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Abstract

In this paper, we prove some fixed point theorems for self-mappings on an algebraic cone metric space. These results
are related to the product of the cone, and improve some well-known results by inserting an algebraic cone P instead
of R+.
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1 Introduction

Cone metric spaces were initiated by Huang and Zhang [6]. They described the convergence and completness in
cone metric spaces, and proved some fixed point theorems for contractive mappings on such spaces. Subsequently,
many articles and generalizations of cone metric spaces are presentated. One of these generalizations is the concept
of algebraic cone metric spaces which was introduced by M. Akbari Tootkaboni and A. Bagheri Salec in [2]. They
provided some fixed point theorems to the algebraic cone metric spaces. In algebraic cone metric spaces corresponding
cones are defined on algebras, and in addition to their conical properties, they are closed relative to multiplication.
This additional property of the algebraic cone metric spaces gives the ability to replacing vectors with scalars in fixed
point theorems. For example, in [2], the contraction functions are defined by the following property

d(F (x), F (y)) ≤ αd(x, y)

for each x, y ∈ X, where α is a vector in the algebraic cone such that ∥α∥ < 1 (or more generally Σ∞
n=1∥α∥n < ∞).

In this paper, we tried to use more of the multiplication properties in algebraic cones, and to derive the results of cone
metric spaces. In this regard, the concept of α-property is defined in vector mode, and then the results are proved
with respect to the fixed points of the functions on the algebras with α-property. These results generalize some known
theorems in metric spaces. Also, mappings with property (C) and mappings with property (E) in vector state are
defined and some results are presented to them.

2 Preliminaries

In the following we recall some notions and facts related to cone metric spaces. Let (A, ∥ · ∥) be a real Banach
space. A non-empty closed subset P of A is called a cone whenever the following conditions are satisfied:
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i) P ≠ {0},
ii) if x, y ∈ P, a, b ∈ R and a, b ≥ 0, then ax+ by ∈ P,
iii) for every x ∈ P, −x ∈ P if and only if x = 0.

Given a cone P ⊆ A, a partial ordering ⪯ with respect to P is defined by x ⪯ y if y − x ∈ P. Furthermore, we
write x ≺ y if x ⪯ y and x ̸= y; While x ≪ y will stand for y − x ∈ intP, where intP is the interior of P. x ∈ A is
called positive if 0 ≺ x i.e. x ∈ P and x ̸= 0.
The cone P is called normal if there is a number M> 0 such that for all x, y ∈ A, 0 ⪯ x ⪯ y, implies ∥x∥ ≤ M∥y∥.
The least positive number M satisfying the recent condition is called the normal constant of P.

Lemma 2.1. Let P be a cone in a Banach space (A, ∥ · ∥). Then the following conditions are equivalent
a) inf{∥x+ y∥ : x, y ∈ P, ∥x∥ = ∥y∥ = 1} > 0.
b) P is a normal cone.
c) For arbitrary sequences {xn}, {yn} and {zn} in A, if xn ⪯ yn ⪯ zn for each n, and limn→∞xn = limn→∞zn = x,
then limn→∞yn = x.
d) There exists a norm ∥ · ∥1 on A, equivalent with ∥ · ∥, such that the cone P is monotone with respect to ∥ · ∥1 i.e.
if 0 ⪯ x ⪯ y then ∥x∥1 ≤ ∥y∥1.

Proof . See [4], [7], [9] and [14]. □

Definition 2.2. LetX be a nonempty set, A be a real Banach space and P ⊂ A be a cone. A mapping d : X×X → P
satisfiying
i) d(x, y) = 0 if and only if x = y;
ii) d(x, y) = d(y, x) for all x, y ∈ X;
iii) d(x, y) ⪯ d(x, z) + d(z, y) for all x, y, z ∈ X.
is called a cone metric on X and (X, d) is called a cone metric space.

Let (X, d) be a cone metric space, {xn} be a sequence in X and x ∈ X. {xn} is said to be convergent to x, if for
every 0 ≪ c, there is N ∈ N such that for all n > N , d(xn, x) ≪ c. Likewise, {xn} is called a Cauchy sequence in X
if, for every 0 ≪ c there is N ∈ N such that for all n,m > N , d(xn, xm) ≪ c. A cone metric space X is said to be
complete if every Cauchy sequence in X is convergent in X. To replace standard properties of a metric, the following
lemma is often useful while dealing with cone metrics when the cone is not normal.

Lemma 2.3. Let (X, d) be a cone metric space corresponding to a given cone P. Let x ∈ P, and {xn} and {an} be
sequences in X and A, respectively. Then,
a) If 0 ⪯ x ≪ c for all c ∈ intP, then x = 0.
b) If 0 ⪯ d(xn, x) ⪯ an and an → 0, then for each c ∈ intP there exists n0 ∈ N such that, d(xn, x) ≪ c for all n > n0.
c) If c ∈ intP, 0 ⪯ an, and an → 0, then there exists n0 ∈ N such that, for each n > n0, an ≪ c.

Proof . See [7, page 2598]. □

It follows from the part (c) of Lemma 2.1 that the sequence {xn} converges to x ∈ X if d(xn, x) → 0, and {xn} is
a Cauchy sequence if d(xn, xm) → 0, as n,m → ∞. The converses are true if P is a normal cone.

Definition 2.4. Let P be a cone in a Banach space A, X be a vector space over C, and the mapping ∥ · ∥ : X → P
satisfies:
i) ∥x∥ = 0 if and only if x = 0,
ii) ∥x+ y∥ ⪯ ∥x∥+ ∥y∥ for all x, y ∈ X,
iii) ∥λx∥ = |λ|∥x∥ for all λ ∈ C and x ∈ X.
Then, ∥ · ∥ is called a cone norm on X, and the pair (X, ∥ · ∥) is called a cone normed space (CNS).
Sometimes, for emphasizing on the cone P, we write ∥ · ∥P instead of the above ∥ · ∥.

In [2, definitios 2.2 and 2.3], were initiated the concepts of algebraic cones and the cone Banach algebras as follows.

Definition 2.5. Let A be a Banach algebra with identity element eA. A cone P ⊆ A is called an algebraic cone if
eA ∈ P and for each a, b ∈ P, ab ∈ P.

If P is an algebraic cone, then for all x, y ∈ A if x ⪯ y and a ∈ P, then ax ⪯ ay.
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Definition 2.6. Let X be an algebra, A be a Banach algebra, P be an algebraic cone in A, and ∥ · ∥ : X → P
be a cone norm. (X, ∥ · ∥) is called a Banach cone algebra if (X, ∥ · ∥) induces a complete cone metric space, and
∥xy∥ ⪯ ∥x∥∥y∥ for all x, y ∈ X.

3 α-Property in Totally Orderd cones and Fxed Point Theorems

In this section, first we introduce α-property for a cone Banach algebra. Let’s remind that an ordered set (E,≤)
is called a lattice if any two elements x, y ∈ E have a least upper bound denoted by x ∨ y = sup{x, y}, and a greatest
lower bound denoted by x ∧ y = inf{x, y}. A subset F of ordered set (E,≤) is called totally orderd whenever any
elements x, y ∈ F are comparable, i.e. one of the conditions x ⪯ y or y ⪯ x are hold. Obviously any totally orderd
subset of E is a lattice. A real vector space E which is also an ordered set is called an ordered vector space if the
order and vector space structure are compatible in the following sense:
If x, y ∈ E such that y ≤ x then y + z ≤ x+ z for all z ∈ E and ay ≤ ax for all a which a ≥ 0.
By Definition (2.5) algebraic cone metrices are ordered vector spaces. An ordered vector space which is also a lattice,
called a Riesz space (or vector lattice).

In the following theorem X is an algebra with the identity eX and (A, ∥ · ∥A) is a unital Banach algebra with the
identity eA.

Theorem 3.1. Suppose that (X, ∥ · ∥) is a normal Banach cone algebra, x ∈ X and ∥∥x∥∥A < 1. Then
(a) eX − x is invertible.

(b) ∥∥(eX − x)−1 − eX − x∥∥A ≤ ∥∥x∥∥2
A

1−∥∥x∥∥A
.

(c) ∥∥ϕ(x)∥∥A < 1, for every homomorphism ϕ : X → A with ∥∥ϕ(eX)∥∥A = 1.

Proof . See [2, Theoerm 2.4]. □

Recall that if X is an algebra and x ∈ X, then the spectrum σ(x) of x is the set of all complex numbers λ, such
that λeX −x is not invertible. The spectral radius of each x ∈ A is the number ρ(x) := sup{|λ| : λ ∈ σ(x)}. For every
x ∈ X and λ ∈ C if |λ| ≥ ∥∥x∥∥A then eX − λ−1x is invertible by Theorem 2.5 in [2], and so does λeX − x. This
proves that ρ(x) ≤ ∥∥x∥∥A.

As in [12] a binary operation ⋄ which is associative and continuous is said to satisfy α-property if there exists a
positive real number α such that

a ⋄ b ≤ αmax{a, b}
for all a, b ∈ R+.

Definition 3.2. Let P be an algebraic cone in a Riesz space A or an algebraic totally orderd cone. We say that P
satisfy α-property if there exists an element 0 ̸= α ∈ P such that

ab ⪯ α sup{a, b}

for all a, b ∈ P.

Example 3.3. Let X be a non-empty set, and consider CX equipped with pointwise convergence topology. Obviously,
CX under pointwise multiplication is a topological algebra. Define

P := {f ∈ CX : f(x) ≥ 0, for each x ∈ X}.

Then P is an algebraic cone in CX . Now it is obvious that, if for every f, g ∈ CX we define

(f ⋄ g)(x) = f(x)g(x)

max{f(x), g(x), 1}
(x ∈ X),

then ⋄ on CX have the α-property for each function α ∈ P, with α ≥ 1 where 1 is the constant function.

Definition 3.4. Let T and S are two self-mappings on a set X. We say that T and S are weakly compatible if they
commute at their coincidence points; on the other words if x ∈ X and Tx = Sx, then TSx = STx.
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The proof of the following lemma is trivial by the definition of weakly compatible mappings.

Lemma 3.5. If two mappings T and S on a set X are weakly compatible and T and S have a unique coincidence
point, then T and S have a unique fixed point.

The following theorem is a generalization of [12, Theorem 2.1] to the algebraic cones. The main idea of the proof
comes from above references but the proof here has been shorter.

Theorem 3.6. Let (X, d) be a complete algebraic cone metric space with totally orderd cone P, satisfing α-property
with 0 ̸= α ∈ P. Let A, B, S and T be self-mappings on X such that the pairs (A,S) and (B, T ) are weakly
compatible. Let A(X) ⊆ T (X), B(X) ⊆ S(X) and T (X) or S(X) be a closed subset of X. If for all x, y ∈ X,

d(Ax,By) ⪯ k1d(Sx, Ty)d(Ax, Sx) + k2d(Sx, Ty)d(By, Ty)

+ k3d(Sx, Ty)
d(Sx,By) + d(Ax, Ty)

2
,

where k1, k2, k3 ∈ P, α(k1 + k2 + k3)x ≺ x for each x ∈ P and limn→∞((k1 + k2 + k3)α)
n = 0, then A, B, S and T

have a uniqe common fixed point in X.

Proof . Under the assumptions, put

E(x, y) := k1d(Sx, Ty)d(Ax, Sx) + k2d(Sx, Ty)d(By, Ty)

+ k3d(Sx, Ty)
d(Sx,By) + d(Ax, Ty)

2
,

where x, y ∈ X. Fix an element x0 in X and define inductively a sequence {xn} in X by y2n := Ax2n = Tx2n+1 and
y2n+1 := Bx2n+1 = Sx2n+2, for n = 0, 1, 2, ... . Setting αn := d(yn, yn+1) for n = 0, 1, 2, ..., we have

α2n = d(Ax2n, Bx2n+1)

⪯ E(x2n, x2n+1)

= k1α
2
2n−1 + k2α2n−1α2n + k3α2n−1

d(y2n−1, y2n+1)

2
.

Therefore, since P have α-property, we get

α2n ⪯ k1αα2n−1 + k2αmax{α2n−1, α2n}+ k3αmax{α2n−1,
α2n−1 + α2n

2
}.

If α2n−1 ≺ α2n, we attend the following contraction

α2n ⪯ (k1 + k2 + k3)αα2n ≺ α2n.

Therefore, since P is totally orderd, α2n ⪯ α2n−1 holds for n = 0, 1, 2, ... . Similarly, we have α2n+1 ⪯ α2n for
n = 1, 2, ... . So by taking k := (k1 + k2 + k3)α, we see αn ⪯ knα0 for n = 1, 2, ..., and if n ≤ m, then

d(yn, ym) ⪯ αn + αn+1 + ...+ αm−1

⪯ knα0 + kn+1α0 + ...+ km−1α0

⪯ (eA − k)−1knα0 → 0,

as m,n → 0. It follows that the sequence {yn} is a Cauchy sequence and by completeness of X, {yn} converges to an
element, like y ∈ X. So,

y = lim
n→∞

yn = lim
n→∞

Ax2n = lim
n→∞

Bx2n+1 = lim
n→∞

Tx2n+1 = lim
n→∞

Sx2n+2.
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Now, assume that T (X) is closed. Then, there exists an element z ∈ X such that y = T (z). By the inequality
d(Ax2n, Bz) ⪯ E(x2n, z) (n ∈ N), we have d(y,Bz) = 0. So, y = Bz. Since B and T are weakly compatible, we have
BTz = TBz and so By = Ty. If By ̸= y, then

d(y,By) = lim
n→∞

d(Ax2n, By)

⪯ lim
n→∞

E(x2n, y)

= k3d(y,By)2

⪯ k3αd(y,By)

⪯ kαd(y,By)

≺ d(y,By),

a contradiction. Hence, By = y. On the other hand, since B(X) ⊆ S(X), there exists u ∈ X such that Su = y.
Hence,

d(Au, y) = d(Au,By) ⪯ E(u, y) = 0.

Therefore, Au = y. Since A and S are weakly compatible, we have ASu = SAu and so Ay = Sy. Finally, if Ay ̸= y

d(Ay, y) = d(Ay,By) ⪯ E(y, y) ⪯ k3αd(Ay, y) ≺ d(Ay, y),

a contradiction. Thus,

Ay = By = T (y) = S(y) = y.

Similarly if S(X) is closed then y is a common fixed point for A,B, S and T . □

Corollary 3.7. Let (X, d) be a complete algebraic cone metric space with respect to a totally orderd cone P, such that
satisfies α-property with 0 ̸= α ∈ P. Let A and T be two weakly compatible self-mappings on X. Let A(X) ⊆ T (X)
and T (X) be a closed subset of X. If for all x, y ∈ X,

d(Ax,Ay) ⪯ k1d(Tx, Ty)d(Ax, Tx) + k2d(Tx, Ty)d(Ay, Ty)

+ k3d(Tx, Ty)(
d(Tx,Ay) + d(Ax,Ay)

2
),

where k1, k2, k3 ∈ P, α(k1 + k2 + k3)x ≺ x for each x ∈ P and limn→∞((k1 + k2 + k3)α)
n = 0, then A and T have a

uniqe common fixed point in X.

Proof . In the Theorem 3.6, put A = B and T = S. □

Remark 3.8. a) If P is a totally orderd cone (not necessarily algebraic) with a binary operation ⋄ which is associative
and continuous, satisfy α-property for some 0 ̸= α ∈ P, provided that the relation in Theorem 3.6 converted to the
following relation:

d(Ax,By) ⪯ k1(d(Sx, Ty) ⋄ d(Ax, Sx)) + k2(d(Sx, Ty) ⋄ d(By, Ty))

+k3(d(Sx, Ty) ⋄ (
d(Sx,By) + d(Ax,By)

2
)),

for all x, y ∈ X, Then the proof of the Theorem 3.6 is not valid in this case.

b) If A is a unital algebra that is also without order, i.e. ab = 0 to conclude a = 0 or b = 0, then for every k ∈ P,
k ≺ eA implies that kx ≺ x for every x ∈ P.

c) Considering A = R and A = [0,∞), Theorem 3.6 is a generalization of Theorem 2.1 in [12].

Algebraic cones, in addition to being able to generalize some theorems in metric spaces, can also generalize theorems
in cone metric spaces by replacing the scalar constant with the vector constant. In the following result we generalize
a main theorem of [8] to a fact in the context of algebraic cone metric spaces.



236

Theorem 3.9. Let (X, d) be a complete algebraic cone metric space with respect to an algebraic cone P in a without
order unital Banach algebra A with identity element eA. Let T and S be self-mappings on X such that S(X) ⊆ T (X),
and T (X) or S(X) is a closed subset of X. Suppose that

αd(Sx, Sy) ⪯ d(Tx, Ty)

for some invertible element α ∈ P with eA ≺ α and all x, y ∈ X. If limn→∞(α−1)n = 0 then T and S have a unique
point of coincidence. If T and S are also weakly compatible, then S and T have a uniqe point common fixed point in
X.

Proof . Fix an element x0 in X. We define inductively the sequences {xn} and {yn} in X by yn := Sxn = Txn+1 for
n = 0, 1, 2, ... . Then, we have

αd(yn+1, yn) = αd(Sxn+1, Sxn) ⪯ d(Txn+1, Txn) = d(yn+1, yn)

for all n ∈ N. Hence,

d(yn+1, yn) ⪯ α−1d(yn, yn−1) ⪯ ... ⪯ (α−1)nd(y1, y0).

Since limn→∞(α−1)n = 0; {yn} is a Cauchy sequence and by completeness of X, it converges to an element
y ∈ X. Assume that T (X) is closed. Then, there exists z ∈ X such that y = T (z). By the inequality αd(Sxn, Sz) ⪯
d(Txn, T z), and the fact limn→∞ yn−1 = limn→∞ Txn = T (z), we have S(z) = T (z). So, y = T (z) = S(z) is a point
of coincidence for T and S. If w = T (z1) = S(z1) is another point of coincidence for T and S, since (α)−1 ≺ eA, the
assumption d(y, w) ̸= 0 leads to the following contradiction

d(y, w) ≺ αd(y, w) ⪯ αd(S(z), S(z1)) ⪯ d(T (z), T (z1)) = d(y, w).

Thus, the point of coincidence for T and S is unique. If T and S are weakly compatible, then by Lemma (3.5), T
and S have a unique fixed point. By assuming weakly compatibility of the pair (S, T ), we have STz = TSz and so
Sy = Ty. If Sy ̸= y, then

d(y, Sy) = lim
n→∞

d(yn, Sy)

⪯ lim
n→∞

d(Sxn, Sy)

≺ lim
n→∞

αd(Sxn, Sy)

⪯ lim
n→∞

αd(Txn, T y)

⪯ lim
n→∞

αd(yn−1, Sy)

⪯ d(y, Sy).

Therefore, T (y) = S(y) = y. □

The following corollary is obtained from Theorem 3.9. Comparing this result with the Corollary 3.7 is interesting.

Corollary 3.10. Let (X, d) be a complete algebraic cone metric space with respect to a cone P in Banach algebra
A. Moreover let A ba a without order Riesz space with respect to an order ⪯, such that for some 0 ̸= α ∈ P

ab ⪯ α inf{a, b}

for all a, b ∈ P. Let A and T be two weakly compatible self-mappings on X. Let A(X) ⊆ T (X), and T (X) be a closed
subset of X. If for all x, y ∈ X,

d(Ax,Ay) ⪯ k1d(Tx, Ty)d(Ax, Tx) + k2d(Tx, Ty)d(Ay, Ty)

+ k3d(Tx, Ty)(
d(Tx,Ay) + d(Ax,Ay)

2
),

where k1, k2, k3 ∈ P, (k1 + k2 + k3)α is invertible and limn→∞((k1 + k2 + k3)α)
n = 0, then A and T have a uniqe

common fixed point in X.
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Proof . Under assumptions, of the theorem we have

d(Ax,Ay) ⪯ k1d(Tx, Ty)d(Ax, Tx) + k2d(Tx, Ty)d(Ay, Ty)

+ k3d(Tx, Ty)(
d(Tx,Ay) + d(Ax,Ay)

2
)

⪯ k1α inf{d(Tx, Ty), d(Ax, Tx)}+ k2α inf{d(Tx, Ty), d(Ay, Ty)}

+ k3α inf{d(Tx, Ty), (d(Tx,Ay) + d(Ax,Ay)

2
)}

⪯ k1αd(Tx, Ty) + k2αd(Tx, Ty) + k3αd(Tx, Ty)

⪯ (k1 + k2 + k3)αd(Tx, Ty)

for all x, y ∈ X. So putting β = (k1 + k2 + k3)α, we have limn→∞ βn = 0, and

β−1d(Ax,Ay) ⪯ d(Tx, Ty),

for all x, y ∈ X. Hence, by Theorem 3.9, A and T have a unique common fixed point. □

Theorem 3.11. Let (X, d) be an algebraic cone metric space, with cone P in a unital Banach algebra A and let
T and S be two self-mappings on X such that S(X) ⊆ T (X) and that at least one of these subspaces is complete.
Suppose that there exists 0 ̸= α ∈ P such that limn→∞((eA − α)α−1)n = 0, and

α(d(Sx, Tx) + d(Sy, Ty)) ⪯ d(Tx, Ty), (3.1)

holds for all x, y ∈ X with x ̸= y. Then, T and S have a point of coincidence. If T and S are weakly compatible then
the point of coincidence of T and S is unique, and so T and S have a uniqe common fixed point in X.

Proof . Fix an element x0 in X and define inductively the sequences {xn} and {yn} in X by yn := Sxn = Txn+1 for
n = 0, 1, 2, ... . Then by the inequality (3.1) we have

α(d(yn+1, yn) + d(yn, yn−1)) = α(d(Sxn+1, Txn+1) + d(Sxn, Txn))

⪯ d(Txn+1, Txn)

= d(yn, yn−1),

for all n ∈ N. Hence,

d(yn+1, yn) ⪯ (eA − α)α−1d(yn, yn−1) = βd(yn, yn−1),

where β = (eA − α)α−1. Therefore,

d(yn+1, yn) ⪯ βnd(y1, y0),

and the sequence {yn} is a Cauchy sequence, because limn→∞ βn = 0. Now assume that T (X) is closed. Then, there
exisits z ∈ X such that limn→∞ T (xn) = T (z). Let 0 ≪ c. The inequality (3.1) implies that

αd(Sz, Tz) ⪯ αd(Sxn, Txn) + αd(Sz, Tz) ⪯ d(Txn, T z) ≪ αc

for large enough n. Since 0 ≪ c is arbitary, the last inequality concludes that S(z) = T (z). So, z is a point of
coincidence for T and S. The rest of theorem follows from Lemma 3.5. □

Corollary 3.12. Let (X, d) be a complete algebraic cone metric space and T : X → X be surjective. Suppose that
there exists 0 ̸= α ∈ P such that limn→∞((eA − α)α−1)n = 0 and

α(d(x, Tx) + d(y, Ty)) ⪯ d(Tx, Ty) (3.2)

holds for all x, y ∈ X, x ̸= y. Then, T has a fixed point. Moreover, if eA ≺ α and every positive element of A is
invertible, then the set of fixed points of T and Tn are same for all n ∈ N.
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Proof . Putting S = IX then (3.1) holds by (3.2). Note that S(X) = X ⊆ T (X) since T is onto. So by Theorem
3.11 one obtains that there exists z ∈ X such that T (z) = z. If x is a fixed point for T 2 = T ◦ T , then

αd(x, Tx) = α(d(x, Tx) + d(Tx, T 2x)) ⪯ d(Tx, T 2x) = d(x, Tx).

Now if d(x, Tx) ̸= 0 by positivity of d(x, Tx), it is invertible and so, α ⪯ eA. This contradiction prove that Tx = x.
Inductively, it is proved that for each n ∈ N, every fixed point of Tn is a fixed point of T . □

4 Property (C) and property (E) in algebraic cone metric spaces

In [13] Suzuki defined a class of generalized non-expansive mappings as follows.

Definition 4.1. Let Y be a non-empty subset of a Banach space X. We say that a mapping T : Y → X satisfies
condition (C) on Y if for all x, y ∈ Y , 1

2∥x− Tx∥ ≤ ∥x− y∥ implies ∥Tx− Ty∥ ≤ ∥x− y∥.

Of course, every non-expansive mapping T : Y → X satisfies the condition (C) on Y , but in [13] some examples
of non-continuous mappings satisfying condition (C) are given. The above definition has been generalized in [5] as
follows.

Definition 4.2. Let Y be a non-empty subset of a Banach space X. For α ∈ (0, 1) we say that a mapping T : Y → X
satisfy condition (Cα) on Y if for all x, y ∈ Y , α∥x− Tx∥ ≤ ∥x− y∥ implies ∥Tx− Ty∥ ≤ ∥x− y∥.

Given the closedness of multiplication in cones in algebraic cone metric space, we can define the following gener-
alization of two above definitions.

Definition 4.3. Let (X, d) be an algebraic cone normed space corresponding to a cone P and Y be a nonempty
subset of X. For 0 ̸= α ∈ P we say that a mapping T : Y → X satisfies condition (Cα) on Y if for all x, y ∈ Y ,
α∥x − Tx∥P ⪯ ∥x − y∥P implies ∥Tx − Ty∥P ⪯ ∥x − y∥P . We say that T satisfies condition (C) on Y whenever T
satisfies (Cα) for some 0 ̸= α ∈ P.

Another generalization of property (C) is also given in [5] as follows.

Definition 4.4. Let Y be a non-empty subset of a Banach space X. For α ≥ 1 we say that a mapping T : Y → X
satisfies condition (Eα) on Y if for all x, y ∈ Y , ∥x− Ty∥ ≤ α∥x− Tx∥+ ∥x− y∥. We say that T satisfies condition
(E) on Y whenever T satisfies condition (Eα) for some α ≥ 1.

We can also generalize this definition as follows for algebraic cone normed spaces.

Definition 4.5. Let (X, d) be an algebraic cone normed space corresponding a cone P, and Y be a nonempty subset
of X. For eA ⪯ α ∈ P we say that a mapping T : Y → X satisfies condition (Eα) on Y if for all x, y ∈ Y ,

∥x− Ty∥P ⪯ α∥x− Tx∥P + ∥x− y∥P .

We say that T satisfies condition (E) on Y whenever T satisfies the condition (Eα) for some eA ⪯ α ∈ P.

The following lemma provides a generalization of [13, Lemma 7].

Lemma 4.6. Let T be a mapping on a subset Y of an algebraic cone normed space X. Assume that T satisfies the
conditions (CλeA) and (CγeA) whenever λ and γ are positive real numbers and λ + γ ∈ (0, 1]. Then the following
statements hold:
a) For all x, y ∈ Y we have, λ∥x− Tx∥P ⪯ ∥x− y∥P or γ∥Tx− T 2x∥P ⪯ ∥Tx− y∥P .
b) T satisfies the condition (E3eA) on Y .
c) (Lemma 7 in [13]) If T satisfies condition (C 1

2 eA
) on Y , then is satisfies condition (E3eA) on Y .
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Proof . a) First, notice that since T satisfies the conditions (CλeA) and λ∥x − Tx∥P ⪯ ∥x − Tx∥P we have,
∥Tx− T 2x∥P ⪯ ∥x− Tx∥P . If we assume that

λ∥x− Tx∥P ≻ ∥x− y∥P and γ∥Tx− T 2x∥P ≻ ∥Tx− y∥P ,

then we have

∥x− Tx∥P ⪯ ∥x− y∥P + ∥Tx− y∥P
≺ λ∥x− Tx∥P + γ∥Tx− T 2x∥P
⪯ (λ+ γ)∥x− Tx∥P ⪯ ∥x− Tx∥P .

This is a contradiction. Therefore, we obtain the desired result. b) According to Part (a) either ∥Tx − Ty∥P ⪯
∥x− y∥P or ∥T 2x− Ty∥P ⪯ ∥Tx− y∥P holds. In the first case, we have

∥x− Ty∥P ⪯ ∥x− Tx∥P + ∥Tx− Ty∥P
⪯ ∥x− Tx∥P + ∥x− y∥P .

In the second case, by Part (a) again we have

∥x− Ty∥P ⪯ ∥x− Tx∥P + ∥Tx− T 2x∥P + ∥T 2x− Ty∥P
⪯ 2∥x− Tx∥P + ∥Tx− y∥P
⪯ 3∥x− Tx∥P + ∥x− y∥P .

c) The proof is obtained by putting λ = γ = 1
2 in (b). □

Before we extend some results about metric spaces to algebraic cone metric spaces, we remained that a sequence
{xn} in a cone normed space Y is called an almost fixed point sequence (a.f.p.s. in short) for a mapping T : Y → Y ,
whenever limn→∞ ∥Txn − xn∥P . Also, the subset of Y of X is called bounded, whenever there is an element b ∈ P,
called upper bound for Y , such that ∥x∥P ⪯ b for all x ∈ Y .

Lemma 4.7. Let Y be a bounded subset of an algebraic cone normed space X. Let T : Y → Y be an arbitrary
mapping. Then at least one of the following statements holds:
a) There exists an a.f.p.s. for T in Y .
b) T satisfies condition (E) on Y .

Proof . Suppose that T does not satisfy the condition (E). Then, for every positive integer n there exist xn, yn ∈ Y
such that

neA∥xn − Txn∥P + ∥xn − yn∥P ≺ ∥xn − Tyn∥P .

Hence, if b is an upper bound for Y , then for every positive integer n,

∥xn − Txn∥P ≺ 4b

n
,

and we obtain that ∥xn − Txn∥P → 0, whenever n → ∞, i.e. (a) is holds. □

The following lemma is useful tool to provide some results. This lemma has been proved for hyperbolic spaces in
[10] (see also [13, Lemma 3]).

Lemma 4.8. Let X be a cone normed space with cone P. Let 0 ≤ λ ≤ 1, and two sequences {xn} and {yn} in X
satisfy, xn+1 = (1− λ)xn + λyn and ∥yn+1 − yn∥P ⪯ ∥xn+1 − xn∥P for all n ∈ N. Then,

(1− λ)−n[∥yi+n − xi+n∥P − ∥yi − xi∥P ] + (1 + nλ)∥yi − xi∥P ⪯ ∥yi+n − xi∥P , (4.1)

for all i ∈ N.
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Proof . The proof is by induction on n. Put n = 0. Trivially the inequality (4.1) is true for all i ∈ N. Now, let the
inequality (4.1) holds for a n ∈ N. Replacing i by i+ 1 in (4.1),

(1− λ)−n[∥yi+n+1 − xi+n+1∥P − ∥yi+1 − xi+1∥P ] + (1 + nλ)∥yi+1 − xi+1∥P ⪯ ∥yi+n+1 − xi+1∥P .

Also, by the relation xn+1 = (1− λ)xn + λyn (n ∈ N),

∥yi+n+1 − xi+1∥P ⪯ (1− λ)∥yi+n+1 − xi∥P + λ∥yi+n+1 − yi∥P

⪯ (1− λ)∥yi+n+1 − xi∥P + λ

n∑
k=0

∥yi+k+1 − yi+k∥P

⪯ (1− λ)∥yi+n+1 − xi∥P + λ

n∑
k=0

∥xi+k+1 − xi+k∥P .

Combining two last inequalities we have,

∥yi+n+1 − xi∥P ⪰ (1− λ)−1∥yi+n+1 − xi+1∥P

− λ(1− λ)−1
n∑

k=0

∥xi+k+1 − xi+k∥P

⪰ (1− λ)−(n+1)[∥yi+n+1 − xi+n+1∥P − ∥yi+1 − xi+1∥P ]
+ (1− λ)−1(1 + nλ)∥yi+1 − xi+1∥P

− λ(1− λ)−1
n∑

k=0

∥xi+k+1 − xi+k∥P .

On the other hand, by construction of the sequence {xn} for each n ∈ N we have, ∥xn − xn+1∥P = λ∥xn − yn∥P .
Futhermore by the assumption ∥yn+1 − yn∥P ⪯ ∥xn+1 − xn∥P we have,

∥xn+1 − yn+1∥P ⪯ ∥xn+1 − yn∥P + ∥yn+1 − yn∥P
⪯ ∥(1− λ)(xn − yn)∥P + ∥xn+1 − xn∥P
= [(1− λ) + λ]∥xn − yn∥P = ∥xn − yn∥P

for all n ∈ N. Therefore,

∥yi+n+1 − xi∥P ⪰ (1− λ)−(n+1)[∥yi+n+1 − xi+n+1∥P − ∥yi+1 − xi+1∥P ]
+ (1− λ)−1(1 + nλ)∥yi+1 − xi+1∥P
− λ2(1− λ)−1(n+ 1)∥yi − xi∥P
= (1− λ)−(n+1)[∥yi+n+1 − xi+n+1∥P − ∥yi − xi∥P ]
+ [(1− λ)−1(1 + nλ)− (1− λ)−(n+1)])∥yi+1 − xi+1∥P
+ [(1− λ)−(n+1) − λ2(1− λ)−1(n+ 1)])∥yi − xi∥P
⪰ (1− λ)−(n+1)[∥yi+n+1 − xi+n+1∥P − ∥yi − xi∥P ]
+ [1 + (n+ 1)λ]∥yi − xi∥P .

This completes the proof. □

In the next theorem, we need a version of the Archimedean property for cone metric spaces. We recall that an ordered
vector space (L,≤) is said to have Archimedean property whenever it follows from y ∈ L, x ∈ L+ = {l ∈ L : l ≥ 0},
and ny ≤ x for all n = 1, 2, ... that y ≤ 0. By [1, Lemma 2.4], if L is an ordered Hausdorff topological vector space
whose cone L+ has a non-empty interior, then the cone L+ is Archimedean if and only if it is closed. Therefore, in
the cone metric space (X, d), closedness of the cone P, depending on the Archimedean property. We also recall that
an ordered vector space (L,≤) is said to be Dedekind complete if every non-empty subset of L that is bounded from
above in L has the supremum in L. Using [1, Lemma 5.3] we see that an ordered vector space L is Dedekind complete
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if every non-empty subset of L that is bounded from below in L has the infimum in L. It is easy to prove that if an
ordered vector space (L,≤) is Dedekind complete, then every increasing sequence in L that is bounded from above is
convergent, and also every decreasing sequence in L that is bounded from below is convergent. In addition, we can
define the liminf and limsup of bounded sequences in Dedekind complete cone metric spaces similar to real sequences:

lim inf
n→∞

xn =

∞∧
n=1

∞∨
i=n

xi = lim
n→∞

∞∨
i=n

xi

lim sup
n→∞

xn =

∞∨
n=1

∞∧
i=n

xi = lim
n→∞

∞∧
i=n

xi

Finally, similar to normed spaces we call a cone normed space X is satisfy the Opial condition whenever for every
sequence {xn} with xn → z weakly,

lim inf
n→∞

∥xn − z∥ ≺ lim inf
n→∞

∥xn − y∥

holds, whenever y ̸= z. Now we are now ready to generalize some results from [5].

Theorem 4.9. Let X be a Dedekind complete cone normed space with cone P. Let 0 ≤ λ ≤ 1, x0 ∈ X, and {xn} be
a sequence satisfies xn+1 = (1 − λ)xn + λTxn for all n ∈ N, where T : X → X is a non-expansive mapping. Then if
{xn} is bounded, then it is an almost fixed point sequence for T .

Proof . Let yn := Txn for all n ∈ N. By the assumption there is an element d ∈ X such that ∥yi+n − xi∥ ⪯ d for all
n, i ∈ N. By proof of Lemma 4.8 the sequence {∥yn − xn∥} is decreasing and therefore, since X is Dedekind complete,
this sequence is convergent. Let limn→∞ ∥yn − xn∥ = r. If r ≻ 0, then by Archimedean property we can choose an
integer N such that Nrλ ⪰ d. Let 0 ̸= c ∈ P satisfy c(1−λ)−N ≻ r. On the other hand, since {∥yn −xn∥} is Cauchy,
there exists i ∈ N such that ∥yi − xi∥− ∥yi+N − xi+N∥ ⪯ c. Combined with relation (4.1) in Lemma 4.8 these choices
of N , i, and c yield:

d+ r ⪯ (1 +Nλ)r

⪯ (1 +Nλ)∥yi − xi∥
⪯ ∥yi+n − xi∥+ (1− λ)−Nc

≺ d+ r,

a contradiction. This complete the proof. □

Theorem 4.10. Let Y be a bounded convex subset of a Dedekind complete algebraic cone normed space X. Assume
that T : Y → Y satisfies condition (Cα) as defined by Definition 3.3 for α = γeA, where γ ∈ (0, 1). For λ ∈ [γ, 1)
define a sequence {xn} in Y by tacking x1 ∈ Y and xn+1 := (1− λ)xn + λTxn for all n ∈ N. Then, {xn} is an a.f.p.s.
for T .

Proof . For each n ∈ N, we have

α∥xn − Txn∥ = γ∥xn − Txn∥ ⪯ λ∥xn − Txn∥.

From the condition (Cα), it is concluded that ∥Txn+1 − Txn∥ ⪯ ∥xn+1 − xn∥, and we can apply Theorem 4.9 to
conclude that ∥xn − Txn∥ → 0. □

Remark 4.11. By hypothesis of Theorem 4.10 if T : Y → Y satisfies condition Eβ for some β ∈ P, then T has an
almost fixed point sequence as xn. Now if xn have a subsequence xnk

such that limk→∞ xnk
= z for some z ∈ P, then

T have a fixed point. Because
∥xnk

− Tz∥ ⪯ β∥xnk
− Txnk

∥+ ∥xnk
− z∥,

so by taking the limit from both sides of above inequality when k tends to the infinity, we have limk→∞ xnk
= Tz,

and hence z ∈ F (T ).
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Theorem 4.12. Let T be a self-mapping on a locally weakly compact convex subset Y of a Dedekind complete
algebraic cone normed space X with cone P. Assume that T : Y → Y satisfies condition (Cα) as defined by Definition
(4.3) for some α = γeA, where γ ∈ (0, 1). Let X satisfies the Opial condition, and T has a fixed point. Define a
sequence {xn} in Y by x1 ∈ Y and

xn+1 = (1− λ)xn + λTxn, (n ∈ N)

for λ ∈ [γ, 1). Then {xn} weakly converges to a fixed point of T .

Proof . Let z be a fixed point of T and 0 ̸= c ∈ P. Then, the set

{x ∈ X : ∥x− z∥P ⪯ c}

is weakly compact, convex and T -invariant. Therefore, without loss of generality, we may assume that Y is weakly
compact. By Theorem 4.9, {xn} is an a.f.p.s. for T . Now same as the proof of [5, Theorem 6] we can consider the
following two cases:

Case I) {xn} has a cluster point. In this case, let y ∈ Y be a cluster point of {xn}. Then, there exists a
subsequence {xnj

} of {xn} converging by cone norm ∥.∥P to y. If Ty ̸= y, then by the Opial condition of X,

lim inf
n→∞

∥xnj
− Ty∥P ≺ lim inf

n→∞
∥xnj

− y∥P .

On the other hand, if c = 1
2 lim infn→∞ ∥xnj

− Ty∥P ≻ 0, then

λ∥xnj − Txnj∥P ⪯ ∥xnj − Txnj∥P ≺ c ≺ ∥xnj − y∥P

for sufficiently large n ∈ N. Since T satisfies Cγ , we have

∥Txnj
− Ty∥P ⪯ ∥xnj

− y∥P .

So,

∥xnj
− Ty∥P ⪯ ∥xnj

− Txnj
∥P + ∥Txnj

− Ty∥P
⪯ ∥xnj

− Txnj
∥P + ∥xnj

− y∥P .

Taking n → ∞, we obtain

lim inf
n→∞

∥xnj
− Ty∥P ⪯ lim inf

n→∞
∥xnj

− y∥P ,

a contradiction. This shows that y is a fixed point for T . Since T satisfies condition CγeA and γ∥xn − Ty∥P =
γ∥xn − y∥P ⪯ ∥xn − Ty∥P , we have

∥xn+1 − y∥P = ∥(1− λ)xn + λTxn − (1− λ+ λ)y∥P
⪯ (1− λ)∥xn − y∥P + λ∥Txn − Ty∥P
⪯ (1− λ)∥xn − y∥P + λ∥xn − y∥P = ∥xn − y∥P .

Therefore, {∥xn − y∥P} is a decreasing sequence. This fact and the relation limj→∞ ∥xnj − y∥P = 0 lead to
limn→∞ xn = y.

Case II) {xn} has no cluster point. In this case, arguing by contradiction, we assume that {xn} does not converge
weakly. Since Y is weakly compact, we can choose sub-sequences {xnj} and {xnk

} of {xn} converging weakly to
distinct points y1, y2 ∈ Y , respectively. Since X satisfies the Opial condition, by an argument similar to case I, y1 and
y2 are fixed points of T and also {∥xn − y1∥P} and {∥xn − y2∥P} are decreasing. Using the Opial condition again, we
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have

lim
n→∞

∥xn − y1∥P = lim
j→∞

∥xnj
− y1∥P

≺ lim
j→∞

∥xnj
− y2∥P

= lim
n→∞

∥xn − y2∥P
= lim

k→∞
∥xnk

− y2∥P

≺ lim
k→∞

∥xnk
− y1∥P

= lim
n→∞

∥xn − y1∥P ,

a contradiction. Therefore, we obtain the desired result. □
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