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Abstract

The main aim of the present study is to expand the operational matrix method for solving the fractional two-
dimensional nonlinear weakly singular partial integro-differential equations. To do this, firstly, we use and present the
operational matrix of fractional integration of two-dimensional Fibonacci polynomials. Then, by using the obtained
operational matrices to approximate the fractional derivative of the solution of the considered equation, we convert
the original problem to a nonlinear system of equations. Also, we present the error analysis of the proposed method
by a theorem. Finally, we present and solve some numerical examples to illustrate the proposed method.
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1 Introduction

Differential equations as well as fractional integro-differential equations (FIDEs) has many applications in various
sciences such as engineering, chemistry, physics and biology [2, 26, 34]. Due to the complexity of determining the
analytical solution of these equations, researchers had to develop the numerical methods to solve them. So, recently,
many researchers presented some numerical methods for solving fractional integral equations (FIEs) and FIDEs by
the help of wavelets and orthogonal polynomials [1, 14, 20, 27, 37, 38].

Numerical methods based on operational matrices (OMs) have recently been considered by researchers as one of
the efficient methods for solving various linear or nonlinear problems such as FIEs and FIDEs. In these methods,
the principal problem becomes a system of linear or nonlinear equations. To see some proposed operational matrices
methods for solving FIEs and FIDEs, one can refer to [11, 16, 39, 40, 41].

Solving partial differential equations has long been of interest to authors. Due to the widespread use of weakly
singular fractional order partial integro-differential equations (WSFPIDEs), many researchers have proposed different
numerical methods to solve these equations. Among the proposed methods, we can mention to [12, 13, 18, 22, 32, 33].
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Recently, the use of polynomials as well as fractional-order functions such as Euler and Fibonachi polynomials to
solve FIDEs and WSFPIDEs has been considered by researchers. In [28], the authors applied fractional-order euler
polynomials for solving weakly singular fractional-order delay integro-differential equations. The authors of [31] used
Fibonachi wavelets to solve two classes of time-varying delay problems. Solving time-fractional Telegraph equations
with Dirichlet boundary conditions by Fibonachi wavelet is done in [35]. In [6], the authors proposed a numerical
method based on finite-difference Fibonachi collocation method to solve two-dimensional fractional-order reaction
advection sub-diffusion equation. To study the other methods, one can refer to [8, 9, 30, 36].

The operational matrix (OM) methodology was also applied by Maleknejad to solve the previous equation [17].
Moreover, Babolain et al. recently utilized TFs for the same purpose [3]. Nema et al. utilized Legendre polynomials
to solve the Volterra equation within a two-dimensional space [21]. Chebyshev wavelets were constructed by Baghani
et al. to provide an equation solving approach for finite-time quadratic fractional control equations [4].

The method of Fibonacci wavelet has been proposed by [6]. J. Sing to solve the equation of fractional advection sub-
diffusion. In addition, To solve the pennies bioheat transfer equation, the Fibonacci wavelets (FWs) operational matrix
has been employed [8, 9]. The method of FWs to solve telegraph equations [31] and [35] was used by S. Shiralashetti,
respectively. Furthermore, the Fibonacci wavelet in [36] Rahimkhani and [30] was presented for fractional-order and
solving optimal control problems, respectively. In order to define the integrating the OM for which defined properly by
some kind of orthogonal function such as Laguerre series [10], Triangular functions [12], and Block-pulse Functions [7],
Bernoulli wavelets [16], Chebyshev polynomials [37], and Legendre polynomials [15]. Fibonacci operational was utlized
for solving the fractional initial value problems by researchers [24]. Boubaker function was applied to solve the problems
of optimal control and delay optimal control by [24] and [25], respectively. Moreover, [5] Davaeifar and Ordokhani
[23] have been applied the Boubaker function to solve Volterra-Fredholm integral equations systems and pantograph
delay differential equation, respectively. M. Yi and J. Huang used the OM of wavelet in [39] to approximate the
FDEs solution. In addition, F. Mirzaee al., applied such an approach to solving Volterra-Fredholme [19]. Many works
exist. There are various researches regarding the fractional Volterra integral equation, such as Bernstein polynomials
[41], Wavelets method [38], Bernstein polynomials method [18], Block-pulse function [7], and Collocation method [22].
In some advanced applications, the two-dimensional fractional weakly singular partial integro-differential equation
(2DFWSPIDE) is common. For instance, in physics, and especially in the plasma field, traces of these equations can
be seen. In particular, mathematicians have down some of this research [32]. The following 2DFWSPIDE system is
considered in this article.

Dθ
ι u(ϵ, ι) = u(ϵ, ι) + g(ϵ, ι) +

∫ ϵ

0

∫ ι

0

H(u(s, y))

(ϵ− s)α
dyds, (1.1)

where u(ϵ, ι) is an unknown function. The known functions H(u(s, y)), g(ϵ, ι) and u0(ϵ) are defined on interval
Ω = [0, 1] × [0, 1]. Also, Dθ

ι denotes the Caputo fractional derivate. (ϵ, ι) ∈ Ω = [0, 1] × [0, 1], 0 < α < 1, 0 < θ ≤ 1
and with the initial conditionals u(ϵ, 0) = u0(ϵ), of u(ϵ, ι) respect to variable ι of order θ.

This paper is organized as follow: Fractional derivatives basis concepts are provided in section 2. Some necessary
Fibonacci polynomials properties, fractional-order derivatives, the integration of operational matrix, and other oper-
ational matrices are presented in section 3, and section 4 describes the method. Finally, the accuracy and efficiency
of the proposed scheme using numerical solutions for some examples are demonstrated in Section 5. The tables show
the results obtained from the performance of the technique to solve the related examples. These conclusions confirm
the validity of the proposed solution.

2 Preliminaries

In this section, we recall the fundamental characteristics and definitions of the fractional integral and derivative.

Definition 2.1. [40]. The Riemann-Liouville fractional integral operator Iγ1 of order γ1 ≥ 0, of a function u ∈
Cµ, µ ≥ 1, is defined as

(Iγ1)u(ϵ) =

{
1

Γ(γ1)

∫ ϵ

0
f(s)

(ϵ−s)1−γ1
ds, s > 0,

u(ϵ), γ1 = 0.

For γ2 ≥ −1, we have

Iγ1ϵγ2 =
Γ(γ2 + 1)

Γ(γ2 + γ1 + 1)
ϵγ1+γ2 .
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Definition 2.2. [20]. The Caputo partial fractional derivative of u(ϵ, ι) with respect to ϵ of order γ1 > 0 is define as

(cDγ1
ϵ u)(ϵ, ι) =

∂γ1u(ϵ, ι)

∂ϵγ1
=

{
1

Γ(n−γ1)

∫ ϵ

0
∂nu(s,t)

∂sn
ds

(ϵ−s)γ1+1−n , n− 1 < γ1 < n, n ∈ N,
∂nu(ϵ,ι)

dϵn , γ1 = n.

Definition 2.3. [40] The mixed Caputo partial fractional derivative of order (γ1, γ2), γ1, γ2 > 0 is defined as

(cDγ1,γ2
ϵ,ι u)(ϵ, ι) =

∂γ1+γ2u(ϵ, ι)

∂ϵγ1∂ιγ2
=

1

Γ(m− γ1)Γ(n− γ2)

∫ ϵ

0

∫ ι

0

∂n+mu(s, y)

∂sn∂ym
dyds

(ϵ− s)γ1+1−m(ι− y)γ2+1−n
,

for m− 1 < γ2 < m, n− 1 < γ1 < n.

Lemma 2.4. [20]. If n− 1 < γ1 ≤ n, n ∈ N, then Dγ1
ϵ Iγ1u(ϵ, ι) = u(ϵ, ι), and:

Iγ1Dγ1
ϵ u(ϵ, ι) = u(ϵ, ι)−

n−1∑
r=0

∂ru(0+, t)

∂ϵr
ϵr

r!
, ϵ > 0.

3 Fibonacci polynomials (FPs)

The FPs can be written as [31]

Ẽn(ϵ) =


1, n = 0,
ϵ, n = 1,

ϵẼn−1(ϵ) + Ẽn−2(ϵ), n > 1.

The closed form of FPs are as follows:

Ẽn(ϵ) =
βn − γn

β − γ
, (3.1)

where β and γ are the roots of the companion polynomial α2 − ϵα− 1 of the recursion. The FPs can be represented
in the power form as [31]

Ẽn(ϵ) =

⌊n
2 ⌋∑

p=0

(
n− i
i

)
ϵn−2i, n ≥ 0.

Suppose that Ẽ(ϵ) = [Ẽ0(ϵ), Ẽ1(ϵ), Ẽ2(ϵ), ..., Ẽn(ϵ)]
T . For the matrix form of Ẽ(ϵ), we have:

Ẽ(ϵ) = RTn(ϵ), (3.2)

where
T (ϵ) = [1, ϵ, ϵ2, ϵ3, ..., ϵn]T , (3.3)

and

Rn =



1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
1 0 1 0 0 0 0 · · ·
0 2 0 1 0 0 0 · · ·
1 0 3 0 1 0 0 · · ·
0 3 0 4 0 1 0 · · ·
1 0 6 0 5 0 1 · · ·
...

...
...

...
...

...
...

. . .


.

For the FPs, in [31], the following result is proved

∫ 1

0

Ẽn(ϵ)Ẽm(ϵ)dϵ =

⌊n
2 ⌋∑

p=0

⌊m
2 ⌋∑

q=0

(
n− i
i

)(
m− i

i

)
1

n+m− 2i− 2j + 1
.
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3.1 Function approximation

A function u(ϵ) ∈ L2([0, 1]) can be expanded in terms of FPs as follows:

u(ϵ) ≈ un(ϵ) =

n∑
i=0

biẼi(ϵ) = bT Ẽ(ϵ) = ẼT (ϵ)b, (3.4)

where
b = [b0, b1, ..., bn, ]

T . (3.5)

To expand u(ϵ, ι) in terms of two-dimensional fibonacci polynomials (2DFPs), first, we define 2DFPs as follows:

Ẽi,j(ϵ, ι) = Ẽi(ϵ)Ẽj(ι). (3.6)

Now, we define
Φ(ϵ, ι) = [Ẽ0,0(ϵ, ι), Ẽ0,1(ϵ, ι), ..., Ẽ0,m(ϵ, ι), Ẽ1,0(ϵ, ι), ..., Ẽn,m(ϵ, ι)]T . (3.7)

Obviously, we can write Φ(ϵ, ι) as the following form:

Φ(ϵ, ι) = E(ϵ)⊗ E(ι), (3.8)

where ⊗ is the Kronecker product and

Ẽ(ϵ) = [Ẽ0(ϵ), Ẽ1(ϵ), ..., Ẽn(ϵ)]
T , Ẽ(ι) = [Ẽ0(ι), Ẽ1(ι), ..., Ẽm(ι)]T . (3.9)

Suppose that u(ϵ, ι) ∈ L2([0, 1)× [0, 1)). Clearly, we can expand u(ϵ, ι) in terms of 2DFPs as

u(ϵ, ι) ⋍
n∑

i=0

m∑
j=0

cijẼij(ϵ, ι) = CTΦ(ϵ, ι) = ΦT (ϵ, ι)C, (3.10)

where
C = [c0,0, c0,1, ..., c0,n, c1,0, ..., c1,n, ..., cn,0, ..., cn,m]T .

3.2 Operational matrix of integration

Here, we obtain the operational matrix of integration (OMI) of FPs . To do this, we have:∫ ϵ

0

Ẽ(t)dt = R

∫ ϵ

0

T (t)dt ≃ RPT (ϵ) = RPR−1Ẽ(ϵ) = ΥẼ(ϵ), (3.11)

where Υ = RPR−1, and

P =


0 1 0 . . . 0
0 0 1

2 . . . 0
...

...
...

. . . 0
0 0 0 . . . 1

n
0 0 0 · · · 0

 .

By using Eq. (3.11), the OMI based on 2DFPs with respect to variable ϵ is obtained as follows:∫ ϵ

0

Φ(t, y)dt =

∫ ϵ

0

(Ẽ(t)⊗ Ẽ(y))dt = (

∫ ϵ

0

Ẽ(t)dt)⊗ Ẽ(y)

= (ΥẼ(ϵ))⊗ (IẼ(ι)) = (Υ⊗ I)(Ẽ(ϵ)⊗ Ẽ(y))

= Υ̂ϵΦ(ϵ, y), (3.12)

where I is a identify matrix. In a similar way, we get∫ ι

0

Φ(ϵ, s)ds =

∫ ι

0

(Ẽ(ϵ)⊗ Ẽ(s))ds = Ẽ(ϵ)⊗ (

∫ ι

0

Ẽ(s)ds)

= IẼ(ϵ)⊗ (ΥẼ(ι)) = (I ⊗Υ)(Ẽ(ϵ)⊗ Ẽ(ι))

= Υ̂ιΦ(ϵ, ι). (3.13)
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Now, for mixed variable, we conclude that∫ ϵ

0

∫ ι

0

Φ(x, y)dxdy =

∫ ϵ

0

∫ ι

0

(Ẽ(x)⊗ Ẽ(y))dxdy = (

∫ ϵ

0

Ẽ(x)dx)⊗ (

∫ ι

0

Ẽ(y)dy)

= (ΥϵẼ(ϵ))⊗ (ΥιẼ(ι)) = (Υϵ ⊗Υι)(Ẽ(ϵ)⊗ Ẽ(ι))

= Υ̂ϵιΦ(ϵ, ι), (3.14)

where Υϵ and Υ̂ϵι are matrixes of order (n+ 1)2 and (n+ 1)2 × (n+ 1)2, respectively. Also, we have:

Υ̂ϵι =


Υ O . . . O
O Υ . . . O
...

...
. . .

...
O O . . . Υ

 .

3.3 Operational matrix of fractional integration (OMFI)

By using Definition (2.1), we have ∫ ϵ

0

ri

(ϵ− r)1−θ
dr =

Γ(θ)Γ(1 + i)

Γ(1 + i+ θ)
ϵi+θ. (3.15)

So, we get ∫ ϵ

0

Ẽ(r)

(ϵ− r)1−θ
dr = R

∫ ϵ

0

Tn(r)

(ϵ− r)1−θ
dr = RΘn(ϵ), (3.16)

where

Θn(ϵ) =

[
Γ(θ)

Γ(1 + θ)
ϵθ,

Γ(θ)

Γ(2 + θ)
ϵ1+θ, · · · , Γ(θ)Γ(1 + n)

Γ(1 + n+ θ)
ϵn+θ

]T
. (3.17)

The vector Θn(ϵ) can be written in the following matrix from

Θn(ϵ) = ΘT θ
n(ϵ), (3.18)

where

Θ = [ρij ](n+1)×(n+1), ρi,j =


Γ(θ)Γ(i+1)
Γ(i+1+θ) , i = j,

i, j = 0, 1, · · · , n.
0, i ̸= j,

(3.19)

T θ
N (ϵ) = [ϵθ, ϵθ+1, ..., ϵθ+N ].

Now, we approximate ϵθ+i in terms of FPs for i = 0, 1, ..., N . So, we have

ϵθ+i ≃
n∑

k=0

δikEk(ϵ) = ∆T
i Ẽ(ϵ) = ẼT (ϵ)∆i, (3.20)

where
∆i = [δi0, δ

i
1, ..., δ

i
n]

T .

By defining (N +1)× (N +1) matrix ∆ = [∆0,∆1, ...,∆n] and by using Eqs.(3.19) and (3.20), we get the following
result:

T θ
n(ϵ) = ∆T Ẽ(ϵ). (3.21)

Hence, from Eqs. (3.16),(3.18) and (3.21), we have∫ ϵ

0

Ẽ(r)

(ϵ− r)1−θ
ds = R∆TΘẼ(ϵ) = V Ẽ(ϵ), (3.22)
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where V = R∆TΘ. Clearly, we have:∫ ϵ

0

Φ(r, ι)

(ϵ− r)1−θ
dr =

∫ ϵ

0

Ẽ(r)⊗ Ẽ(ι)

(ϵ− r)1−θ
dr = (

∫ ϵ

0

Ẽ(r)

(ϵ− r)1−θ
dr)⊗ Ẽ(ι)

= (V Ẽ(ϵ))⊗ (IẼ(ι)) = (V ⊗ I)(Ẽ(ϵ)⊗ Ẽ(ι) = VϵΦ(ϵ, ι) (3.23)

where V is defined in Eq. (3.22). In a similar manner, we conclude that∫ ι

0

Φ(ϵ, r)

(ι− r)1−θ
dr =

∫ ι

0

Ẽ(ϵ)⊗ Ẽ(r)

(ι− r)1−θ
dr = Ẽ(ϵ)⊗ (

∫ ι

0

Ẽ(r)

(ι− r)1−θ
dr)

= (IẼ(ϵ))⊗ (V Ẽ(ι)) = (I ⊗ V )(Ẽ(ϵ)⊗ Ẽ(ι)) = VιΦ(ϵ, ι) (3.24)

where

Vι = I ⊗ V =



V O O . . . O
O V O . . . O

O O
. . .

. . . O
...

...
. . .

. . . O
O O · · · O V


(n+1)2×(n+1)2

.

Now, we can obtain OMFI of Φ(ϵ, ι) as follows:∫ ϵ

0

∫ ι

0

Φ(s, y)

(ϵ− s)α
dyds =

∫ ϵ

0

∫ ι

0

Ẽ(s)⊗ Ẽ(y)

(ϵ− s)α
dyds

= (

∫ ϵ

0

Ẽ(s)

(ϵ− s)α
ds)⊗ (

∫ ι

0

Ẽ(y)dy)

= (V̂ Ẽ(ϵ)⊗ (ΥẼ(ι)) = (V̂ ⊗Υ)(Ẽ(ϵ)⊗ Ẽ(ι)) = LΦ(ϵ, ι), (3.25)

where L = V̂ ⊗Υ is called OMFI of Φ(ϵ, ι). The product of two matrices of 2DFPs satisfies the following proposition

Φ(ϵ, ι)ΦT (ϵ, ι)C ≃ C̃Φ(ϵ, ι), (3.26)

where C̃ is a matrix of order (m+1).(n+1)× (m+1).(n+1), and C is arbitrary vector [8]. To approximate [u(ϵ, ι)]p

in terms of 2DFPS, we have

[u(ϵ, ι)]2 ≃ (UTΦ(ϵ, ι))(ΦT (ϵ, ι)U)

= UT ÛΦ(ϵ, ι) = ΦT (ϵ, ι)C2,

[u(ϵ, ι)]3 ≃ (UTΦ(ϵ, ι))(ΦT (ϵ, ι)C2)

= UT Ĉ2Φ(ϵ, ι) = ΦT (ϵ, ι)C3,

...

[u(ϵ, ι)]P ≃ (UTΦ(ϵ, ι))(ΦT (ϵ, ι)Cp−1)

= UT Ĉp−1Φ(ϵ, ι) = ΦT (ϵ, ι)Cp,

where C2 = (UT Û)T , C3 = (UT Ĉ2)
T and Cp = (UT Ĉp−1)

T .
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4 The method of solution

Here, we use OMFI of fractional 2DFPs to find the approximate solution of Eq. (1.1). The functions u(ϵ, ι),
[H(u(ϵ, ι)), u(ϵ, ι) and G(ϵ, ι) may be approximated as the following

u(ϵ, ι) = UTΦ(ϵ, ι) = ΦT (ϵ, ι)U,

g(ϵ, ι) = GTΦ(ϵ, ι) = ΦT (ϵ, ι)G,

H(u(ϵ, ι)) = [u(ϵ, ι)]p = ΦT (ϵ, ι)Cp , (4.1)

H(u(ϵ, ι)) = λiju(ϵ, ι) = PΦ(ϵ, ι)

Φ(ϵ, ι)ΦT (ϵ, ι)C = C̃TΦ(ϵ, ι),

u(ϵ, 0) = u0(ϵ) = DTΦ(ϵ, ι),

where λiju(ϵ, ι) =
∂i+ju(ϵ,ι)
∂ϵi∂ιj . By implementation of Iθ with respect to variable ι on the both side of Eq. (1.1), we have:

u(ϵ, ι) = u0(ϵ) +
1

Γ(θ)

∫ ι

0

u(ϵ, r)

(ι− r)1−θ
dr +

1

Γ(θ)

∫ ι

0

g(ϵ, r)

(ι− r)1−θ
dr

1

Γ(θ)

∫ ι

0

1

(ι− r)1−θ

∫ ϵ

0

∫ r

0

H(u(s, y))

(ϵ− s)α
dydsdr.

By supposing H(u(s, y)) = u(s, y)p, and using Eq. (4.1), we get

UTΦ(ϵ, ι) = DTΦ(ϵ, ι) +
UT

Γ(θ)

∫ ι

0

Φ(ϵ, r)

(ι− r)1−θ
dr +

GT

Γ(θ)

∫ ι

0

Φ(ϵ, r)

(ι− r)1−θ
dr +

Cp

Γ(θ)

∫ ι

0

1

(ι− r)1−θ

∫ ϵ

0

∫ r

0

Φ(s, y)

(ϵ− s)α
dydsdr.

Using Eqs.(3.24) and (3.25) in the above equation, we have

UTΦ(ϵ, ι) = DTΦ(ϵ, ι) +
UT

Γ(θ)
VιΦ(ϵ, ι) +

GT

Γ(θ)
VιΦ(ϵ, ι) +

Cp

Γ(θ)
LVιΦ(ϵ, ι),

by using the properties of FPs, the above equation can be rewritten as

UT = DT +
UT

Γ(θ)
Vι +

GT

Γ(θ)
Vι +

Cp

Γ(θ)
LVι. (4.2)

Eq. (4.2) indicates a system of nonlinear equations which may be solved by using known methods. Therefore, by
solving this system and substituting UT in Eq. (4.2), u(ϵ, ι) is obtained as a numerical solution of Eq. (1.1). Now, we
consider H(u(ϵ, ι)) = λiju(ϵ, ι) in Eq. (1.1). We have:

u(ϵ, ι) = u0(ϵ) +
1

Γ(θ)

∫ ι

0

u(ϵ, r)

(ι− r)1−θ
dr +

1

Γ(θ)

∫ ι

0

g(ϵ, r)

(ι− r)1−θ
dr +

1

Γ(θ)

∫ ι

0

1

(ι− r)1−θ

∫ ϵ

0

∫ r

0

λiju(s, y)

(ϵ− s)α
dydsdr.

Clearly, we get the following result

λiju(ϵ, ι) =
∂i+ju(ϵ, ι)

∂ϵi∂ιj
= UT ∂i+jΦ(ϵ, ι)

∂ϵi∂ιj
= UT ∂iW jΦ(ϵ, ι)

∂ϵi
= UTW j ∂

iΦ(ϵ, ι)

∂ϵi

= UTW jΞiΦ(ϵ, ι).

Hence
λiju(ϵ, ι) = PΦ(ϵ, ι), (4.3)

where P = UTW jΞi, Ξ and W are the operational matrices of differentiation of Φ(ϵ, ι) with respect to variables ϵ and
ι, respectively. Therefore, by applying (4.3) in (4.3), we have the following equation:

UTΦ(ϵ, ι) =DTΦ(ϵ, ι) +
UT

Γ(θ)

∫ ι

0

Φ(s, y)

(ι− r)1−θ
dr +

GT

Γ(θ)

∫ ι

0

Φ(ϵ, ι)

(ι− r)1−θ
dr +

P

Γ(θ)

∫ ι

0

1

(ι− r)1−θ

∫ ϵ

0

∫ r

0

Φ(s, y)

(ϵ− s)α
dydsdr

=DTΦ(ϵ, ι) +
UT

Γ(θ)
VιΦ(ϵ, ι) +

GT

Γ(θ)
VιΦ(ϵ, ι) +

P

Γ(θ)
LVιΦ(ϵ, ι). (4.4)
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Hence

UT = DT +
UT

Γ(θ)
Vι +

GT

Γ(θ)
Vι +

P

Γ(θ)
LVι. (4.5)

Eq. (4.5) indicates a system of nonlinear equations which may be solved using a suitable numerical method such
as Newton’s numerical method. Then, by solving this system, we can obtain UT . By substituting UT in Eq. (4.1),
u(ϵ, ι) is obtained as a numerical solution of Eq. (1.1).

5 Error analysis

In this section, we apply the following 2-norm for u ∈ L2(Ω)

∥u(x, y)∥2 =

(∫ 1

0

∫ 1

0

(u(x, y))2dxdy

) 1
2

.

Theorem 5.1. [29] If h be an integrable function and l : [a, b] → R be a continuous function that its sign dose not
change on interval [a, b], then there exists a constant ρ ∈ (a, b) such that∫ b

a

l(ϵ)h(ϵ)dϵ = l(ρ)

∫ b

a

h(ϵ)dϵ. (5.1)

Theorem 5.2. Suppose that u(ϵ, ι) and uN (ϵ, ι) be the exact and approximate solution of Eq. (4.2), respectively.
Also, assume that

(1). 1− η
Γ(θ) > 0,

(2). ∥H(uN (ϵ, ι)− Ĥ(uN (ϵ, ι)))∥ι2 ≤ ϱ,
(3). θ > 1

2 and α < 1
2 ,

where η is a constant number and Ĥ(uN (ϵ, ι)) is the approximation of H(uN (ϵ, ι)) by using FPs. Then, the error
bound would be obtained as follows

∥u(ϵ, ι)− uN (ϵ, ι)∥2 ≤

√
B0 +

√
B1+

√
B2√

2θ+1Γ(θ)
+ η2

Γ(θ)

1− η1

Γ(θ)

,

where η2 is a constant number and

∥u(ϵ, 0)− uN (ϵ, 0)∥2 ≤
√
B0,

∥u(ϵ, ρ1)− uN (ϵ, ρ1)∥2 =

(∫ 1

0

(u(ϵ, ρ1)− uN (ϵ, ρ1))
2)dϵ

) 1
2

≤
√
B1, for fix ρ1 ∈ (0, ι),

∥g(ϵ, ρ2)− gN (ϵ, ρ2)∥2 =

(∫ 1

0

(g(ϵ, ρ2)− gN (ϵ, ρ2))
2)dϵ

) 1
2

≤
√
B2, for fix ρ2 ∈ (0, ι).

Proof: By using the Lipschitz condition, we have

∥H(u(ϵ, ι)− Ĥ(uN (ϵ, ι))∥2 ≤ ∥H(u(ϵ, ι)−H(uN (ϵ, ι))∥2 + ∥H(u(ϵ, ι)− Ĥ(uN (ϵ, ι))∥2
≤ L∥u(ϵ, ι)− uN (ϵ, ι)∥2 + ϱ. (5.2)

Approximation of Eq (4.2) 2DFPs is as follows

uN (ϵ, ι) = uN (ϵ, 0) +
1

Γ(θ)

∫ ι

0

uN (ϵ, r)

(ι− r)1−θ
dr+

1

Γ(θ)

∫ ι

0

gN (ϵ, r)

(ι− r)1−θ
dr+

1

Γ(θ)

∫ ι

0

1

(ι− r)1−θ

∫ ϵ

0

∫ r

0

Ĥ(uN (s, y))k

(ϵ− s)α
dydsdr.
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where Ĥ(ϵ, ι), gN (ϵ, ι), uN (ϵ, ι), and uN (ϵ, ι) are approximation of H(ϵ, ι), g(ϵ, ι), u(ϵ, ι), and u(ϵ, ι) by using 2DFPs,
respectively. Thus,

u(ϵ, ι)− uN (ϵ, ι) ≤ u(ϵ, 0)− uN (ϵ, 0) +
1

Γ(θ)

∫ ι

0

u(ϵ, r)− uN (ϵ, r)

(ι− r)1−θ
dr +

1

Γ(θ)

∫ ι

0

g(ϵ, r)− gN (ϵ, r)

(ι− r)1−θ
dr

+
1

Γ(θ)

∫ ι

0

1

(ι− r)1−θ

∫ ϵ

0

∫ r

0

H(u(s, y))− Ĥ(uN (s, y))

(ϵ− s)α
dydsdr.

Hence

∥u(ϵ, ι)− uN (ϵ, ι)∥2 ≤∥u(ϵ, 0)− uN (ϵ, 0)∥2 +
1

Γ(θ)
∥
∫ ι

0

u(ϵ, r)− uN (ϵ, r)

(ι− r)1−θ
dr∥2 +

1

Γ(θ)
∥
∫ ι

0

g(ϵ, r)− gN (ϵ, r)

(ι− r)1−θ
dr∥2

+
1

Γ(θ)
∥
∫ ι

0

1

(ι− r)1−θ

∫ ϵ

0

∫ r

0

H(u(s, y))− Ĥ(uN (s, y))

(ϵ− s)α
dydsdr∥2.

By using Theorem (5.1), there are ρ1, ρ2 ∈ (0, ι), such that∫ ι

0

u(ϵ, r)− uN (ϵ, r)

(ι− r)1−θ
dr = (u(ϵ, ρ1)− uN (ϵ, ρ1))

∫ ι

0

dr

(ι− r)1−θ
=

1

θ
ιθ(u(ϵ, ρ1)− uN (ϵ, ρ1)), (5.3)

∫ ι

0

g(ϵ, r)− gN (ϵ, r)

(ι− r)1−θ
dr = (g(ϵ, ρ2)− gN (ϵ, ρ2))

∫ ι

0

dr

(ι− r)1−θ
=

1

θ
ιθ(g(ϵ, ρ1)− gN (ϵ, ρ1)). (5.4)

So,∥∥∥∥∫ ι

0

u(ϵ, r)− uN (ϵ, r)

(ι− r)1−θ
dr

∥∥∥∥2
2

=

∥∥∥∥1θ ιθ(u(ϵ, ρ1)− uN (ϵ, ρ1))

∥∥∥∥2
2

=
1

θ2

∫ 1

0

∫ 1

0

ι2θ(u(ϵ, ρ1)− uN (ϵ, ρ1))
2dϵdι

=
1

θ2

∫ 1

0

ι2θdι

∫ 1

0

(u(ϵ, ρ1)− uN (ϵ, ρ1))
2dϵ

=
1

θ2
∥ιθ∥22∥(u(ϵ, ρ1)− uN (ϵ, ρ1))∥22

≤ 1

θ2(2θ + 1)
B1. (5.5)

By using similar way, we have

∥
∫ ι

0

g(ϵ, r)− gN (ϵ, r)

(ι− r)1−θ
dr∥22 ≤ 1

θ2(2θ + 1)
B2. (5.6)

By using (5.2), we have

∥H(u(ϵ, ι))− Ĥ(uN (ϵ, ι))

(ι− r)1−θ(ϵ− s)α
∥2 ≤ ∥H(u(ϵ, ι)− Ĥ(uN (ϵ, ι)∥2∥

1

(ι− r)1−θ
∥2∥

1

(ϵ− s)α
∥2

≤ (L∥u(ϵ, ι)− uN (ϵ, ι)∥2 + ϱ)∥ 1

(ι− r)1−θ
∥2∥

1

(ϵ− s)α
∥2

=
L√

(2θ − 1)
√
1− 2α

∥u(ϵ, ι)− uN (ϵ, ι)∥2 +
ϱ√

(2θ − 1)
√
1− 2α

= η1∥u(ϵ, ι)− uN (ϵ, ι)∥2 + η2. (5.7)

Now, by the help of Eq. (5.7), we have∥∥∥∥∥
∫ ι

0

1

(ι− r)1−θ

∫ ϵ

0

∫ r

0

H(u(s, y))− Ĥ(uN (s, y))

(ϵ− s)α
dydsdr

∥∥∥∥∥
2

≤
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∫ ι

0

∫ ϵ

0

∫ r

0

∥ H(u(s, y))− Ĥ(uN (s, y))

(ι− r)1−θ(ϵ− s)α
∥2dydsdr ≤ η1∥u(s, y)− uN (s, y)∥2 + η2. (5.8)

By substituting Eqs.(5.5)-(5.8) in Eq. (5.2), we conclude that

∥u(ϵ, ι)− uN (ϵ, ι)∥2 ≤

√
B0 +

√
B1+

√
B2

θ
√
2θ+1Γ(θ)

+ η2

Γ(θ)

1− η1

Γ(θ)

.

6 Numerical examples

This section considers some numerical examples to demonstrate the efficiency of the proposed method.

Example 6.1. Consider the following FWS2DPVIE [33]

Dθ
ι u(ϵ, ι) = u(ϵ, ι) + g(ϵ, ι) +

∫ ϵ

0

∫ ι

0

(u(s, y))2

(ϵ− s)
1
2

dyds, (6.1)

where

g(ϵ, ι) =
2

Γ(3− θ)
ι2−ι − 2ϵ− x2 − ι2 − 2

315
ϵ

1
2 ι(128ϵ4 + 112ϵ2ϵ2 + 63ϵ4).

The exact solution of this example is u(ϵ, ι) = ϵ2 + ι2. The numerical results calculated by the proposed method are
shown in Table 1. The absolute errors (AEs) for n = 2 and θ = 0.9, θ = 0.95 have been plotted in Fig. 1.

Example 6.2. In the next example, the following FWS2DPVIE is considered [33]

Dθ
ι u(ϵ, ι) = u(ϵ, ι) + g(ϵ, ι) +

∫ ϵ

0

∫ ι

0

k(ϵ, ι, s, y)

(ϵ− s)
1
2

ust(s, y)dyds, (6.2)

with

g(ϵ, ι) =
1

Γ(2− θ)
ι1−θ − ϵ− ι.

The exact solution is u(ϵ, ι) = ϵ+ ι. The numerical results calculated by the proposed method are shown in Table
2. The absolute error function for n = 2 and θ = 0.9, θ = 0.95 have been plotted in Fig. 2.

Example 6.3. In the final example, the below FWS2DPVIE is considered [33]

Dθ
ι u(ϵ, ι) = u(ϵ, ι) + g(ϵ, ι) +

∫ ϵ

0

∫ ι

0

ust(s, y)

(ϵ− s)
1
2

dyds, (6.3)

with

g(ϵ, ι) =
2

Γ(3− θ)
ϵι2−θ − ϵι2 − 8

3
ϵ

3
2 ι.

The exact solution of this example is u(ϵ, ι) = ϵι2. Table 3 shows the numerical results obtained by the presented
method. The absolute error function for n = 2 and θ = 0.9, θ = 0.95 has been plotted in Figure 3.

7 Conclusion

The numerical solution of 2DFWSPIDE is regarded as one of the most exceedingly difficult problems to solve. As
a result, we developed a technique for solving 2DFWSPIDE depending on Fibonacci polynomials and their charac-
teristics. as a result we sought to solve twin sets of 2DFWSPIDE. Therefore, it is possible to reduce 2DFWSPIDE
to algebraic equations by the operational matrices utilization and the properties of two-dimensional Fibonacci poly-
nomials. For further investigation, a couple of theorems about the error analysis and method accuracy are presented
as well. The high degree of accuracy of the method confirms the obtained numerical finding. The reliability and
simplicity of the method are demonstrated using linear and nonlinear examples of 2DFWSPIDE.
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Table 1: The AEs for Example 6.1.
ϵ = ι n = 2, θ = 0.9 n = 2, θ = 0.9 n = 2, θ = 0.95 n = 2, θ = 0.95

Bernoulli method Present method Bernoulli method Present method

0.1 4.636916× 10−10 7.874328× 10−10 6.697149× 10−10 8.540981× 10−10

0.2 2.359472× 10−9 6.068483× 10−10 2.635334× 10−9 9.084345× 10−10

0.3 2.306380× 10−9 5.943746× 10−9 3.095219× 10−9 5.212702× 10−10

0.4 7.125630× 10−9 7.300353× 10−9 3.416147× 10−9 7.436020× 10−10

0.5 3.880506× 10−8 2.760653× 10−9 2.574417× 10−8 2.689306× 10−10

0.6 1.110388× 10−7 1.984143× 10−8 7.611416× 10−7 7.909325× 10−8

0.7 2.475725× 10−7 3.530115× 10−7 1.701313× 10−7 7.578905× 10−8

0.8 4.775898× 10−7 8.322934× 10−7 3.267807× 10−7 8.320080× 10−8

0.9 8.357132× 10−7 1.895932× 10−7 5.684273× 10−7 9.983065× 10−7

Figure 1: Comparing numerical (Right) and exact (Left) solutions, u(ϵ, ι), with n = 2 for Example 6.1.

Figure 2: Comparing numerical (Right) and exact (Left) solutions, u(ϵ, ι), with n = 2 for Example 6.2.
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Figure 3: Comparing numerical (Right) and exact (Left) solutions, u(ϵ, ι), with n = 2 for Example 6.3.

Table 2: The AEs for Example 6.2.

ϵ = ι n = 2, θ = 0.9 n = 2, θ = 0.9 n = 2, θ = 0.95 n = 2, θ = 0.95
Bernoulli method Proposed method Bernoulli method Proposed method

0.1 1.934907× 10−12 2.365101× 10−13 1.054650× 10−12 5.369840× 10−13

0.2 3.761703× 10−13 3.651080× 10−13 2.157539× 10−13 9.320150× 10−13

0.3 7.484526× 10−13 5.320501× 10−14 3.911223× 10−13 6.598040× 10−14

0.4 1.438961× 10−12 7.321500× 10−13 7.659788× 10−13 8.996001× 10−14

0.5 1.695357× 10−12 8.970501× 10−12 9.088153× 10−13 1.195101× 10−13

0.6 1.517639× 10−13 3.856017× 10−13 8.196318× 10−13 5.169503× 10−14

0.7 9.058072× 10−13 5.020277× 10−12 4.984284× 10−13 6.962574× 10−14

0.8 1.401384× 10−12 6.905407× 10−12 5.479496× 10−14 8.963514× 10−13

0.9 1.620197× 10−12 6.950150× 10−14 8.400383× 10−13 4.502177× 10−14

Table 3: The AEs for Example 6.3.

n = 2, θ = 0.9 n = 2, θ = 0.9 n = 2, θ = 0.95 n = 2, θ = 0.95

ϵ = ι Bernoulli method Proposed method Bernoulli method Proposed method
0.1 2.177053× 10−12 6.381405× 10−13 1.046189× 10−12 1.320850× 10−12

0.2 4.190303× 10−12 9.301045× 10−13 1.903131× 10−12 2.365048× 10−13

0.3 2.109463× 10−11 6.440284× 10−12 9.939731× 10−12 6.118087× 10−13

0.4 4.911192× 10−11 6.105018× 10−10 2.337588× 10−11 9.171058× 10−10

0.5 9.097921× 10−11 5.101279× 10−11 4.420788× 10−11 8.621184× 10−12

0.6 1.515947× 10−10 9.365014× 10−11 7.611600× 10−11 9.902254× 10−12

0.7 2.380176× 10−10 9.204840× 10−11 1.244645× 10−10 1.950476× 10−11

0.8 3.594689× 10−10 8.320511× 10−10 1.963017× 10−10 9.854087× 10−10

0.9 5.273295× 10−10 8.298056× 10−10 3.003598× 10−10 2.369874× 10−11
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