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Abstract

Currently, cloud computing provides the necessary infrastructure and software services to provide the requested services
needed by users on the Internet. Due to the spectacular growth of cloud computing, the number of users and the
number of demands are increasing rapidly, which creates a high workload on servers and computing resources. In this
situation, for the optimal use of resources, the need for an efficient and effective management approach is fully felt.
For this purpose, game theory has been used. The game structure is designed in such a way that the leader (leader)
owns a large number of resources and plans the allocation of resources based on the request received from mobile
users. The goal from the leader’s point of view is to minimize the cost of using the resources located in the fog nodes,
on the other hand, the goal considered from the mobile users’ point of view is to minimize the cost of responding and
transmitting the message to the desired fog node. For this purpose, the entire region is divided into regions and a fog
node is considered for each region. The main goal of this research is to reduce the average delay in the provision of
services related to Internet of Things applications in cloud computing platform. For this purpose, an attempt is made
to provide a new method for allocating multiple tasks in mobile crowd sensing based on fog computing in Internet
of Things using the inverse Stackelberg game theory with the help of fuzzy logic and deep reinforcement learning
algorithm.
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1 Introduction

With the rapid expansion of the sensing, computing and communication capabilities of mobile devices, mobile
crowd sensing (MCS), in which a large number of participants equipped with mobile devices collect the activities of
an area in real time, has emerged as a new measurement paradigm and has attracted much attention. has attracted
in recent years, several platforms have taken advantage of MCS, such as Wiz, Million Factors, Medusa, and Prism,
and have been widely used in various fields such as intelligent transportation, health care, environmental monitoring,
and urban public management.
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In the MCS structure, the mobile device carried by the participants is used as the basic measurement unit. First,
the system structure must assign tasks to appropriate participants. Then the performed tasks and measured data
are uploaded to the system by the participants with their mobile devices. Finally, the obtained data is evaluated
and processed to perform tasks. In other words, mobile crowd sensing is an emerging model in which citizens share
data generated on their mobile devices and developers use this data to extract collective information and provide
people-oriented services.

In MCS, task allocation strategy is a fundamental issue and its study has gone through several stages of devel-
opment. The first research on task allocation focused on single-task allocation. However, with more use of MCS
applications, the generated tasks gradually increased. Due to limited sensing resources (e.g., number of mobile devices,
types of sensors, and energy resources), multitasking under limited resources has been proposed and has become a
research focus. In addition, since the sensing activities of the participants are affected by time and space, the study
of spatio-temporal features for multitasking allocation is also of great importance. In this situation, various sensor
devices generate a large amount of data and consume a lot of resources, including bandwidth, memory capacity, and
a huge amount of energy. As a result, the quality of service required for applications may not be achieved. Therefore,
service quality is one of the important challenges in this field. Even with significant advances in technology, mobile
devices are still not capable of running software with high processing power (along with suitable quality for users),
such as audio and image processing, data mining in social networks.

Another important challenge is the energy consumption to complete the MCS tasks, which is caused by collecting
sensor data, checking the data locally, and transferring the data to special servers. If one of the tasks requires high
energy monitoring, it leads to a sharp decrease in participants’ willingness to participate in the MCS process. In this
regard, in order to solve the challenge of limited resources of mobile devices (limited battery energy and low processor
power), it is proposed to transfer parts of software processing from the mobile device to the cloud. In fact, mobile
cloud computing increases the ability of mobile devices to run software. However, remote cloud resources are not
always available and the cost of using them is high, and on the other hand, the use of local cloud space limits the
portability of mobile device users and requires pre-arranged infrastructure.

In recent years, several comprehensive reviews have been presented in the discussion of handover in mobile cloud
computing. In the reference, they have designed and implemented a system that enables the client’s mobile device to
leave its calculations to the mobile devices in the surrounding environment, which alternately exchange information
with each other. Assuming the tasks are the same, the authors have presented two versions of the greedy scheduling
algorithm called time-optimizing serendipity and energy-aware serendipity. In the time optimization algorithm, for
each task, the destination node is the implementation is selected in the shortest time. But the goal of the energy-
aware algorithm is to increase the lifetime of the network and provide the time conditions considered for the entire
application. This algorithm selects a node with the lowest amount of energy for each task, so that the handover time
condition is also fulfilled. Although this algorithm provides a good estimate, it does not necessarily minimize the
average energy consumption. Also, although this article has examined the effect of the two criteria of execution time
and the amount of energy consumed in allocating tasks to nearby mobile devices, it does not optimize the two criteria
of time and energy together in decision making [1].

The cloud environment provides access to many resources based on users’ needs, and users can use them in a
flexible and scalable way. The number of users who use cloud services is increasing day by day, therefore, according
to the dynamics of users’ requests, the existence of an efficient and effective scheduling algorithm responsible for the
appropriate allocation of tasks to available resources and increasing system performance is very important. it is needed.
Scheduling refers to the mapping of tasks to specific resources in order to improve system performance and service
quality, which takes into account different parameters such as minimum completion time, support of service level
agreements, execution cost, establishing security and improving reliability. In most scheduling algorithms, different
criteria such as response time, task completion time, energy, load balance, cost, reliability are considered, which have
been able to solve some of them to some extent, but due to the limited access to information about the tasks, it is
necessary They do not lead to improved response time and task completion time along with increased productivity
rates in the long run.

2 Game theory

In resource management issues, it is necessary to respect both the interests of subscribers and the interests of service
providers. In fact, the profitability of both sides should be considered. In such a situation, sometimes the profitability
of one side is in contradiction with the profitability of another sector, and therefore, approaches can be chosen to solve
such challenges that are based on game theory. In classical game theory, it is necessary to have complete information
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about the sides of the game. This cannot be realized during the implementation of mobile mass surveillance, and
therefore, the aforementioned game algorithms cannot be used. In order to overcome such problems, in this project,
the inverse Stackelberg game algorithm is used, in which there is no need to define all the characteristics of the actors.

3 Q learning algorithm

How can the agent learn the optimal policy (π∗) in an arbitrary environment? This is not possible through direct
learning because there are no training examples in the form of < s, a > pairs and only reward values in the form
r(si, ai) are available. In this situation, learning the numerical estimation function on states is easier. After finding
the numerical estimation function, the optimal policy can be obtained. In this situation, one of the estimated functions
is the V ∗ function. It is necessary for the agent to prefer state s1 to state s2 whenever the conditions stated in relation
(3.1) are true. Of course, the policy chooses between actions and cannot be used between states. However, V ∗ can
also be used to choose between actions [2].

The optimal operation is achieved when the relationship (3.2) is established. In this regard, δ(s, a) is the symbol
of the next state for the action of a in state s. Therefore, the agent can determine the optimal policy by using V ∗ and
sufficient information about the function of instantaneous rewards r and the function of final states δ, so when the
agent is aware of the two functions δ and r that the environment uses for changes, it can determine the optimal action
for state s using equation (3.2). Unfortunately, by learning V ∗, the optimal policy can be determined only when the
agent is aware of the two functions δ and r. Such an assumption is equivalent to knowing the momentary outcomes
(both momentary rewards and final states) for every ordered state-action pair. This assumption is similar to having a
complete domain theory in explanatory learning. In many practical problems, such as robot control, it is impossible
for the operator or programmer to accurately predict the result of each movement in each state.

V ∗(s1) > V ∗(s2) (3.1)

π∗ = argmax[r(s, a) + γ · V ∗(δ(s, a))] (3.2)

For example, suppose that a robot shovel-shaped arm wants to do some digging, and the final state is the location
of the soil particles after digging. In such a situation, both δ and r are unknown and unfortunately learning V ∗ will
not be useful because the agent cannot fulfill the relationship (3.2). So, in this situation, what estimation function
should the agent use for this challenge? The estimation function Q, which will be defined in the next section, provides
an answer to this problem.

Assume that the estimation function Q(s, a) is defined in such a way that its value is always the maximum possible
value of the discounted cumulative reward function for each state s and each action a in the first step. In other words,
the value of the expression Q is always the sum of the value of the momentary reward of action a and the reward of
the optimal policy after that (with a discount of γ) (Relation (3.3)). The term Q(s, a) is exactly the same quantity
that is maximized in relation (3.2) for choosing ba in the state of s. Therefore, by rewriting, we will get the relation
(3.4). This relationship shows that if the agent learns function Q instead of V ∗, he can find optimal actions without
needing two functions r and δ. In this case, it is sufficient to choose an action that maximizes Q(s, a) by considering
different states for a in s states [3].

At first, it may seem strange that by maximizing a local quantity such as Q, the maximum overall reward can be
reached by repeating the actions, and this means that the agent can take the optimal action without even considering
what will happen after this action. Find the feature of learning Q is that the function Q is defined in such a way that
it contains all the necessary information about the cumulative discount function in the future by choosing action a in
state s.

For a better understanding, Figure 1 shows the values of the Q function for each state in the defined square
environment. Note that the value of Q for each ordered state-action pair shows the sum of the value of the momentary
reward and the value of the function V ∗ with a discount of γ. The optimal policy is also proportional to the values of
Q for different states. To learn Q, the set of rewards r over time can be used by iterative estimation. In fact, according
to the equation (3.5), the recursive definition of Q can be used as a basis for loop algorithms to estimate Q. In the
following, to explain the algorithm, the symbol Q̂ is used to represent the estimation or the learning hypothesis, and
the symbol Q is used for the main function.

Q(s, a) = r(s, a) + γ.V ∗(δ(s, a)) (3.3)
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π∗(s) = argmaxQ(s, a) (3.4)

In this learning algorithm, the hypothesis Q̂ is introduced with a large table in which a number is assigned for each
state-action pair. The learner hypothesis is actually an estimate of the original Q. This table is filled with random
values in the first step and then in each step the agent observes the state s and executes an action such as a, then
the reward from the action is r = r(s, a) and the final state (s′ = δ(observes s, a). In the following, the value of
Q̂(s, a) changes in the form of equation (3.6) in such a case. In this situation, the agent uses the value of Q̂ in s′ to
estimate Q̂ in the previous step. Although this relation is dependent on the previous estimate of Q̂, but it can be
said that this state is derived from relation (3.5). Note that although relation (3.5) is based on two functions r(s, a)
and δ(s, a), there is no need to know these two relations to implement relation (3.6). Instead, the agent performs the
mentioned action and observes the new state s′ and the reward r, so it can be said that in this relationship the two
values s′ and r model these two functions. Using this algorithm, the factor Q̂ tends to the real value of Q. Since it was
initially assumed, the system follows the Markov decision model, so the reward function is bounded and the actions
are selected so that each pair of states and actions are observed several times. In the following, the steps of the Q
learning algorithm are presented, assuming that rewards and actions are deterministic and that the discount constant
is in a range between zero and one [4].

Q(s, a) = r(s, a) + γ.maxQ(δ(s, a), á) (3.5)

Q̂(s, a)←− r + γ.max Q̂(ś, á) (3.6)

3.1 Q learning algorithm steps

� For each pair of s and a, set the initial value of Q̂(s, a) equal to zero.

� View the current status of s.

� Continue the following loop until infinity:

� Choose an action like a and do it.

� Get the instant reward amount r.

� See the new mode ś.

� Update the value of the function with the following relation.

Q̂(s, a) = r + γ.max Q̂(ś, á)

s←− ś

4 The importance of research

Mobile crowd sensing requires a large number of participants in the process of monitoring the surrounding environ-
ment using sensor devices such as smartphones. This is an emerging phenomenon that is the result of the combination
of the distributed pattern of the Internet of Things and crowd-based designs. Mobile monitoring applications are de-
ployed on participating nodes such as mobile phones and personal devices that are capable of monitoring the physical
environment and providing monitored data to that server application. In such a large structure, monitoring devices
continuously generate a large amount of data, which consumes a lot of resources, including bandwidth and energy.
While monitoring devices have limited energy resources. When there are network traffic constraints and high workload
due to resource constraints, the quality of collected data may be sacrificed.

Therefore, resource limitation is a key challenge in mobile mass surveillance. For example, images collected from a
critical area can play a vital role in reducing the effects of that critical phenomenon. These collected images may not
be able to be uploaded in a timely manner due to the lack of sufficient bandwidth, which may result in irreparable
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damages. Another example is when most monitoring applications require the location information of the monitored
event, while the global navigation system as a location-based guidance system is a large energy consumer. This is due
to the high quality of the collected data. By studying these works, it is worth noting that resource limitations make
the need for user participation and high-scale compatibility necessary for target applications [5].

In reviewing the literature on the subject, the writer found that the allocation of heterogeneous functions in the
Internet of Things (IoT) platform has not yet been comprehensively investigated. One of the essential requirements
of all computer systems, which leads to the improvement of network performance, is resource management and task
scheduling in an effective way. The main goal of this research is to reduce the average delay in the provision of services
related to Internet of Things applications in cloud computing. For this purpose, an attempt is made to present a
new method for assigning multiple tasks in mobile crowd sensing based on fog computing in the Internet of Things
using the inverse or hybrid Stackelberg game theory with the help of fuzzy logic and deep reinforcement learning
algorithm. Solving the discussed scheduling problem requires an online and adaptable method due to the dynamic
conditions governing today’s computer networks and the difficulty of their modeling. The proposed method will be
able to achieve an effective scheduling strategy over time automatically and based on its previous experience.

5 Research question

How can we plan optimization for mobile task allocation based on Stackelberg game theory?

6 Research objectives and innovation

In reviewing the literature on the subject, it became clear to the author that improving the quality of service and
minimizing energy consumption in MCS systems are important challenges in this field. In this situation, the fog can
be used to transfer data wirelessly between objects defined in the network more easily. In addition, one of the essential
requirements of all computer systems that leads to the improvement of network performance is resource management
and task scheduling in an effective way. The main goal of this research is to reduce the average energy consumption
of providing services related to Internet of Things applications in the fog environment [6].

For this purpose, an attempt is made to provide a new method for allocating multiple tasks in mobile crowd sensing
based on fog computing in the Internet of Things by using the deep reinforcement learning (DRL) method. Solving
the discussed scheduling problem requires an online and adaptable method due to the dynamic conditions governing
today’s computer networks and the difficulty of modeling them. Therefore, using investigative and law-based methods
for this purpose is not very practical. The proposed method will be able to achieve an effective scheduling strategy over
time automatically and based on its previous experience. In this situation, two of the most important implementations
in this project are described below:

� Improvement of agent training: In general, one of the major challenges that arise when training agents with
policy-based gradient algorithms is the possibility of losing the target due to the weak and sudden performance
of agents. Recovering from the situation in this case is very difficult because the agent starts weak traces and
uses it to train policies. In such a situation, the algorithms with policies are no longer able to use the data and
these examples are not efficient for them. One of the ways to overcome this challenge is to use proximal policy
optimization (PPO) algorithms. The main idea of introducing PPO is to introduce an alternative objective
to avoid the weakening of efficiency by ensuring uniformity of policy improvement. This objective function
definition model also has the advantage that unused data can be reused in the policy design for the training
process.

� Use of fuzzy logic: In the real world, many times there are situations that make it very difficult to accurately
determine the state of the states. In these situations, fuzzy logic can be used in order to design a flexible approach
to make appropriate decisions. In other words, uncertainties can be modeled for any situation by applying this
logic. In other words, it is determined by reviewing the latest articles in this field Deed that the allocation of
tasks with the help of mobile crowd sensing in the fog space has not been fully evaluated yet. PPO algorithms are
easy to implement, require little computing volume, and do not depend on the selection of a specific parameter.
In this situation, the fuzzy algorithm can be used to prioritize tasks before applying them to the allocation
system in order to improve the overall performance of the system. The two major challenges considered in this
project include proper and efficient distribution of heterogeneous tasks and utilization of the limited capacity of
resources defined in fog nodes. In fact, the main goal is the optimal utilization of the available capacities with
proper allocation of duties. In this situation, the following assumptions are considered:
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– At any time, only one task can be executed by each unit of the virtual machine.

– The scheduling method is such that no change can be made in the allocated resource until the completion
of the considered activity.

– If the resource is assigned to a task, it needs to be queued when the next task arrives.

– The mechanism used in queuing is first-in-first-out. The sooner a task is entered into the system, the more
likely it is to receive a free resource.

– The momentary reward and the next state after the completion of the task are calculated and stored in the
memory of the scheduler system along with the values of the initial state.

In the training phase, the state values are applied as input to the system and to evaluate the performance quality,
an error function is used to report the difference between the obtained values and the reference values to the optimizer
function. With the help of the steepest decreasing slope approach, the weights used in the network are corrected and
updated. Figure 1 shows the system performance model. The request recognition unit is fully aware of the system’s
needs, which may include things such as the amount of necessary calculations, the amount of storage capacity, the
amount of available bandwidth, the rules related to the synchronization between functions, the conditions for creating
security and protecting the privacy of users. The request parsing service component divides the received service
into multiple levels using granular parsing with various settings created by the processor [7]. In the next step, task
management, using an effective solution, is responsible for optimizing the required resources of each of the analyzed
values and then mapping them to the required processors. It is also responsible for managing the tasks related to the
indicators that determine the work status, explaining the process of the planning sequence and allocating resources in
the necessary time to help the scheduling algorithm.

Figure 1: The system performance model

The resource recognition component is responsible for the management of existing and available resources. Also,
monitoring the performance of new imported resources, continuous optimization, determining the planning strategy
and notifying all types of errors are other duties of this part.

The layering used in this project is shown in Figure 2. In this situation, the functions of the layers are as follows:

� The lowest layer consists of devices equipped with Internet of Things technology and send requests to the higher
layer to be executed. Measurement operations by sensors and production of raw data are done in this layer.

� The second layer is the communication layer. Smart devices such as mobile phones and smart watches are placed
in this layer, which are responsible for sending information to higher layers.

� The third layer acts as a computing layer and consists of a number of cloud spaces and virtual machines for
information processing. Communication between cloud and fog is realized through this layer.

� Application software is placed in the highest layer. In fact, in this layer, the results obtained from the information
analysis and processing are used and implemented in a practical way.
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Figure 2: The layering used in the project

At the border of the fog layer and user devices, there are several fog devices that act as resource management
and task scheduler components, which are called schedulers. In this structure, computing nodes in fog and cloud
indirectly communicate with mobile users through the scheduler. In fact, all requests are sent to the cloud computing
department through the access point to the scheduler to determine the assignment. The scheduler, who is responsible
for analyzing, evaluating and scheduling all the tasks to be executed in the fog-cloud system, can communicate with
users in a short period of time due to the proximity to fog nodes. The steps in the proposed system are as follows:

6.1 The scheduler receives all user requests

The resources available on the cloud and fog nodes (such as processing capacity and bandwidth), the cost of
transfers and processing with the results of the data returned from the nodes are managed by the scheduler. In other
words, the inputs include the input of the task scheduler, the graph of tasks and the graph of processors, and the
outputs include the output of the task scheduler, the allocation of a processor to each task.

In this section, a private scheduler is created for the incoming workflows to decide which part of the request is
executed on which resource.

In the final stage, a computing node is assigned to each task for execution.

The rate of nodes used in mobile crowd sensing is determined based on criteria such as the cost and energy
consumption of nodes and the amount of coverage created for different areas. In fact, the better coverage rate is
achieved by increasing the number of available nodes and improving the sampling rate. The minimum number of
monitoring nodes for each service is stated in relation (6.1). By using the deep reinforcement learning algorithm, tasks
are assigned to the participants. In this situation, the current state is entered as an input to the network under the
name state st, and based on the current policy, an action from the set of actions is defined (at ∈ A) is achieved and the
state changes to st + 1. Then, the reward amount is determined for the agent through the R function. The amount
of reward is determined by considering the current state and the action taken. The rewarding function is defined
according to the equation (6.2). The γ coefficient is present in the equations as a delay or reduction coefficient and
helps to improve the convergence. In relation (6.4), the amount of fitness in each situation is obtained by calculating
the amount of cost associated.

cont(k) = nb ∗ tb ∗ ts ∗

(
denk∑

p∈B denp

)
(6.1)

Rt = r(t+1) + γr(t+2) + γ2r(t+3) + ...+ γT r(t+T+1) =

T∑
k=0

γkr(t+k+1) (6.2)
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r =

{
−1, if coop(j) < τ
Fitness, else.

(6.3)

Cost =

n∑
i=1

m∑
j=1

E(i, j).T (i, j) (6.4)

denk: density in block k

ts: number of IoT services

tb: the number of blocks (regions) in the division of the environment

nb: number of basic monitors per service in each block

τ : Threshold value for the number of participating nodes

E(i, j): the amount of energy consumed by node i to collect data in service j

T (i, j): participation or non-participation of node i in service j (in vector form with binary values)

Cost: Total cost in the allocation plan

The value of E(i, j) is obtained through the equation (6.5). The coverage level used is also defined in relation
(6.6). In this situation, the value of suitability is calculated as the ratio of the coverage level to the amount of costs
created according to equation (6.7). In fact, in this situation, the quality of coverage and the amount of money spent
in determining the best conditions for allocation are considered as essential factors.

E(i, j) =
dist(i, dc)

D(i)
∗ Ebase (6.5)

Cover =
N(a)

N(s)
(6.6)

Fitness =
Cover

Cost
(6.7)

dist(i, dc): the distance of the monitoring node from the control center

D(i): the maximum observable radius for node i

Ebase: The average amount of energy used for a service

N(a): Minimum number of monitoring nodes

6.2 Reverse Stackelberg game

In a game theory, the profit of all players should be considered. In this project, the actors include leading actors
and subordinate actors, whose objective function is defined in relations (6.8) and (6.9), respectively. By reviewing
the articles, it is clear that one of the most common games considered for the collective monitoring problem is the
Stackelberg game. This game is based on complete information and is a two-way game [8]. The leading actors first
select an action from the set (ΩL) and the subordinate actors, observing this situation, take their respective actions
from the set (ΩF ).

O.F (1) = maxϕm(tm, pm) s.t. np
n
mtnm ≤ δm (6.8)

O.F (2) = maxΨm(tn, pn) s.t. mtnm ≤ kn (6.9)

In this situation, all actors seek to maximize the objective function defined for them. It should be noted that the
action of dependent function actors is done with the action of leading actors. This sequence is shown in figure 3.
The main challenge in this situation is the high diversity and non-homogeneousness of the activities demanded by the
users (leading actors), which causes disruption in reaching the optimal equilibrium point (Nash equilibrium point). In
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Figure 3: Finding the equilibrium point in the Stackelberg gamea

this project, the inverse Stackelberg game theory is used, which no longer requires full knowledge of the status of all
actors, and through its implementation, the equilibrium point can be achieved.

The main advantage of the inverse Stackelberg game compared to the classic Stackelberg game is the possibility of
its execution in situations where the actors have different reactions based on the requester’s opinions. In this situation,
the optimal point of the game can be calculated through the equation (6.10) and as follows Without the presence of
the requester, in most cases this solution is the ability to provide favorable policies for all types of actors.

(Ud
L, U

d
F ) argmin ςL(UL, UF ) ∀(UL, UF )ΩL × ΩF (6.10)

δm: The upper limit of the budget for the implementation of the requested activity m

kn: Maximum time period for the nth user

6.3 Expression of the objective function

Allocation of tasks in mobile mass surveillance is part of a group of systems known as complex adaptive systems
(CAS). These systems can communicate with each other on a wide level and have features such as the following:

� Aggregation of equipment (formation of common groups with each other)

� Has very non-linear characteristics

� Transferring data between different sources fluidly and continuously

� Great diversity in the behavior of systems towards each other

One of the most common techniques used for CAS systems is to use the reinforcement learning approach to train
the agent in order to find the optimal policy in order to achieve the objective functions defined within the environment
under study. When the dimensions of the problem increase significantly and the operational space becomes large, Q
learning algorithms cannot be used in a traditional way. Because at this value the value function cannot be valued
easily. To solve this challenge, approximation can be used. In this approach, neural networks along with Q learning
algorithm can approximate the valuation function. This approach is known as deep Q network, in which neural network
tables are used for Q table. This approach increases the quality of convergence by reducing parameter changes and
using approximation functions. However, the network computing space for this purpose, the proposed solution is
to use the proximal policy optimization algorithm (PPO), which was introduced in 2017. In this situation, without
the need to discretize the operational space, the outputs are considered as a probabilistic distribution and try to
improve the search space by sampling the distribution function. For a better distribution of tasks at the beginning,
a fuzzy system is used, which facilitates their prioritization by separating tasks based on important and practical
characteristics. Finally, by evaluating the conditions presented in relations (6.11) to (6.13), it is possible to adopt a
suitable approach such that if relation (6.11) is established, then server i is left without performing any activity. be
made If the constraint (6.12) is satisfied, server i will transfer the activities necessary for processing to server j, and if
the relationship (6.13) is satisfied, server i will send the results of the activities to server j.



260 Vahedi, Seyyed Mahdavi Chabok, Veisi

In the continuation of the processing process, the PPO technique will be used to achieve a more suitable convergence.
In this case, based on the adaptive KL penalty, the target is estimated in the form of relation (6.14) and then the
main objective function defined in the form of relation (6.15) is realized.

max{βs
ij(t), γ

s
ij(t)} < max{βs

ji(t), γ
s
ji(t)} (6.11)

max{βs
ij(t)} > max{γs

ij(t)} (6.12)

max{βs
ij(t)} ≤ max{γs

ij(t)} (6.13)

βs
ij(t) = ε[Qs

i (t)−Qs
j(t)]− ξij(t) (6.14)

γs
ij(t) = ε[Ds

i (t)−Ds
j (t)]− ξij(t) (6.15)

JCPI(θ) = Et[rt(θ).At] (6.16)

JKLPEN (θ) = maxEt[rt(θ).At − βKL(πθ(at|st)∥πθokl
(at|st))] (6.17)

ε: Step length size

Qs
i (t): Queue of activities of server i in state s at time step t

Ds
i (t): the result queue of server i in state s at time step t

ξij(t): The cost of transmitting information from node i to node j in the tth time step

πθ(at|st): the selected probability of activity a despite establishing state s in time step t

θ: vector of policy weights

Value functions are used to evaluate the objective function. They can provide various services for the agent, such
as recognizing the state of the state and identifying appropriate actions. These functions are defined according to the
equation (6.17). In deep learning method, neural network is used for estimation. In this case, the value of Q function
is estimated in each episode. In order to improve performance stability, the gradient descent algorithm has been used
to minimize the output error.

6.4 Approximate policy

Real-world problems have huge dimensions, which make the application of Q-learning algorithms to realize them
face serious problems. In this case, a phenomenon is created which is called the curse of dimensions (CoD) [9]. To solve
this challenge, neural networks have been used for approximation. In this structure, the agent designs the appropriate
policy considering the state of the system and the environment helps to produce a new state by performing the
relevant action and the reward obtained. According to the obtained result, the parameters of the agent are updated.
In addition, the use of approximation functions creates stability in the learning process and ensures convergence to
a suitable extent. According to the argument stated in, using DNN in reinforcement learning algorithms reduces the
change of parameters and increases the quality of convergence. In order to make the output distribution function
continuous, the approximate policy (PPO) can be used, which has several advantages, including the following:

� High effectiveness in huge operating spaces

� More complete convergence features

� Ability to automatically learn stochastic policies
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The modification process is carried out in such a way that a search is performed in a set of policies, which is called
the policy space. Although the objective function is performed with the help of actions determined by the policies,
by replacing the objective function with the PPO algorithm, the search in the parameter space is performed in such a
way that the appropriate values for the parameters are determined. In this situation, the step size control is updated
in the form of relation (6.18) using the learning rate. In this situation, since the distance between the two spaces is
not the same as each other, it becomes difficult to choose the optimal step size (α). In other words, if (α) is meant to
be small, the number of iterations increases and the training becomes time-consuming and costly, and the policy may
get trapped in the local optimal point. If (α) is assumed to be large, the corresponding step in the policy space passes
through the neighborhood of appropriate policies and may cause a loss of efficiency, and this process continues and
the possibility of recovery becomes very weak. In order to introduce a solution to overcome this challenge, it is first
necessary to calculate the relative policy performance identifier as the difference between the value of the objective
function in the current step and its value in the next step according to equation (6.19). In the following, the PPO
technique should be used to achieve the improvement process. In fact, the PPO technique is one of the algorithms that
analyze the constrained policy optimization problem well. In this regard, the amount of adaptive penalty is calculated
and then the objective function is obtained according to equation (6.21).

∆θ = α.ϑJ(πϑ) (6.18)

J(π′)− J(π) = Eτπ′
[
T
t=0γ

T .Aπ(st, at)
]

(6.19)

JCPI(θ) = Et[rt(θ).At] (6.20)

JKLPEN (θ) = maxEt[rt(θ).At − βKL(πθ(at|st)∥πθold(at|st))] (6.21)

E: Expected value from a set of samples

J : the corresponding objective function for each segment

πθ(at|st): Probability of selecting activity a at state time s and time step t

θ: the vector of weights designed for the policy

Approach DRL has 2 important challenges as follows:

I Lack of stability in the learning process

II Complex design of reward system

6.5 Modeling the problem

To express the desired model, assume that the number of leading actors is equal to M (activity proposers in the
MCS space) and the number of functional actors is equal to N (users who earn money by accepting received requests
and performing tasks) is equal to N. In this case, the goal of each leading actor is to complete the desired tasks with
the lowest possible cost. In this situation, the amount of profit earned by each subordinate actor and each leading
actor is calculated through relations (6.22) to (6.23) respectively.

Ψn(t
n, pn) =m pnmtnm −m Cm(tn) (6.22)

ϕm(tm, pm) = φm(tm)−n pnmtnm (6.23)

pnm: Paid fee for executing the m requested task to the nth user

tnm: the time interval of the execution of the mth activity through the nth user

Cm(tn): The full cost of executing the mth activity for the nth user

φm(tm): the processing income of m activity
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In an MCS system, activities are distributed in such a way that the profit of all actors is comprehensively maximized.
Since the leading actor takes action first, the action of the actors is dependent on it (UF = f(UL)). In fact, such
a function leads to providing a kind of curve of dependent actors. The main challenges in this situation originate
from the fact that in the context of IoT, the type of activities offered by the leading players are both high in number
and spread in a completely heterogeneous manner in the space under study [10]. This leads to disruption in the
implementation of Stackelberg’s game theory in reaching the equilibrium point.

7 Results evaluation criteria

7.1 The quality of service delivery

Suppose the sensor network consists of a group of mobile users (MU) with vector V = {v0, v1, ..., vn} and each
request sent to the network consists of m different tasks (J = j1, ..., jm). The quality of service delivery, which is
considered one of the most important indicators defined in the field of job allocation, is defined according to the
relation (7.1).

Qi =
Ni
j=1ri

Ni
(7.1)

7.2 Period of activity

One of the important criteria is defined as minimizing the time period for completing the activity. This time
period includes the time period when the results of the submitted request are sent to the user. In this situation, the
minimization of the average completion interval m of the activity (AM) defined in relation (7.2) is considered. Usually,
the duration of communication follows the exponential distribution that results from the relation (7.3).

minAM =
1

m
.j JM(j)|Π (7.2)

tij =
∞
0 t.λi.e

−λitdt =
1

λi
(7.3)

tij : Expected amount of communication time between users and requesters

7.3 Coverage quality

One of the goals of the presented approach is to maximize the coverage quality of the area under study, which
is analyzed through relations (7.4) to (4-31). The final evaluation criteria of the plan include the monitoring cost
(energy consumption rate) and the monitoring task service quality (coverage rate) of the proposed plan to calculate
the quality of assigning tasks to participating users. In some previous models of mobile monitoring, users participated
independently in the monitoring process, and therefore some tasks attracted more users due to high rewards, and
tasks with lower rewards covered fewer users. In this situation, data collection and their integrated management is
important.

Cov(t) =
1

|TGt| × |SGt|
.cy TGt reg SGt Cov(cyt, regt) (7.4)

Cov(cyt, regt) =
1

γ
.ω W ASt(ω, cy, reg).p(ω, cy, reg) (7.5)

The collection of volunteer participants to carry out the activity: W = {ω1, ω2, ..., ωn}
All mobile Friday monitoring activities: T = {ti}
the activity cycle of the ti sensor: TGti = {cykti}
the divided areas ti m: SGti = {regkti}
cycle pair: (cyxti, reg

y
ti)
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The obtained activity assignment solution: AS

representative of repeated samples: γ

The estimated probability of the candidate passing through the specified in the specified time period: p

7.4 Data collection

In this project, the data set defined in the reference is used. This data is the result of the tracking of requested
tasks on the clusters of Google, which was collected in a period of 5 hours and 15 minutes. Each request consists of a
number of tasks, each task belongs to a separate task. A task may also include a number of functions. Each row in
the dataset represents the execution of a separate task in a 5-minute interval and includes the following features:

� duration (in seconds) (Time)

� Job ID (unique code for each specific job) (JobID)

� Task ID (unique code for each specific task) (TaskID)

� Type of work: an integer in the range [0,1,2,3] to define the type of work requested (JobType)

� Normalized task cores: The average number of CPUs used (Normalized Task Core)

� Normalized task memories: Average memory used for each individual task (Normalized Task Memory)

In this structure, data sets are anonymized in various ways. Job and task names are replaced with numeric
identifiers and all timestamps are introduced corresponding to an anonymous reference value. Time information is
also reported in 5-minute intervals. The amount of memory consumption and the amount of CPU cores used are
normalized with the help of an unknown linear transformation, and no information is available about the meaning of
the specified job types. This tracking includes 21 time intervals of 5 minutes. In total, 3535028 observations, 9221
unique tasks and 176590 tasks are defined in the target system. There are two unexpected types of functions in
datasets:

Some functions only require memory, which are referred to as inactive ideal functions and only require storage in
memory.

There are some functions that neither need a core nor memory. These functions do not use any resource, but their
task pointer is maintained in the system in order to quickly respond to the services requested by users.

Table 1 shows the specifications of different categories of works. Table 2 shows the average numerical values
obtained for each category. It should be noted that groups labeled CPU have higher memory-to-core rates than
groups labeled Mem. When a category has many of the same type, it is necessary to determine whether the type of
work considered is common to all, or whether all the multiple tasks must be performed differently for all categories.
Table 3 shows the correlation coefficient between types of work for this collection. The value of coefficient changes
varies from 1 (strong correlation) and 0 (no correlation) to −1 (strongly uncorrelated) [11].

Table 1: Work specifications for different categories

Cluster de-

scription

Active Long

CPU

Active Long

CPU Fewtasks

Active Long

Mem

Active Short

CPU

Active Very Short

CPU Fewtasks

Active Very

Short Mem

Inactive

Short

Inactive

Long

Total

Total 184 576 44 354 777 4818 1375 1090 9218
Type 0 37 93 6 212 72 1260 318 293 2291
Type 1 36 104 0 67 12 2280 531 203 3233
Type 2 90 237 28 75 692 1276 519 398 3315
Type 3 21 142 10 0 1 2 7 196 375

Although the results of table 3 alone are not enough for capacity planning, but still strong correlation coefficients
are related to several data points and show the number of related tasks. In fact, it is necessary that tables 1 and 3 be
evaluated together to explain the distribution of types of work among the categories [12].
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Table 2: Numerical values for the average of different categories

Cluster description Active Long

CPU

Active Long

CPU Fewtasks

Active Long

Mem

Active Short

CPU

Active Very Short

CPU Fewtasks

Active Very

Short Mem

Inactive

Short

Inactive

Long

Active task 0.03176 0.00247 0.04950 0.00423 0.00001 0.00005 0 0
Duration 0.95974 0.96592 0.97458 0.06958 0.01690 0.01727 0.03483 0.97473
Mem/core ratio 0.06671 0.04229 0.27867 0.01017 0.00821 0.04892 – –
Tasks count 0.03876 0.00766 0.02799 0.04239 0.00049 0.00116 0.00087 0.00441

Table 3: Correlation coefficient between different types of work

Cluster description Active Long

CPU

Active Long

CPU Fewtasks

Active Long

Mem

Active Short

CPU

Active Very Short

CPU Fewtasks

Active Very

Short Mem

Inactive

Short

Inactive

Long

Type 0 −0.02 −0.06 −0.03 0.26 −0.12 0.01 −0.04 0.04
Type 1 −0.05 −0.11 −0.06 −0.09 −0.27 0.33 0.22 −0.22
Type 2 0.04 0.05 0.05 −0.14 0.41 −0.27 0.01 −0.01
Type 3 0.10 0.40 0.11 −0.04 −0.05 −0.24 −0.32 0.32
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