𝜕𝑟
= 𝜇𝑐

𝜕𝑤𝑐

𝜕𝑟
  𝑎𝑡  𝑟 = 𝑅1(𝑧) (5b) 

𝑤𝑝 = 𝑤𝐵  𝑎𝑛𝑑   
𝜕𝑤𝑝

𝜕𝑟
=

𝛼

√𝑘
(𝑤𝐵 − 𝑤𝑓) 𝑎𝑡 𝑟 = 𝑅(𝑧) (5c) 

where 𝒘𝒇= −
𝒌

𝝁𝒑

𝒅𝒑

𝒅𝒛
  represents the velocity in the 

porosity boundary, 𝝁𝒑 denotes the plasma viscosity of 

the fluid in a peripheral layer, α is the slip parameter, k 
is the Darcy number and 𝒘𝑩 is the slip velocity, are 
dimensionless quantities depending on the material 
within the boundary region. 

4. Analysis 

Equation (3) is integrating with respect to r, 
applying the boundary condition (5a), we have 

𝜕𝑤𝑝

𝜕𝑟
=

𝑟

2𝜇𝑝

𝑑𝑝

𝑑𝑧
  (6) 

Also, Equation (6) is integrating with the aid of 
boundary condition (5b), we have 

𝑤𝑝 =
𝑟2

4𝜇𝑝

𝑑𝑝

𝑑𝑧
−

𝑅2

4𝜇𝑝

𝑑𝑝

𝑑𝑧
+ 𝑤𝐵  (7) 

Using boundary condition (5c) on Equation (6), we 
have 

𝑤𝐵 =
√𝑘

2𝛼𝜇𝑝

𝑑𝑝

𝑑𝑧
[𝑅 − 2𝛼√𝑘] (8) 

Substituting Equation (8) into Equation (7), we have 

𝑤𝑝 =
𝑟2

4𝜇𝑝

𝑑𝑝

𝑑𝑧
−

𝑅2

4𝜇𝑝

𝑑𝑝

𝑑𝑧
+

√𝑘

2𝛼𝜇𝑝

𝑑𝑝

𝑑𝑧
[𝑅 − 2𝛼√𝑘]  

Hence, 

𝑤𝑝 = −
𝑅0

2

4𝜇𝑝

𝑑𝑝

𝑑𝑧
 

      × {(
𝑅

𝑅0
)

2

− (
𝑟

𝑅0
)

2

− 2 (
𝑅

𝑅0
) (

√𝑘

𝛼𝑅0
) +

4𝑘

𝑅0
2} 

(9) 

Similarly, from Equation (4) following the same 
processes, we have 

𝑤𝑐 = −
𝑅0

2

4𝜇𝑝

𝑑𝑝

𝑑𝑧
 

       × {𝜇 [(
𝑅1

𝑅0
)

2

− (
𝑟

𝑅0
)

2

] − 2 (
𝑅

𝑅0
) (

√𝑘

𝛼𝑅0
) +

4𝑘

𝑅0
2} 

(10) 

where 𝜇 =
𝜇𝑝

𝜇𝑐
  and μ𝑐 is the viscosity of the blood flows 

in the central core layer. 

The flux flow rate is given as 

𝑄 = 2𝜋 {∫ 𝑟𝑤𝑐𝑑𝑟
𝑅1

0

∫ 𝑟𝑤𝑝𝑑𝑟
𝑅

𝑅1

} (11) 

After simplifying Equation (11), it becomes 
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𝑄 = −
𝜋𝑅0

4

8𝜇𝑝

𝑑𝑝

𝑑𝑧
{(

𝑅1(𝑧)

𝑅0
)

4

(1 + 𝜇) + (
𝑅(𝑧)

𝑅0
)

4

− 2 (
𝑅(𝑧)

𝑅0
)

2

(
𝑅1(𝑧)

𝑅0
)

2

+
8𝑘

𝑅0
2 (

𝑅(𝑧)

𝑅0
)

2

− (
𝑅(𝑧)

𝑅0
)

3
√𝑘

𝑅0𝛼
} 

(12) 

Therefore, the pressure gradient from Equation 
(12) is 

𝑑𝑝

𝑑𝑧
= −

8𝜇𝑝𝑄

𝜋𝑅0
4𝐹(𝑧)

 (13) 

where 

𝐹(𝑧) =  {(
𝑅1(𝑧)

𝑅0
)

4

(1 + 𝜇) + (
𝑅(𝑧)

𝑅0
)

4

− 2 (
𝑅(𝑧)

𝑅0
)

2

(
𝑅1(𝑧)

𝑅0
)

2

+
8𝑘

𝑅0
2 (

𝑅(𝑧)

𝑅0
)

2

− (
𝑅(𝑧)

𝑅0
)

3
√𝑘

𝑅0𝛼
} 

Integrating Equation (13) along the length of the 
artery, we have 

∫ 𝑑𝑝
𝑝1

𝑝0

= ∫ −
8𝜇𝑝𝑄

𝜋𝑅0
4𝐹(𝑧)

𝑑𝑧
𝐿

0

 (14a) 

where 𝑝0and 𝑝1are the pressures at z=0 and z=L 
respectively. 

𝑝1 − 𝑝0 = −
8𝜇𝑝𝑄

𝜋𝑅0
4 {∫ 𝜎(𝑧)

𝑑

0

𝑑𝑧 + ∫ 𝜎(𝑧)
𝑑+

3𝐿0
2

𝑑

𝑑𝑧

+ ∫ 𝜎(𝑧)
𝐿

𝑑+
3𝐿0

2

𝑑𝑧} 

(14b) 

where 𝜎(𝑧) =
1

𝐹(𝑧)
 

The resistance to flow λ given by (Malek et al. [21] 
and Babatunde and Dada, [10]) as 

𝜆λ =
𝑝1 − 𝑝0

𝑄𝑄
 

Hence, 

λ = −
8𝜇𝑝

𝜋𝑅0
4 {∫ 𝜎(𝑧)

𝑑

0

𝑑𝑧 + ∫ 𝜎(𝑧)
𝑑+

3𝐿0
2

𝑑

𝑑𝑧

+ ∫ 𝜎(𝑧)
𝐿

𝑑+
3𝐿0

2

𝑑𝑧} 

(15a) 

The stenosis is present in the region 

 𝑑 ≤ 𝑧 ≤ 𝑑 +
3𝐿0

2
. If there is no stenosis 

R(z)

R0
= (

𝑚𝑧

𝑅0
+ 1) 

and 
𝑅1(𝑧)

𝑅0
= (

𝑚𝑧

𝑅0
+ 1)𝛽 from Equations (1) and (2) 

respectively. Therefore, 

λ = −
8𝜇𝑝

𝜋𝑅0
4 {∫ 𝜁(𝑧)

𝑑

0

𝑑𝑧 + ∫ 𝜎(𝑧)
𝑑+

3𝐿0
2

𝑑

𝑑𝑧

+ ∫ 𝜁(𝑧)
𝐿

𝑑+
3𝐿0

2

𝑑𝑧} 

(15b) 

where 

 𝜁(𝑧) =
1

 {((
𝑚𝑧

𝑅0
+1)𝛽)

4
(1+𝜇)+(

𝑚𝑧

𝑅0
+1)

4
−2(

𝑚𝑧

𝑅0
+1)

2
((

𝑚𝑧

𝑅0
+1)𝛽)

2
+

8𝑘

𝑅0
2(

𝑚𝑧

𝑅0
+1)

2
−(

𝑚𝑧

𝑅0
+1)

3 √𝑘

𝑅0𝛼
}
 

The resistance to flow for Newtonian fluid flow 
when there is no stenosis (𝛿 = 0) is given by 

𝜆𝑁 = −
8𝜇𝑝

𝜋𝑅0
4 ∫ 𝜓(𝑧)𝑑𝑧

𝐿

0

 (16) 

where 

𝜓(𝑧) = [(
𝑚𝑧

𝑅0
+ 1)

4

+
8𝑘

𝑅0
2 (

𝑚𝑧

𝑅0
+ 1)

2

− (
𝑚𝑧

𝑅0
+ 1)

3 √𝑘

𝑅0𝛼
] 

Thus, the dimensionless resistance to flow may be 
expressed as  

𝜆̅ =
𝜆

𝜆𝑁
 (17) 

The wall shear stress may be expressed as 

𝜏𝑠 = −
𝑅

2

𝑑𝑝

𝑑𝑧
=

4𝜇𝑝𝑄 (
𝑅

𝑅0
)

𝜋𝑅0
3𝐹(𝑧)

 (18) 

The wall shear stress for Newtonian fluid flow when 
there is no stenosis (𝛿 = 0) is given as 

𝜏𝑁 =
4𝜇𝑝𝑄 (

𝑚𝑧

𝑅0
+ 1)

𝜋𝑅0
3𝜓(𝑧)

 (19) 

Thus, the wall shear stress in non-dimension form is 
expressed as 

𝜏̅ =
𝜏𝑠

𝜏𝑁
 (20) 

The wall shear stress at the neck of the stenosis is 
define as 

𝜏𝑤𝑚 = [
4𝜇𝜇𝑐𝑄 [(

𝑚𝑧

𝑅0
+ 1) −

𝛿

𝑅0
]

𝜋𝑅0
3𝜂

] (21) 

where 

𝜂 = [((
𝑚𝑧

𝑅0
+ 1) −

𝛿

𝑅0
)

4

+
8𝑘

𝑅0
2 ((

𝑚𝑧

𝑅0
+ 1) −

𝛿

𝑅0
)

2

− ((
𝑚𝑧

𝑅0
+ 1) −

𝛿

𝑅0
)

3
√𝑘

𝑅0𝛼
] 

Thus, the dimensionless wall shear stress at the 
neck of the stenosis is given as 

𝜏̅𝑚 =
𝜏𝑤𝑚

𝜏𝑁
 (22) 

The analytical solution of the second integral on the 
right-hand side of Equation (15b) is a tedious work 
which can be solved by numerical method, while the 
solution of the first and third integrals is easier. 
Equations (15b) - (22) can be use to determine the 
resistance to flow and the wall shear stress in the 
stenosed artery. 
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5. Numerical results and discussion 

In order to explode this present work, the results 
are displayed graphically. In this section, fluid analysis 
of two-layered blood flow through a tapered 
overlapping stenosed artery with porosity had been 
shown. The values of the parameters are considered 
with its range (Titiloye et al. [15] and Babatunde and 
Dada, [10]) as 

Q=0.1, L=2.5, 𝐿0 = 1.0,  d=0.5,  𝑅0 = 1,  

𝛿

𝑅0
= 0.1 − 0.5, 𝑘 = 0.1 𝑡𝑜 0.2, 𝛼 = 0.1 𝑡𝑜 0.2,  

β=0.90−0.96 and µ= 0.1−0.3, φ= − 0.15, 0.00 and 0.15. 

Figure 2 shows the resistance to flow against 

stenosis height with artery shape for several values of 

slip parameter. Revealed that resistance to flow 

accelerates with a rise in the slip parameter. 

Figure 3 represents the resistance to flow against 

stenosis height with artery shape for several values of 

Darcy number. It was observed that resistance to flow 

decreases with increasing the Darcy number. 

Figure 4 displays the resistance to flow against 

stenosis height with artery shape for several values of 

blood viscosity. It depicts that resistance to flow rises 

with increasing the blood viscosity. 

Figure 5 displays the resistance to flow against 

stenosis height for several values of artery shapes. It 

revealed that resistance to flow increases with a rise in 

the slip parameter and Its increases with a rise in 

values of artery shape φ. 

Figure 6 represents the resistance to flow against 

stenosis height with artery shape for several values of 

𝛽. Depicts that resistance to flow reduces with a rise in 

the value of 𝛽.  

Figure 7 shows the resistance to flow against 

stenosis height with artery shape for several values of 

artery length. Reveals that resistance to flow increases 

with increases in the artery length.  

 

Figure 2. Resistance to flow for several values 
 of slip parameter at an angle 𝜑=0.15. 

 
Figure 3. Resistance to flow for several values 

 of Darcy number at an angle 𝜑=0.1 

 
Figure 4. Resistance to flow for several values of viscosity 

 of the blood at an angle 𝜑 = 0.15 

 
Figure 5. Resistance to flow for several values  

of artery shape 

 
Figure 6. Resistance to flow for several values 

 of 𝛽 at an angle 𝜑=0.15. 

 

Figure 7. Resistance to flow for several values  
of artery length at an angle 𝜑=0.15. 
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Figure 8 represents the wall shear stress for several 

values of slip parameters. It depicts that wall shear 

stress rises with a rise in the slip parameter.  

Figure 9 displays the wall shear stress for several 

values of Darcy number. It is found that shear stress 

reduces with a rise in the value of Darcy number.  

Figure 10 shows the wall shear stress for several 

values of stenosis height. It depicts that wall shear 

stress rises with increasing the value of stenosis height 

at the stenosis region while the wall shear stress drops 

with a rise in the value of stenosis height where there 

is no stenosis. 

Figure 11 displays the wall shear stress for several 

values of blood viscosity. It depicts that shear stress 

rises as the value of viscosity of blood increases. 

Figure 12 represents wall shear stress at the neck of 

the stenosis for different values of Darcy number. It 

depicts that increasing Darcy number reduces the 

fluctuation of the wall shear stress at the throat of 

stenosis.  

Figure 13 represents the fluctuation of wall shear 

stress at the neck of the stenosis for several values of 

slip parameter. It displays that as slip parameter 

increases, the fluctuation of the shear stress at the neck 

of stenosis rises. 

 

Figure 8. Wall shear stress for several values 
 of slip parameter at an angle 𝜑=0.15. 

 

Figure 9. Wall shear stress for several values 
 of Darcy number angle 𝜑=0.15. 

 

Figure 10. Wall shear stress for several values of stenosis 
height at an angle 𝜑=0.15. 

 

Figure 11. Wall shear stress for several values of viscosity of 
blood at an angle 𝜑=0.15. 

 

Figure 12. Wall shear stress at the neck of the stenosis for 
several values of Darcy number at 𝜑=0.15. 

 

Figure 13. Fluctuation of shear stress at the neck of the 
stenosis for several values of slip parameter at 𝜑=0.15. 
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Conclusion 

The fluid analysis of two-layered blood flow through 

a tapered overlapping stenosed artery with permeable 

wall was determined in this present work. This double-

layered blood flow comprises the peripheral layer fluid 

flows and the central core layer of suspension of the 

erythrocytes as Newtonian fluid flows and was solved 

analytically. Different fluid parameters were 

introduced to analyse the effects of slip parameter, 

Darcy number, blood viscosity, artery shape and 

stenosis height on the resistance to the flow and the 

wall shear stress of the blood. The results have been 

studied in the case of tapered overlapping stenosed 

artery are shown as follow: 

i. It is found that resistance to flow increases 
with increasing slip parameter, blood viscosity, 
artery length. It occurs due to influence of slip 
parameter on blood flow increases the internal 
viscosity of the blood flow which causes rise to 
the Lorentz force. 

ii. The influence of 𝛽 and Darcy number decreases 
the resistance to flow. 

iii. Fluctuation of wall shear stress at the neck of 
the stenosis decreases as Darcy number 
increases.  

iv. We found that shear stress rises as viscosity of 
the blood increasing and slip parameter. 
However, we observed that the presence of 
peripheral layer in a porous artery aids the 
functioning of the diseased artery. 

Nomenclature 

All variables using this manuscript, listed in 

nomenclature. 

(r, θ, z) Cylindrical polar coordinate system 

L Length of the arterial segment 

𝑤𝑓 velocity in the porosity boundary 

𝑤B Slip velocity 

𝜇c  
Viscosity of the blood flows in the central 
core layer 

𝜇p 
Viscosity of the blood flows in the 
peripheral layer 

Q Volumentric flow flux 

𝑤c  
Axial velocity of the blood flows in the 
central core layer 

𝑤p 
Axial velocity of the blood flows in the 
peripheral layer 

𝛼  Slip parameter 

τ Wall shear stress 

𝜏𝑠  
Wall shear stress at the maximum height of 
the stenosis 

𝜏𝑁   Wall shear stress in the absence of stenosis 

𝜏𝑤𝑚  Wall shear stress at the neck of stenosis 

𝜏̅𝑚  Wall shear stress in dimensionless form 

𝛽 
Ratio of center core radius to the tube 
radius outside the stenotic region  

𝑚  Slope of the tapered vessel 

k  Darcy number  

R(z) 
Radius of tapered artery in the region of 
stenosis 

𝑅0  
Radius of the non-tapered artery in the 
non-stenotic region 

𝑅1 Radius of the plasma 

𝐿0   Length between throat of two stenosis 

φ Tapered angle 

δ 
Maximum height of the stenosis at some 
location z 

λ𝑁  Resistance to flow with no stenosis 

r Radius of the artery  

P  Pressure 

d Location of the stenosis 

𝜆  Resistance to flow 

𝑑𝑝

𝑑𝑧
  Pressure gradient 

δcos 𝜙  Critical height of the overlapping stenosis  

𝑧 Axial distance 

Acknowledgements 

The authors gratefully acknowledge the reviewers' 

comments that improved the quality of the article.  

References 

[1] Mann F. C., Herrick J. F., Essex H. E., and Blades 
E. J., 1938. Effects on blood flow of decreasing 
the lumen of blood vessels, Surgery, 4, 249–
252. 

[2] Asha K. N. and Neetu Srivastava, 2021. 
Geometry of Stenosis and Its Effects on the 
Blood Flow Through an artery-A Theoretical 
Study, AIP Conference Proceedings, 2375, Issue 
1: 10.1063/5.0066510. 

[3] Srivastava V.P., Rastogi R. and Vishnoi R., 2010. 
A two-layered suspension blood flow through 
an overlapping stenosis, Computers and 
Mathematics with Applications, 60, 432–441. 

[4] Arun Kumar Maiti, 2016. Mathematical 
Modelling on Blood Flow Under-



196 M. S. Dada / JHMTR 9 (2022) 189 - 196 

Atherosclerotic condition. Americal Journal of 
Applied Mathematics, Vol. 4, No.6, 324-329. 

[5] Padma Joshi, Ashutosh Pathak and Joshi B.K, 
2009. Two-layered model of blood flow 
through composite stenosed artery. AAM, vol. 
4(2), 343-354.  

[6] Medhavi A., 2011. On macroscopic two-phase 
arterial blood flow through an overlapping 
stenosis, e-Journal of Science and Technology, 
6, 19–31. 

[7] Medhavi A., Srivastav R. K., Ahmad Q. S. and 
Srivastava V. P., 2012. Two-phase arterial blood 
flow through a composite stenosis, e-Journal of 
Science and Technology, 7(4), 83–94.  

[8] Medhavi A., 2013. A macroscopic two-phase 
blood flow through a stenosed artery with a 
permeable wall, Appl Bionics and 
Biomechanics, 10(1), 11–18.  

[9] Srivastava V.P., Tandon M. and Srivastav R. K., 
2012. A macroscopic two-phase blood flow 
through a bell-shaped stenosis in an artery with 
a permeable wall, Appl. and Appl Math., 7(1), 
37–51. 

[10] Babatunde A. J. and Dada M. S., 2021. Effects of 
Hematocrit level on Blood flow through a 
tapered and overlapping stenosed Artery with 
Porosity. JHMTR, (1-9), 2007-1293. 

[11] Ponalagusamy R and Manchi R., 2020. The two-
layered (K.L-Newtonian) model of blood flow in 
an artery with six types of mild stenosis. 
Applied Mathematics and Computation, 
Elsevier, vol. 367. 

[12] Puskar R. Pokhrel, 2021, Analysis of Two-
layered Blood Flow through Artery with Mild 
Stenosis, Humanities and Social Sciences 
Journal, 13(1), 145-154.  

[13] Eldesoky I. M., Kernel M. H. & Hussien R. M., 
Abumandour, 2013. Numerical study of 
unsteady MHD pulsatile flow through a porous 

medium in an artery using Generalized 
Differential Quadrature Method, Intern. Jour. of 
Materials, Mechanics and Manufacturing, 1(2). 

[14] Bugliarello G. and Sevilla, 1970. Velocity 
distribution and other characteristics of steady 
and pulsatile blood flow in fine glass tubes, 
Biorheol, 7, 85–107.  

[15] Titiloye E.O, Babatunde A.J. and Dada M.S., 
2016. Mathematical modelling of two-layered 
blood flow through a tapered artery with an 
overlapping stenotic condition, faculty of 
physical sci., University of Ilorin. ISSN: 2408-
4808. Vol.3, 208-223. 

[16] Chakravarty. S. and Mandal P. K., 1994. The 
Mathematical modelling of blood flow through 
an overlapping Arterial stenosis. Math. & Comp. 
Modelling, Vol.19, Issue 1, page 59-70. 

[17] Sapna Ratan Shah, Anuradha, and Anamika, 
2017. Mathematical modelling of blood flow 
through three-layered stenosed artery”. 
International Journal for Research in Applied 
Science & Eng. Tech., Vol. 5 Issue VI, ISSN: 2321-
9653. 

[18] Rupesh K. Srivastav and V.P. Srivastava, 2014. 
On two-fluid blood flow through the stenosed 
artery with a permeable wall. Applied Bionics 
and Biomechanics, 11. 39-45. 

[19] Sharan M. and Popel A. S., 2001. A two-phase 
model for the flow of blood in narrow tubes 
with increased viscosity near the wall, Birheol, 
38, 415–428. 

[20] Beavers G. S. and Joseph D. D., 1967. Boundary 
conditions at a naturally permeable wall. 
Journal of Fluid Mech, 30(1), 197–207.  

[21] Malek A. and Haque A., 2017. Hematocrit level 
on blood flow through a stenosed artery with a 
permeable  wall. AAM: An international journal, 
ISSN: 1932-9466.

 


