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Abstract

This paper studies the nonlinear quantum-probability based Schrödinger type, Ivancevic options pricing model using
the method of Lie symmetries to determine its point symmetries, invariant analytical solutions and conversation laws.
In our analysis, we consider a non-zero and zero adaptive market potential model. We demonstrate that this model
is invariant under a five-dimensional Lie algebra for the former, and invariant under a seven-dimensional Lie algebra
for the latter case. These symmetries allow for a progressive reduction of the equation and thus facilitate a solution.
We obtain reductions, exact solutions and conservation laws for both the non-zero and zero adaptive market potential
models. We show that many exact solutions are expressible in terms of two transcendental functions, the Fresnel sine
and cosine integrals. Graphical solutions are provided in certain cases. This analysis and solutions to such a financial
derivatives pricing model are unique, providing novel insights.
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1 Introduction

In the 1970’s, F. Black, M. Scholes and R.C. Merton introduced a mathematical method to price complex financial
instruments [1], winning them a Nobel prize. This model is known as the Black-Scholes equation and is defined as
follows.
S = S(t) is the price function of the underlying asset at time t (0 ≤ t ≤ T ), that satisfies the stochastic differential
equation describing geometric Brownian motion

dS = S(µdt+ σdWt), S ∈ [0,∞), (1.1)

where µ and σ are the drift parameter (in this case the rate of return of the asset price S) and volatility, respectively,
and the standard Wiener process, Wt. The Black-Scholes partial differential equation associated with (1.1) for an
option value V = V (S, t) and risk-free interest rate r can be expressed as

∂V

∂t
+

1

2
σ2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (1.2)
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with V (0, t) = 0, V (S, t) → ∞ as S → ∞, V (S, t) = max(S − E), E the strike price or exercise price is taken as a
constant and the price function is

S(t) = S0e
(µ−σ2

2 )t+σWt , S0 = S(0). (1.3)

This model is primarily used to price European call and put options [2]. The main assumption of the Black-Scholes
model are that µ and σ are constant. That is, over the life of the derivative, the underlying volatility remains constant
and is unaffected by changes in the underlying asset’s price level. This constrains the model since it is unable to
account for long-observed characteristics of the implied volatility surface such as volatility smile and skew, which
indicate that implied volatility varies with strike price and expiration [3]. In relation to physics, (1.2) resembles the
Fokker-Planck equation used to describe the Brownian motion of a particle in a fluid [4]. Additionally, using quantum
mechanics [5] established that the Black-Scholes equation can be derived from the Schrödinger equation. Analytical
solutions to this model has been extensively studied in literature. In [6], the Black-Scholes equation with a non-smooth
boundary condition was transformed into the heat equation using symmetries to find an exact solution. Lie symmetry
methods have been utilised in the fractional Black-Scholes equation to find invariant solutions and conservation laws
[7]. Other methods to find analytical solutions to the Black-Scholes model can be found in [8, 9, 10, 11]. Because of
the Black-Scholes equation’s limitations as a result of its assumptions, there has been a push to develop models that
loosen these assumptions and provide a more realistic picture of the markets.

The Ivancevic options pricing model (IOPM) is a nonlinear adaptive-wave model, describing controlled Brown-
ian motion of financial markets, and a wave alternative to the standard Black-Scholes option-pricing model. The
complex-valued equation, introduced by Vladimir G. Ivancevic [12], is defined by adaptive nonlinear Schrödinger
(NLS) equations, in which the option-pricing wave function is expressed in terms of asset (stock) price and time. Ṫhe
wave function representing quantum probability amplitude, when taking its absolute square gives a probability density
function. The IOPM is

i
∂Ψ

∂t
+

1

2
σ2 ∂

2Ψ

∂S2
+ β|Ψ|2Ψ = 0, i2 = −1, (1.4)

where Ψ = Ψ(S, t) denotes the option pricing wave-function at time t, |Ψ|2 = |Ψ(S, t)|2 represents the probability
density function (PDF) for the option price in terms of stock price and time, σ represents a constant or stochastic
process as the dispersion frequency volatility coefficient, and β is the Landau coefficient representing adaptive market
potential. This adaptive market potential in its simplest non-adaptive form is equal to the interest rate r. For the
adaptive scenario, on the other hand, β = β(r, w) depends on the set of adjustable parameters {wj}. In this adaptive
case, the Landau coefficient can be linked to market temperature. We emphasize the significance of this model for
understanding financial derivatives markets from a mathematical and physical standpoint.

The use of Lie symmetry methods to study partial differential equations (PDEs) is highly effective and a plethora
of work can be found in the literature [13, 14, 15, 16, 17, 18, 19, 20, 21]. Conservation laws from a physical point
of view states that when a physical system changes, a quantifiable amount of the system remains constant. It can
be used for linearisation and analysis of solutions of a PDE. In fact, Emmy Noether discovered that symmetries and
conservation laws are linked where the existence of a one implies the other. Noether symmetries have been particularly
useful in cosmology [22, 23, 24, 25]. Very few works on the exact solutions to the IOPM exist in literature. In [26], the
He’s Frequency Amplitude Formulation was utilised, whereas in [27], authors used the projected differential transform
method. The paper [28] constructed dark wave, rogue wave and perturbation solutions via the trial function method.
Solutions to the time-fractional IOPM was discussed in [3]. In our analysis we consider the deterministic form of the
IOPM model with a constant volatility. We present novel invariant solutions for both the adaptive and non-adaptive
market potentials. Where appropriate, we provide plots of these solutions. Finally, conservation laws for both cases
are determined.

2 Symmetries and invariant solutions for the IOPM with a non-zero adaptive market
potential

In this section we consider a non-zero adaptive market potential i.e. β ̸= 0. We start by splitting the complex
equation (1.4) into its real and imaginary counterparts by taking Ψ(S, t) = u(S, t) + iv(S, t), obtaining the system:

− ∂

∂t
v (S, t) +

1

2
σ2 ∂2

∂S2
u (S, t) + β (u (S, t))

3
+ β u (S, t) (v (S, t))

2
= 0, (2.1)

∂

∂t
u (S, t) +

1

2
σ2 ∂2

∂S2
v (S, t) + β (u (S, t))

2
v (S, t) + β (v (S, t))

3
= 0. (2.2)
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The reduction of the number of independent variables in PDEs, is the subject of this paper. The reductions can
be used to obtain solutions known as invariant solutions. The value of symmetries is that they allow one to connect
sophisticated equations or systems to simpler ones that may potentially be solved.

The IOPM system, (2.1)-(2.2), is invariant under a five-dimensional Lie algebra consisting of the symmetry vector
fields, as determined by Lie theory:

X1 =
∂

∂S
, (2.3)

X2 =
∂

∂t
, (2.4)

X3 = u
∂

∂v
− v

∂

∂u
, (2.5)

X4 = σ2t
∂

∂S
+ Su

∂

∂v
− Sv

∂

∂u
, (2.6)

X5 = −S
∂

∂S
− 2t

∂

∂t
+ u

∂

∂u
+ v

∂

∂v
. (2.7)

The commutators of admitted point symmetries of the IOPM with a non-zero adaptive market potential are given
in Table 1.

[, ] X1 X2 X3 X4 X5

X1 0 0 0 X3 −X1 .
X2 0 0 0 σ2X1 −2X2

X3 0 0 0 0 0
X4 X3 σ2X1 0 0 X4

X5 −X1 −2X2 0 X4 0

Table 1: Commutator table for β ̸= 0.

2.1 Conservation laws for β ̸= 0

Now we construct conservation laws for the IOPM using the multiplier approach. Multipliers, Λ, are integrating
factors, satisfying the relation

DiT
i = ΛG, (2.8)

where Λ is derived by equations satisfying
E(ΛG) = 0, (2.9)

where E is the Euler operator. Now having the multipliers, they give rise to a conserved vector T = (T 1, ....., Tn) that
satisfies the conservation relation

DiT
i = 0, (2.10)

along the solutions of a given equation. Suppose that the system (2.1)-(2.2) admits the multipliers of the form

Λ1(S, t, u, v, vS , uS , vSS , uSS), (2.11)

and
Λ2(S, t, u, v, vS , uS , vSS , uSS), (2.12)

that correspond to the conservation laws composed of T t, the conserved density, and TS , the conserved flux.

The system (2.1)-(2.2) with a non-zero adaptive market potential, β ̸= 0, relating to the IOPM (1.4) admits the
multipliers:

Λ1 =
σ2tuS + Sv

σ2
, (2.13)

Λ2 = −−σ2tvS + Su

σ2
. (2.14)
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These multipliers give rise to the conservation law vector components TS
1 and T t:

TS
1 =

1

4
βu4t+

1

2
βtu2v2 +

1

4
βtv4 − 1

2
SuvS +

1

4
u2
Sσ

2t+
1

2
SuSv +

1

4
σ2tv2S − 1

2
tuvt +

1

2
tutv,

T t
1 = −1

2

−σ2tuvS + σ2tuSv + Su2 + Sv2

σ2
.

The above conservation laws can indeed be written in terms of the original variable Ψ:

TS
1 =

1

4
βt(|Ψ|2)2 + 1

4
σ2tΨSΨS − 1

4
iS(ΨΨS −ΨΨS)−

1

4
it(ΨΨt −ΨΨt),

T t
1 = − 1

4σ2
(tiσ2(ΨΨS −ΨΨS) + 2S|Ψ|2),

where Ψ is the conjugate of Ψ.

The multipliers Λ1 = uS , and Λ2 = vS , lead to the conservation laws

TS
2 =

1

4
βu4 +

1

2
βu2v2 +

1

4
βv4 +

1

4
u2
Sσ

2 +
1

4
v2Sσ

2 − 1

2
uvt +

1

2
vut

=
1

4
β(|Ψ|2)2 + 1

4
σ2ΨΨS − 1

4
i(ΨΨt −ΨΨt),

and

T t
2 = −1

2
uSv +

1

2
uvS =

1

4
i(ΨΨS −ΨΨS).

Moreover, the admitted integrating factors that satisfy (2.8) and (2.9) are

Λ1 = − 2βu2v+2βv3+σ2vSS

σ2 , (2.15)

Λ2 = 2βu3+2βuv2+σ2uSS

σ2 , (2.16)

with corresponding conservation laws

TS
3 = −1

2
vvSt +

1

2
vSvt −

1

2
uuSt +

1

2
uSut = −1

4
(ΨΨSt +ΨΨSt) +

1

4
(ΨSΨt +ΨSΨt),

T t
3 =

1

2

βu4 + 2βu2v2 + βv4 + σ2uuSS + σ2vvSS

σ2
=

1

4σ2
(σ2(ΨΨSS +ΨΨSS) + 2β(|Ψ|2)2).

The last pair of multipliers for our system with β ̸= 0 are Λ1 = −v,Λ2 = u. As a result, we obtain the conservation
laws

TS
4 =

1

2
uvSσ

2 − 1

2
σ2uSv =

1

4
σ2i(ΨΨS −ΨΨS), T t

4 =
1

2
v2 +

1

2
u2 =

1

2
(|Ψ|2).

We now construct some exact solutions to the investigated system using the acquired symmetries. The terms Ci

denote arbitrary constants. Additionally, since Ψ(S, t) = u(S, t) + iv(S, t), one may easily recover the solution to the
IOPM equation (1.4), from the solutions of u(S, t) and v(S, t) obtained.

2.2 Reductions and invariant solutions for β ̸= 0

A reduction with X1 leads to the reduce system

d

dt
K (t) + β (K (t))

2
W (t) + β (W (t))

3
= 0,

− d

dt
W (t) + β (K (t))

3
+ β K (t) (W (t))

2
= 0,

where u(S, t) = K(t) and v(S, t) = W (t). The above system solves to give us a trivial (constant) solution.
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A reduction using X2 gives us a non-trivial solution of

u (S, t) = 0,

v (S, t) = C2 JacobiSN
((√

βS + C1

)
C2, i

)
, (2.17)

where the JacobiSN is the inverse of elliptic integrals and doubly periodic elliptic functions. We plot the above
solution in Figure 1 for different values of β.

(a) (b)

(c) (d)

Figure 1: Graphical illustration of the analytical solutions are depicted, we select the parameter values C1 = C2 = 1 and the range
0 ≤ S ≤ 10: (a) solution of (2.17) where β = 1.0; (b) solution of (2.17) where β = 2.0; (c) solution of (2.17) where β = 3.0; and, (d)
solution of (2.17) where β = 4.0.

Lastly, reductions with X5 yields

2σ2

(
d2

d t
S2

2κ
(

t
S2

))
t
S2

2
+ β κ

(
t
S2

) (
Ω
(

t
S2

))2
+ β

(
κ
(

t
S2

))3
+ 5σ2

(
d

d t
S2

κ
(

t
S2

))
t
S2 + σ2κ

(
t
S2

)
− d

d t
S2

Ω
(

t
S2

)
= 0,

2σ2

(
d2

d t
S2

2Ω
(

t
S2

))
t
S2

2
+ β

(
Ω
(

t
S2

))3
+ β

(
κ
(

t
S2

))2
Ω
(

t
S2

)
+ 5σ2

(
d

d t
S2

Ω
(

t
S2

))
t
S2 + σ2Ω

(
t
S2

)
+ d

d t
S2

κ
(

t
S2

)
= 0.

In the above system u(S, t) = κ( t
S2 ) and v(S, t) = Ω( t

S2 ), where unfortunately an analytical solution is not found
for this reduced system.

3 Symmetries and invariant solutions for the IOPM with a zero adaptive market po-
tential

In the special case where we do not consider the adaptive market potential i.e. β = 0, thus (1.4) becomes linear.
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We use Lie’s theory and find that under the action of the following seven-dimensional point transformation with
generators given below, the IOPM system with β = 0 is invariant:

X1, X2, X3, X4, (3.1)

Y1 =
1

2
S

∂

∂S
+ t

∂

∂t
, (3.2)

Y2 = 2σ2St
∂

∂S
+ 2σ2t2

∂

∂t
+ (−σ2tu− S2v)

∂

∂u
+ (−σ2tv + S2u)

∂

∂v
, (3.3)

Y3 = u
∂

∂u
+ v

∂

∂v
. (3.4)

The commutators of the admitted Lie point symmetries of system (2.1)-(2.2), given a zero adaptive market potential
are presented in Table 2.

[, ] X1 X2 X3 X4

Y1
1
2X1 X2 0 − 1

2X4

Y2 2X4 2σ2SX1 + 4σ2tX2 − σ2Y3 0 0
Y3 0 0 0 0

Table 2: Commutator table for β = 0.

3.1 Conservation laws for β = 0

Employing the same mathematical method as detailed in the preceding section, we derive the conservation laws
for our system (2.1)-(2.2), now using β = 0. This case is rich in conservation laws, possessing eight of them.

The first two multipliers derived are

Λ1 =
1

2
vSSσ

4t2 − σ2tSuS − 1

2
σ2tu− 1

2
vS2, (3.5)

Λ2 = −1

2
uSSσ

4t2 − σ2tSvS − 1

2
σ2tv +

1

2
uS2, (3.6)

from which the conservation laws include

TS
1 =

1

2
utSσ2vt −

1

2
σ2vtSut −

1

4
vSσ

4t2vt +
1

4
uσ4t2uSt −

1

4
uSσ

4t2ut −
1

4
Sσ4tv2S +

1

4
uσ4tuS +

1

4
uS2σ2vS

−1

4
u2
Sσ

4tS − 1

4
uSσ

2vS2 +
1

4
vσ4tvS +

1

4
vσ4t2vSt

=
1

4
Sσ2it(ΨΨt −ΨΨt)−

1

4
σ4t2

1

2
(ΨSΨt +ΨSΨt) +

1

4
σ4t2

1

2
(ΨΨSt +ΨΨSt) +

1

4
σ4t

1

2
(ΨΨS +ΨΨS)

−1

4
σ4tSΨSΨS +

1

4
σ2S2 1

2
i(ΨΨS −ΨΨS),

and

T t
1 = −1

4
vvSSσ

4t2 +
1

2
vσ2tSuS +

1

4
v2S2 − 1

4
σ4t2uuSS − 1

2
Sσ2tuvS +

1

4
u2S2

= −1

4
σ4t2(

1

2
(ΨΨSS +ΨΨSS)−

1

4
Sσ2ti(ΨΨS −ΨΨS) +

1

4
2S2|Ψ|2.

Similarly, we obtained the multipliers

Λ1 = −σ2tuS − Sv, (3.7)

Λ2 = −σ2tvS + Su, (3.8)
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with conservation laws

TS
2 =

1

2
uSσ2vS − 1

4
σ4tu2

S − 1

2
vSσ2uS − 1

4
σ4tv2S +

1

2
σ2tuvt −

1

2
σ2tvut

= −1

4
σ4tΨSΨS +

1

4
iSσ2(ΨΨS −ΨΨS) +

1

4
σ2it(ΨΨt −ΨΨt),

T t
2 =

1

2
σ2tvuS +

1

2
Sv2 − 1

2
σ2tuvS +

1

2
Su2 = −1

4
σ2ti(ΨΨS −ΨΨS) +

1

2
S|Ψ|2.

Further, we apply the multipliers Λ1 = −v, Λ2 = u, to acquire the conservation laws

TS
3 =

1

2
uvSσ

2 − 1

2
σ2uSv =

1

4
σ2i(ΨΨS −ΨΨS), T t

3 =
1

2
v2 +

1

2
u2 =

1

2
(|Ψ|2).

We deduce the multipliers

Λ1 = −2σ2tvSS + 2SuS + u, (3.9)

Λ2 = 2σ2tuSS + 2SvS + v, (3.10)

from which we derive the conservation laws and express them in terms of Ψ:

TS
4 = −1

2
uuSσ

2 +
1

2
Sσ2u2

S − 1

2
vvSσ

2 +
1

2
Sσ2v2S − uSvt − σ2tvvSt + tvSσ

2vt − σ2tuuSt + tuSσ
2ut + vSut

= −1

4
σ2(ΨΨS +ΨΨS) +

1

2
Sσ2ΨΨS − 1

2
σ2t(ΨΨSt +ΨΨSt)−

1

2
iS(ΨΨt −ΨΨt) +

1

2
σ2t(ΨSΨt +ΨSΨt),

and

T t
4 = σ2tuuSS + σ2tvvSS + SuvS − SuSv =

1

2
σ2t(ΨΨSS +ΨΨSS) +

1

2
Si(ΨΨS −ΨΨS).

The admitted multipliers also include Λ1 = uS , Λ2 = vS , leading to the corresponding conservation law

TS
5 =

1

4
u2
Sσ

2 +
1

4
σ2v2S − 1

2
uvt +

1

2
vut =

1

4
σ4ΨSΨS − 1

4
i(ΨΨt −ΨΨt),

T t
5 = −1

2
vuS +

1

2
uvS =

1

4
i(ΨΨS −ΨΨS),

followed by Λ1 = −vSS , and Λ2 = uSS , to get the conservation law

TS
6 = −1

2
vvSt +

1

2
vSvt −

1

2
uuSt +

1

2
uSut = −1

4
(ΨΨSt +ΨΨSt) +

1

4
(ΨSΨt +ΨSΨt),

T t
6 =

1

2
vvSS +

1

2
uuSS =

1

4
(ΨΨSS +ΨΨSS).

The multipliers Λ1 = S, Λ2 = 0, yield conservation laws

TS
7 = −1

2
uσ2 +

1

2
Sσ2uS = −1

4
σ2(Ψ + Ψ) +

1

4
Sσ2(ΨS +ΨS), T t

7 = −vS =
1

2
S(iΨ− iΨ),

and the multipliers Λ1 = 1, Λ2 = 0, lead to the conservation law

TS
8 =

1

2
uSσ

2 =
1

4
σ2(ΨS +ΨS), T t

8 = −v =
1

2
(iΨ− iΨ).
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3.2 Reductions and invariant solutions for β = 0

3.2.1 Case 1: Reduction for Y1

We obtain the following exact solution by applying Lie symmetry vector Y1:

u (S, t) = C2 + C3 FresnelS

(
S

σ
√
πt

)
+ C4 FresnelC

(
S

σ
√
πt

)
, (3.11)

v (S, t) = −FresnelC

(
S

σ
√
πt

)
C3 + FresnelS

(
S

σ
√
πt

)
C4 + C1 , (3.12)

where FresnelS and FresnelC are the Fresnel sine integral and the Fresnel cosine integral respectively. In Figure 2
we show the graphical solutions (3.11) and (3.12) for Case 1.

(a) (b)

(c) (d)

Figure 2: Graphical illustration of the analytical solutions are depicted, we select the parameter values C1 = C2 = C3 = C4 = 1 and the
ranges 0 ≤ t ≤ 10 and 0 ≤ S ≤ 10: (a) solution of (3.11) where σ = 0.5; (b) solution of (3.11) where σ = 1.0; (c) solution of (3.12) where
σ = 0.5; and, (d) solution of (3.12) where σ = 1.0.

3.2.2 Case 2: Reduction via the linear combination c1X1 + c2X2

Reduction with X1 and X2, individually gives the solution for Ψ(S, t) as a trivial (constant) solution. Instead,
under this case we use the linear combinations of symmetries to get the analytical solutions

u (S, t) = C2 + C3 sin

(
2
c1 (Sc2 − tc1)

c22σ2

)
+ C4 cos

(
2
c1 (Sc2 − tc1)

c22σ2

)
, (3.13)

v (S, t) = cos

(
2
c1 (Sc2 − tc1)

c22σ2

)
C3 − sin

(
2
c1 (Sc2 − tc1)

c22σ2

)
C4 + C1 . (3.14)

In Figure 3 we plot the solutions (3.13) and (3.14).
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(a) (b)

(c) (d)

Figure 3: Graphical illustration of the analytical solutions are depicted, we select the parameter values c1 = c2 = C1 = C2 = C3 = C4 = 1
and the ranges 0 ≤ t ≤ 10 and 0 ≤ S ≤ 10 : (a) solution of (3.13) where σ = 1.0; (b) solution of (3.13) where σ = 2.0; (c) solution of (3.14)
where σ = 1.0; and, (d) solution of (3.14) where σ = 2.0.

3.2.3 Case 3: Reductions with c1X1 + c2Y1

Similar to Case 2 , we take a linear combination c1X1 + c2Y 1 which yields the invariant solutions below:

u (S, t) = C2 + C3 FresnelS

(
Sc2 + 2 c1√

πtc2σ

)
+ C4 FresnelC

(
Sc2 + 2 c1√

πtc2σ

)
, (3.15)

v (S, t) = C1 + FresnelS

(
Sc2 + 2 c1√

πtc2σ

)
C4 − FresnelC

(
Sc2 + 2 c1√

πtc2σ

)
C3 . (3.16)

In Figure 4 we plot the solutions (3.15) and (3.16).

3.2.4 Case 4: A reduction with c1X2 + c2Y1

We consider the linear combination c1X2 + c2Y 1 gives solutions:

u (S, t) = C2 + C3 FresnelS

(
S
√
c2

σ
√
π (tc2 + c1)

)
+ C4 FresnelC

(
S
√
c2

σ
√
π (tc2 + c1)

)
, (3.17)

v (S, t) = C1 − FresnelC

(
S
√
c2

σ
√
π (tc2 + c1)

)
C3 + FresnelS

(
S
√
c2

σ
√

π (tc2 + c1)

)
C4 . (3.18)

In Figure 5 we plot the solutions (3.17) and (3.18).
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(a) (b)

(c) (d)

Figure 4: Graphical illustration of the analytical solutions are depicted, we select the parameter values c1 = c2 = C1 = C2 = C3 = C4 = 1
and the ranges 0 ≤ t ≤ 10 and 0 ≤ S ≤ 10 : (a) solution of (3.15) where σ = 0.5; (b) solution of (3.15) where σ = 1.0; (c) solution of (3.16)
where σ = 0.5; and, (d) solution of (3.16) where σ = 1.0.

3.2.5 Case 5: Reduction via c1Y3 + c2X1

Application of the linear combinations c1Y3 + c2X1 provides the following analytical solutions below:

u (S, t) = e
c1S
c2

(
C1 sin

(
1

2

c1
2σ2t

c22

)
+ C2 cos

(
1

2

c1
2σ2t

c22

))
, (3.19)

v (S, t) = e
c1S
c2

(
− cos

(
1

2

c1
2σ2t

c22

)
C1 + sin

(
1

2

c1
2σ2t

c22

)
C2

)
. (3.20)

In Figure 6 we plot the solutions (3.19) and (3.20).

3.2.6 Case 6: c1Y3 + c2X2

Under this case we use the linear combinations of symmetries c1Y3 + c2X2 which yield the exact solutions below:

u (S, t) = e
c1t
c2

(
C1 e−iγ + C2 e−γ + C3 eiγ + C4 eγ

)
, (3.21)

v (S, t) = e
c1t
c2

(√
−c12c22

c2c1

(
C4 eγ − C1 e−iγ + C2 e−γ − C3 eiγ

))
, (3.22)

where γ =
√
2 4√−c12c22S

c2σ
. In Figure 7 we plot the solutions (3.21) and (3.22).
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(a) (b)

(c) (d)

Figure 5: Graphical illustration of the analytical solutions are depicted, we select the parameter values c1 = c2 = C1 = C2 = C3 = C4 = 1
and the ranges 0 ≤ t ≤ 10 and 0 ≤ S ≤ 10 : (a) solution of (3.17) where σ = 0.5; (b) solution of (3.17) where σ = 1.0; (c) solution of (3.18)
where σ = 0.5; and, (d) solution of (3.18) where σ = 1.0.
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(a) (b)

(c) (d)

Figure 6: Graphical illustration of the analytical solutions are depicted, we select the parameter values c1 = c2 = C1 = C2 = 1 the ranges
0 ≤ t ≤ 10 and 0 ≤ S ≤ 10: (a) solution of (3.19) where σ = 0.5; (b) solution of (3.19) where σ = 1.0; (c) solution of (3.20) where σ = 0.5;
and, (d) solution of (3.20) where σ = 1.0.
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(a) (b)

(c) (d)

Figure 7: Graphical illustration of the analytical solutions are depicted, we select the parameter values c1 = c2 = C1 = C2 = C3 = C4 = 1
the ranges 0 ≤ t ≤ 10 and 0 ≤ S ≤ 10: (a) solution of (3.21) where σ = 0.5; (b) solution of (3.21) where σ = 1.0; (c) solution of (3.22)
where σ = 0.5; and, (d) solution of (3.22) where σ = 1.0.
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4 Conclusion

Econophysics, as the name suggests is an interdisciplinary field, that deviates from mainstream economics taking
concepts and models from the domain of physics to explain economic phenomena. Subsets of the field include quantum
finance, thermoeconomics etc. In this paper we have successfully performed a full symmetry analysis for the IOPM
considering both β ̸= 0 and β = 0, the Landau coefficient representing the adaptive market potential. We discovered
that the IOPM admits several invariant solutions as well as conservation laws for the zero and nonzero adaptive market
potential. We provided several plots for our solutions given different levels of volatility. These solutions are novel and
haven’t appeared elsewhere in literature. We also note this is the first time symmetry analysis has been done on the
model and thus we give original insights on the options pricing model’s symmetries, conservation laws and solutions.
As can be observed from the analysis above, point symmetries that correspond to the IOPM equation are necessary
in order to solve for it. The order of the equation can be gradually reduced using these symmetries. If any of the
remaining symmetries of the Lie algebra are inherited by reduced equations, the order may be lowered once again.
Since the IOPM equation in our situation is a two-variable PDE, at least one symmetry is necessary to convert it to
an ordinary differential equation (ODE). In one case of a zero adaptive market potential, the IOPM wave function
solution exhibits sinusoidal characteristics, with wave frequency positively correlated to the Landau coefficient.
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