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Abstract

We prove a common coupled fixed point theorem on fuzzy bipolar metric spaces. An application of our key results is
given to solve a system of integral equations. Our results generalize and expand the literature’s well-known results.
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1 Introduction

Zadeh [16] introduced the notion of fuzzy sets. Using this concept of fuzziness, Kramosil and Michalek [9] introduced
the fuzzy metric spaces. Subsequently George and Veeramani [5] further modified the idea of fuzzy metric spaces.
Grabeic [6] and Azam et al. [3, 2] extend the well known Banach fixed point theorem to fuzzy metric spaces in the
sense of Karamosil and Michalek [9]and also refer [1]. After that, Gregori and Sapena [7] extended the fuzzy Banach
contraction principle to fuzzy metric space in the sense George and Veeramaniâ [5]. Recently, Mutlu and Gurdal
[12] presented bipolar metric spaces by generalizing metric spaces and proved some fixed point results and also refer
[17, 11, 10]. Bartwal, Dimri and Prasad, [4] extended it to fuzzy bipolar metric space and obtained several fixed point
theorems. Afterward Mutlu, Ozkan and Gurdal [13] studied coupled fixed point on bipolar metric space and also refer
[15, 8, 14].

The aim of this paper is to prove common coupled fixed point theorem on fuzzy bipolar metric space with an
application to solve a system of integral equations.

2 Preliminaries

Now we present some basic definitions:
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Definition 2.1. [4] Let Ω and Υ be two non-void sets. We say that quadruple (Ω, Υ, Γ, ∗) fuzzy bipolar metric space
if ∗ is continuous ϱ-norm and Γ is a fuzzy set on Ω × Υ × (0,∞), fulfill the following conditions for all ϱ, ω, r > 0:

1. Γ (ϑ, η, ϱ) > 0 for all (ϑ, η) ∈ Ω × Υ ;

2. Γ (ϑ, η, ϱ) = 1 iff ϑ = η for ϑ ∈ Ω and η ∈ Υ ;

3. Γ (ϑ, η, ϱ) = Γ (η, ϑ, ϱ) for all ϑ, η ∈ Ω ∩ Υ ;

4. Γ (ϑ1, η2, ϱ+ ω + r) ≥ Γ (ϑ1, η1, ϱ)∗Γ (ϑ2, η1, ω)∗Γ (ϑ2, η2, r) for all
ϑ1, ϑ2 ∈ Ω and η1, η2 ∈ Υ ;

5. Γ (ϑ, η, .) : [0,∞) −→ [0, 1] is left continuous;

6. Γ (ϑ, η, .) is non-decreasing for all ϑ ∈ Ω and η ∈ Υ .

Definition 2.2. [4] Let (Ω, Υ, Γ, ∗) be a fuzzy bipolar metric space. A point η ∈ Ω ∪Υ is called a left point if η ∈ Ω,
a right point if η ∈ Υ and a central point if it is both left and right point. Similarly a sequence {ϑα} on the set Ω
is called a left sequence and a sequence {ηα} on Υ is called a right sequence. In a fuzzy bipolar metric space, a left
or a right sequence is called simply a sequence. A sequence {ηα} is said to be convergent to a point η, iff {ηα} is a
left sequence, η is a right point and limα→∞ Γ (ηα, η, ϱ) = 1. A bisequence ({ϑα}, {ηα}) on (Ω, Υ, Γ, ∗) is a sequence
on the set Ω × Υ . If the sequence {ϑα} and {ηα} are convergent, then the bisequence ({ϑα}, {ηα}) is said to be
convergent, and if {ϑα} and {ηα} converge to a common point, then ({ϑα}, {ηα}) is called biconvergent. A bisequence
({ϑα}, {ηα}) is a Cauchy bisequence, if limα,β→∞ Γ (ϑα, ηβ , ϱ) = 1. In a fuzzy bipolar metric space, every convergent
Cauchy bisequence is biconvergent. A fuzzy bipolar metric space is called complete, if every Cauchy bisequence is
convergent, hence biconvergent.

Definition 2.3. Let (Ω, Υ, Γ, ∗) be a fuzzy bipolar metric space, Φ : Ω2 ∪Υ 2 → Ω ∪Υ and g : Ω ∪Υ → Ω ∪Υ be two
functions. An element (ϑ, η) ∈ Ω2 ∪ Υ 2 is called a coupled coincidence point of Φ and g if Φ(ϑ, η) = gϑ, Φ(η, ϑ) = gη.

Definition 2.4. Let (Ω, Υ, Γ, ∗) be a fuzzy bipolar metric space, Φ : Ω2 ∪ Υ 2 → Ω ∪ Υ and g : Ω ∪ Υ → Ω ∪ Υ be
two functions. An element (ϑ, η) ∈ Ω2 ∪ Υ 2 is called a common coupled fixed point of Φ and g if Φ(ϑ, η) = gϑ = ϑ,
Φ(η, ϑ) = gη = η.

Definition 2.5. Let (Ω, Υ, Γ, ∗) be a fuzzy bipolar metric space, Φ : Ω2 ∪ Υ 2 → Ω ∪ Υ and g : Ω ∪ Υ → Ω ∪ Υ be
two functions. An element (ϑ, η) ∈ Ω2 ∪ Υ 2 is called a common coupled fixed point of Φ and g if Φ(ϑ, η) = gϑ = ϑ,
Φ(η, ϑ) = gη = η.

Definition 2.6. Let (Ω, Υ, Γ, ∗) be a fuzzy bipolar metric space, Φ : Ω2 ∪ Υ 2 → Ω ∪ Υ and g : Ω ∪ Υ → Ω ∪ Υ be
two functions are called w-compatible if g(Φ(ϑ, η)) = Φ(gϑ, gη) and g(Φ(η, ϑ)) = Φ(gη, gϑ), whenever Φ(ϑ, η) = gϑ
and Φ(η, ϑ) = gη.

Example 2.7. Let Ω = [0, 1], Υ = {0} ∪ N − {1}. Define Γ (ϑ, η, ϱ) = e−
(ϑ−η)

ϱ for all ϱ > 0 and ϑ ∈ Ω and η ∈ Υ .
Clearly, (Ω, Υ, Γ, ∗) is a complete fuzzy bipolar metric space, where ∗ is a continuous ϱ-norm defined as a∗b = ab.
Define Φ : Ω2 ∪ Υ 2 → Ω ∪ Υ and g : Ω ∪ Υ → Ω ∪ Υ defined by

Φ(ϑ, η) =

{
ϑ+η
4 , if ϑ, η ∈ Ω2,

0, if ϑ, η ∈ Υ 2,

for all ϑ, η ∈ Ω2 ∪ Υ 2 and

g(ϑ) =

{
ϑ, if ϑ, η ∈ Ω,

0, if ϑ, η ∈ Υ,

for all ϑ, η ∈ Ω ∪ Υ .

Motivated by Mutlu, Ozkan and Gurdal [13], we prove common coupled fixed point theorem on fuzzy bipolar
metric space with an application.
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3 Main Results

Theorem 3.1. Let a ∗ b ≥ ab for all a, b ∈ [0, 1] and (Ω, Υ, Γ, ∗) be a complete fuzzy bipolar metric space. Let
Φ : Ω2 ∪ Υ 2 → Ω ∪ Υ and g : Ω ∪ Υ → Ω ∪ Υ be two functions such that

Γ (Φ(ϑ, η), Φ(u, v), kϱ) ≥ Γ (gϑ, gu, ϱ)
1
2 ∗ Γ (gη, gv, ϱ)

1
2 (3.1)

for all ϑ, η ∈ Ω and u, v ∈ Υ , where 0 < k < 1, Φ(Ω2 ∪ Υ 2) ⊆ g(Ω ∪ Υ ), g(Ω ∪ Υ ) is complete and the pair (Φ, g) is
compatible. Then the mappings Φ and g have unique common coupled fixed point.

Proof . Let ϑ0, η0 ∈ Ω and u0, v0 ∈ Υ . Since Φ(Ω2 × Υ 2) ⊆ g(Ω ∪ Υ ), we can construct bisequence ({ϑα}, {uα}),
({ηα}, {vα}) such that

gϑα+1 = Φ(ϑα, ηα) and gηα+1 = Φ(ηα, ϑα),

guα+1 = Φ(uα, vα) and gvα+1 = Φ(vα, uα), (3.2)

for all α ≥ 0. Now, we denote

δα−1(ϱ) =

(
Γ (gϑα−1, guα, ϱ)

) 1
2

∗
(
Γ (gηα−1, gvα, ϱ)

) 1
2

.

From (3.1) and (3.2), we have

Γ (gϑα, guα+1, kϱ) = Γ (Φ(ϑα−1, ηα−1), Φ(uα, vα), kϱ)

≥
(
Γ (gϑα−1, guα, ϱ)

) 1
2

∗
(
Γ (gηα−1, gvα, ϱ)

) 1
2

= δα−1(ϱ). (3.3)

Similarly, from (3.1) and (3.2),

Γ (gηα, gvα+1, kϱ) = Γ (Φ(ηα−1, ϑα−1), Φ(vα, uα), kϱ)

≥
(
Γ (gηα−1, gvα, ϱ)

) 1
2

∗
(
Γ (gϑα−1, guα, ϱ)

) 1
2

= δα−1(ϱ). (3.4)

Adding by ϱ - norm ∗ (3.3) and (3.4), we obtain

δα(kϱ) ≥ δα−1(ϱ) ∗ δα−1(ϱ) ≥ δα−1(ϱ). (3.5)

Thus, we have

δα(ϱ) ≥ δα−1

(ϱ
k

)
≥ . . . ≥ δ0

( ϱ

kα

)
. (3.6)

Since lim
α→∞

δ0

( ϱ

kα

)
= 1, for all ϱ > 0, we have

lim
α→∞

δα(ϱ) = 1, for all ϱ > 0.

On the other hand, we denote

γα−1(ϱ) =

(
Γ (gϑα, guα−1, ϱ)

) 1
2

∗
(
Γ (gηα, gvα−1, ϱ)

) 1
2

.

From (3.1) and (3.2), we have

Γ (gϑα+1, guα, kϱ) = Γ (Φ(ϑα, ηα), Φ(uα−1, vα−1), kϱ)

≥
(
Γ (gϑα, guα−1, ϱ)

) 1
2

∗
(
Γ (gηα, gvα−1, ϱ)

) 1
2

= γα−1(ϱ). (3.7)
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Similarly, from (3.1) and (3.2),

Γ (gηα+1, gvα, kϱ) = Γ (Φ(ηα, ϑα), Φ(vα−1, uα−1), kϱ)

≥
(
Γ (gηα, gvα−1, ϱ)

) 1
2

∗
(
Γ (gϑα, guα−1, ϱ)

) 1
2

= γα−1(ϱ). (3.8)

Adding by ϱ - norm ∗ (3.7) and (3.8), we obtain

γα(kϱ) ≥ γα−1(ϱ) ∗ γα−1(ϱ) ≥ γα−1(ϱ). (3.9)

Thus, we have

γα(ϱ) ≥ γα−1

(ϱ
k

)
≥ . . . ≥ γ0

( ϱ

kα

)
. (3.10)

Since lim
α→∞

γ0

( ϱ

kα

)
= 1, for all ϱ > 0, we have

lim
α→∞

γα(ϱ) = 1, for all ϱ > 0.

Moreover,

µα−1(ϱ) =

(
Γ (gϑα−1, guα−1, ϱ)

) 1
2

∗
(
Γ (gηα−1, gvα−1, ϱ)

) 1
2

.

From (3.1) and (3.2), we have

Γ (gϑα, guα, kϱ) = Γ (Φ(ϑα−1, ηα−1), Φ(uα−1, vα−1), kϱ)

≥
(
Γ (gϑα−1, guα−1, ϱ)

) 1
2

∗
(
Γ (gηα−1, gvα−1, ϱ)

) 1
2

= µα−1(ϱ). (3.11)

Similarly, from (3.1) and (3.2),

Γ (gηα, gvα, kϱ) = Γ (Φ(ηα−1, ϑα−1), Φ(vα−1, uα−1), kϱ)

≥
(
Γ (gηα−1, gvα−1, ϱ)

) 1
2

∗
(
Γ (gϑα−1, guα−1, ϱ)

) 1
2

= µα−1(ϱ). (3.12)

Adding by ϱ - norm ∗ (3.11) and (3.12), we obtain

µα(kϱ) ≥ µα−1(ϱ) ∗ µα−1(ϱ) ≥ µα−1(ϱ).

Thus, we have

µα(ϱ) ≥ µα−1

(ϱ
k

)
≥ . . . ≥ µ0

( ϱ

kα

)
. (3.13)

Since lim
α→∞

µ0

( ϱ

kα

)
= 1 for all ϱ > 0, we have

lim
α→∞

µα(ϱ) = 1, for all ϱ > 0.

Using the property 4, we get

Γ (gϑα, guβ , ϱ) ≥ Γ (gϑα, guα+1,
ϱ

3
) ∗ Γ (gϑα+1, guα+1,

ϱ

3
) ∗ · · · ∗ Γ (gϑβ−1, guβ ,

ϱ

3β−1
)

Γ (gϑα+1, guα+1,
ϱ

3
) ≥ Γ (gηα, gvα+1,

ϱ

3
) ∗ Γ (gηα+1, gvα+1,

ϱ

3
) ∗ · · · ∗ Γ (gηβ−1, gvβ ,

ϱ

3β−1
) (3.14)
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and

Γ (gϑβ , guα, ϱ) ≥ Γ (gϑβ , guβ−1,
ϱ

3
) ∗ Γ (gϑβ−1, guβ−1,

ϱ

3
) ∗ · · · ∗ Γ (gϑα+1, guα,

ϱ

3α
)

Γ (gηβ , gvα, ϱ) ≥ Γ (gηβ , gvβ−1,
ϱ

3
) ∗ Γ (gηβ−1, gvβ−1,

ϱ

3
) ∗ · · · ∗ Γ (gηα+1, gvα,

ϱ

3α
), (3.15)

for each α, β ∈ N, α < β. Then, from (3.6), (3.9), (3.13), (3.14) and (3.15), we have

Γ (gϑα, guβ , ϱ) ∗ Γ (gηα, gvβ , ϱ) ≥ (Γ (gϑα, guα+1,
ϱ

3
) ∗ Γ (gϑα, guα+1,

ϱ

3
)) ∗ (Γ (gηα+1, gvα+1,

ϱ

3
) ∗ Γ (gηα+1, gvα+1,

ϱ

3
))

∗ · · · ∗ (Γ (gϑβ−1, guβ ,
ϱ

3β−1
) ∗ Γ (gηβ−1, gvβ ,

ϱ

3β−1
))

≥ δ2α

(
ϱ

3

)
∗ µ2

α+1

(
ϱ

3

)
∗ δ2α+1

(
ϱ

3

)
∗ · · · ∗ µ2

β−1

(
ϱ

3β−1

)
∗ δ2β−1

(
ϱ

3β−1

)
≥ δ20

( ϱ

3kα

)
∗ µ2

0

( ϱ

3kα+1

)
∗ · · · ∗ δ20

( ϱ

3β−1kβ−1

)
(3.16)

and

Γ (gϑβ , guα, ϱ) ∗ Γ (gηβ , gvα, ϱ) ≥ (Γ (gϑβ , guβ−1,
ϱ

3
) ∗ Γ (gηβ , gvβ−1,

ϱ

3
)) ∗ (Γ (gϑβ−1, guβ−1,

ϱ

3
) ∗ Γ (gηβ−1, gvβ−1,

ϱ

3
))

∗ · · · ∗ (Γ (gϑα+1, guα,
ϱ

3n
) ∗ Γ (gηα+1, gvα,

ϱ

3n
))

≥ γ2
β−1

(
ϱ

3

)
∗ µ2

β−1

(
ϱ

3

)
∗ γ2

β−2

(
ϱ

3

)
∗ · · · ∗ µ2

α+1

(
ϱ

3α+1

)
∗ γ2

α

(
ϱ

3α

)
≥ γ2

0

( ϱ

3kβ−1

)
∗ µ2

0

( ϱ

3kβ−1

)
∗ · · · ∗ γ2

0

( ϱ

3αkα

)
. (3.17)

As α, β → ∞, we have

lim
α,β→∞

(Γ (gϑα, guβ , ϱ) ∗ Γ (gηα, gvβ , ϱ)) = 1

and

lim
α,β→∞

(Γ (gϑβ , guα, ϱ) ∗ Γ (gηβ , gvα, ϱ)) = 1.

Therefore ({gϑα}, {guα}) and ({gηα}, {gvα}) are Cauchy bisequences. Since g(Ω ∪ Υ ) is a complete subspace of
(Ω, Υ, Γ, ∗), so {gϑα}, {guα}, {gηα}, {gvα} ⊆ g(Ω∪Υ ) are converges in the complete bipolar metric space (g(Ω), g(Υ ), Γ, ∗).
Therefore, there exist ϑ, η ∈ g(Ω) and u, v ∈ g(Υ ) such that

lim
α→∞

gϑα = u, lim
α→∞

gηα = v

and

lim
α→∞

guα = ϑ, lim
α→∞

gvα = η.

Since g : Ω ∪ Υ → Ω ∪ Υ and ϑ, η ∈ g(Ω), u, v ∈ g(Υ ), there exist l, β ∈ Ω, r, ω ∈ Υ such that gl = ϑ, gβ = η and
gr = u, gω = v. Using the property 4, we get

Γ (Φ(l, β), u, ϱ) ≥ Γ (Φ(l, β), guα+1,
ϱ

3
) ∗ Γ (gϑα+1, guα+1,

ϱ

3
) ∗ Γ (gϑα+1, u,

ϱ

3
)

= Γ (Φ(l, β), Φ(uα, vα),
ϱ

3
) ∗ Γ (gϑα+1, guα+1,

ϱ

3
) ∗ Γ (gϑα+1, u,

ϱ

3
)

≥
(
Γ (gl, guα+1,

ϱ

3k
)

) 1
2

∗
(
Γ (gβ, gvα,

ϱ

3k
)

) 1
2

∗ Γ (gϑα+1, guα+1,
ϱ

3
) ∗ Γ (gϑα+1, u,

ϱ

3
).

As α → ∞, we have

lim
α→∞

Γ (Φ(l, β), u, ϱ) = 1.
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Therefore Φ(l, β) = u = gr. Similarly, we can prove that Φ(β, l) = v = gω, Φ(r, ω) = ϑ = gl and Φ(ω, r) = η = gβ.
Since (Φ, g) are w-compatible mappings, we have Φ(ϑ, η) = gϑ, Φ(η, ϑ) = gη and Φ(u, v) = gu, Φ(v, u) = gv. Now we
show that gϑ = ϑ, gη = η and gu = u, gv = v. Now, we denote

λα(ϱ) =

(
Γ (gu, guα, ϱ)

) 1
2

∗
(
Γ (gv, gvα, ϱ)

) 1
2

. Then

Γ (gu, guα, kϱ) = Γ (Φ(u, v), Φ(uα−1, vα−1), kϱ) ≥
(
Γ (gu, guα−1, ϱ)

) 1
2

∗
(
Γ (gv, gvα−1, ϱ)

) 1
2

= λα−1(ϱ)

Γ (gv, gvα, kϱ) = Γ (Φ(v, u), Φ(vα−1, uα−1), kϱ) ≥
(
Γ (gv, gvα−1, ϱ)

) 1
2

∗
(
Γ (gu, guα−1, ϱ)

) 1
2

= λα−1(ϱ).

Therefore

λα(ϱ) ≥ λα−1

(
ϱ

k

)
≥ · · · ≥ λ0

(
ϱ

kα

)
,

Γ (gu, gvα, kϱ) ≥ λ0

(
ϱ

kα−1

)
and

Γ (gv, guα, kϱ) ≥ λ0

(
ϱ

kα−1

)
.

Since limα→∞ λ0

(
ϱ

kα−1

)
= 1, we get

lim
α→∞

guα = gu

and

lim
α→∞

gvα = gv.

This shows that gu = u and gv = v. Similarly, we can show that gϑ = ϑ and gη = η. Therefore,

Φ(u, v) = gu = u = gr = Φ(l, β)

Φ(v, u) = gv = v = gω = Φ(β, l)

Φ(ϑ, η) = gϑ = ϑ = gl = Φ(r, ω)

Φ(η, ϑ) = gη = η = gβ = Φ(ω, r).

On the other hand, we get

Γ (gl, gr, ϱ) = Γ (ϑ, u, ϱ) = Γ ( lim
α→∞

guα, lim
α→∞

gϑα, ϱ)

= lim
α→∞

Γ (guα, gϑα, ϱ)

= 1

and

Γ (gβ, gω, ϱ) = Γ (η, v, ϱ) = Γ ( lim
α→∞

gvα, lim
α→∞

gηα, ϱ)

= lim
α→∞

Γ (gvα, gηα, ϱ)

= 1.
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Therefore ϑ = u and η = v. Hence, (ϑ, η) ∈ Ω2∩Υ 2 is common coupled fixed point of Φ and g. Let (ϑ∗, η∗) ∈ Ω2∪Υ 2

be another common coupled fixed point of Φ and g. If (ϑ∗, η∗) ∈ Ω2, then

Γ (ϑ, ϑ∗, kϱ) = Γ (Φ(ϑ, η), Φ(ϑ∗, η∗), kϱ) ≥ (Γ (gϑ, gϑ∗, ϱ))
1
2 ∗ (Γ (gη, gη∗, ϱ))

1
2

= (Γ (ϑ, ϑ∗, ϱ))
1
2 ∗ (Γ (η, η∗, ϱ))

1
2

and

Γ (η, η∗, kϱ) = Γ (Φ(η, ϑ), Φ(η∗, ϑ∗), kϱ) ≥ (Γ (gη, gη∗, ϱ))
1
2 ∗ (Γ (gϑ, gϑ∗, ϱ))

1
2

= (Γ (η, η∗, ϱ))
1
2 ∗ (Γ (ϑ, ϑ∗, ϱ))

1
2 .

Adding by ϱ - norm ∗, we obtain

Γ (ϑ, ϑ∗, kϱ) ∗ Γ (η, η∗, kϱ) ≥ Γ (ϑ, ϑ∗, ϱ) ∗ Γ (η, η∗, ϱ).

Therefore

Γ (ϑ, ϑ∗, ϱ) ∗ Γ (η, η∗, ϱ) ≥ Γ (ϑ, ϑ∗,
ϱ

k
) ∗ Γ (η, η∗,

ϱ

k
)

...

≥ Γ (ϑ, ϑ∗,
ϱ

kα
) ∗ Γ (η, η∗,

ϱ

kα
).

As α → ∞, we have

Γ (ϑ, ϑ∗, ϱ) = 1

and Γ (η, η∗, ϱ) = 1.

Therefore ϑ = ϑ∗ and η = η∗. Similarly, if (ϑ∗, η∗) ∈ Υ 2, then ϑ = ϑ∗ and η = η∗. Hence (ϑ, η) ∈ Ω2 ∩ Υ 2 is a
unique common coupled fixed point of Φ and g. □

Example 3.2. Let Ω = [0, 1], Υ = {0} ∪ N − {1}. Define Γ (ϑ, η, ϱ) = e−
(ϑ−η)

ϱ for all ϱ > 0 and ϑ ∈ Ω and η ∈ Υ .
Clearly, (Ω, Υ, Γ, ∗) is a complete fuzzy bipolar metric space, where ∗ is a continuous ϱ-norm defined as a∗b = ab.
Define Φ : Ω2 ∪ Υ 2 → Ω ∪ Υ and g : Ω ∪ Υ → Ω ∪ Υ defined by

Φ(ϑ, η) =

{
ϑ+η
2 , if ϑ, η ∈ Ω2,

0, if ϑ, η ∈ Υ 2,

for all ϑ, η ∈ Ω2 ∪ Υ 2 and

g(ϑ) =

{
ϑ, if ϑ, η ∈ Ω,

0, if ϑ, η ∈ Υ,

for all ϑ, η ∈ Ω ∪ Υ . Then

Γ (Φ(ϑ, η), Φ(u, v), kϱ)2 =

(
e−(ϑ−u+η−v

2kϱ )

)2

≥ e−(ϑ−u+η−v
ϱ )

= e−( gϑ−gu+gη−gv
ϱ )

= Γ (gϑ, gu, ϱ) ∗ Γ (gη, gv, ϱ).

Clearly, all the hypotheses of Theorem 3.1 are satisfied. Hence Φ and g have a unique common coupled fixed point,
i.e., (0, 0).
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4 Application

In this section, we study the existence and unique common solution to a system of integral equations as an
application of Theorem 3.1.

Theorem 4.1. Let us consider the system of integral equations:

ϑ(p) = b(p) +

∫
E1∪E2

G(p, ω, ϑ(ω), η(ω))dω, p ∈ E1 ∪ E2,

η(p) = b(p) +

∫
E1∪E2

G(p, ω, η(ω), ϑ(ω))dω, p ∈ E1 ∪ E2,

g(ϑ(p)) = b(p) +

∫
E1∪E2

G(p, ω, ϑ(ω), η(ω))dω, p ∈ E1 ∪ E2

and

g(η(p)) = b(p) +

∫
E1∪E2

G(p, ω, η(ω), ϑ(ω))dω, p ∈ E1 ∪ E2,

where E1 ∪ E2 is a Lebesgue measurable set. Suppose

1. G : (E2
1 ∪ E2

2 )× [0,∞)× [0,∞) → [0,∞) and b ∈ L∞(E1) ∪ L∞(E2),
2. there is a continuous function θ : E2

1 ∪E2
2 → [0,∞) and g : L∞(E1)∪L∞(E2) → L∞(E1)∪L∞(E2), k ∈ (0, 1) such

that

|G(p, ω, ϑ(ω), η(ω))− G(p, ω, u(ω), v(ω))| ≤ θ(p, ω)(|gϑ(p)− gu(p)|+
|gη(p)− gv(p)|),

for p, ω ∈ E2
1 ∪ E2

2 ,
3. supp∈E1∪E2

∫
E1∪E2

θ(p, ω)dω ≤ 1.

Then the integral equations have a unique common solution in L∞(E1) ∪ L∞(E2).
Proof . Let Ω = L∞(E1) and Υ = L∞(E2) be two normed linear spaces, where E1, E2 are Lebesgue measurable sets
and m(E1 ∪ E2) < ∞. Consider Γ : Ω × Υ × (0,∞) → [0, 1] by

Γ (ϑ, η, ϱ) = e−
supp∈E1∪E2

|ϑ(p)−η(p)|
ϱ .

for all ϑ ∈ Ω, η ∈ Υ . Then (Ω, Υ, Γ, ⋆) is a complete fuzzy bipolar metric space. Define the mapping Φ : Ω2×Υ 2 → Ω∪Υ
by

Φ(ϑ(p), η(p)) = b(p) +

∫
E1∪E2

G(p, ω, ϑ(ω), η(ω)dω, p ∈ E1 ∪ E2.

Now, we have

Γ (Φ(ϑ(p), η(p)), Φ(u(p), v(p)))2

=

(
e− supp∈E1∪E2

|Φ(ϑ(p),ϑ(p))−Φ(u(p),v(p))|
kϱ

)2

=

(
e− supp∈E1∪E2

|b(p)+
∫
E1∪E2

G(p,ω,ϑ(ω),η(ω))dω−b(p)−
∫
E1∪E2

G(p,ω,u(ω),v(ω))dω)|
kϱ

)2

≥ e− supp∈E1∪E2

∫
E1∪E2

|G(p,ω,ϑ(ω),η(ω))dω−G(p,ω,u(ω),v(ω))|dω
ϱ

≥ e− supp∈E1∪E2

∫
E1∪E2

θ(p,ω)(|gϑ(p)−gu(p)|+|gη(p)−gv(p)|)dω
ϱ

≥ e− supp∈E1∪E2

|gϑ(p)−gu(p)|+|gη(p)−gv(p)|
ϱ

= Γ (gϑ, gu, ϱ) ∗ Γ (gη, gv, ϱ).

Hence all the hypotheses of a Theorem 3.1 are verified and consequently, the integral equation has a unique common
solution. □
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5 Conclusion

In this paper, we proved common coupled fixed point theorem on fuzzy bipolar metric space. An illustrative
example and application on fuzzy bipolar metric space is given.
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