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Abstract

Forecasting drought is a challenging endeavor due to various underlying factors and mechanisms. Thus, the need for
robust and precise forecasting models is paramount. In this study, a method that utilizes the wavelet neural network
and spatial proximity data derived from satellite images to enhance the accuracy of drought forecasts is presented. This
technique applies satellite-based precipitation and evapotranspiration data to calculate drought indices. It then uses
the wavelet neural network approach to forecast drought intensity in different months of the subsequent year. To better
discern random fluctuations from actual drought signals and enhance forecast accuracy, we utilize spatial proximity
data from satellite images to forecast drought at the East Isfahan climate station. Our findings validate the capability
of the wavelet neural network approach to forecast drought with a reasonable degree of accuracy. Also, leveraging
neighboring data can potentially improve forecasting precision, as evidenced by a correlation of 0.675 between the
target and predicted values.
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1 Introduction

Drought, a naturally recurring climate phenomenon, poses significant challenges to various sectors, including
agriculture, energy, and transportation [28]. It ranks among the most devastating natural calamities [27]. The
importance of drought forecasting lies in its ability to provide early warnings, aid risk management, and alleviate
pressure on water resources [19, 21].

However, forecasting drought is complex due to its multiple mechanisms and influencing factors [18], underscoring
the need for robust and accurate forecasting models [1, 12]. Current prediction strategies include statistical, dynamic,
and hybrid methods [14, 24].

Artificial neural networks exhibit impressive proficiency in modeling and forecasting nonlinear time series. However,
their prediction capacity for non-stationary data is constrained and dependent on the quality of data preprocessing
[11].
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Wavelet transform enhances forecasting by decomposing the original time series into multiple resolutions. The
effectiveness of hybrid wavelet-artificial neural network models for drought forecasting has been confirmed in several
studies [6, 19].

The long-term periodic changes typical of drought require extensive data for accurate analysis. The inherent
complexity of drought and data scarcity makes forecasting a challenge. The effects of drought often manifest in the
stochastic component of the wavelet decomposition of drought series due to limited data length, rendering drought
cycles difficult to discern.

There is a pressing need for a solution that can differentiate between random effects and drought signals in
decomposed time series. Thus, we propose an approach that separates these elements in drought predictions derived
from satellite imagery. This method incorporates spatial proximity data from satellite imagery to identify drought
signals.

2 Materials and methods

2.1 Study area

In this study, drought was estimated in the location of the East Isfahan synoptic station. The region is subject
to subtropical high pressure for more than half of the year, with most precipitation falling during the cold season.
Isfahan has a dry, desert climate type with an average annual rainfall of 174 mm [23].

2.2 Data

Drought indices calculated from precipitation (TRMM 3B43) and evapotranspiration (PML) satellite products are
used to forecast drought. A detailed description of the data and their specifications is presented in Table 1. Also, the
precipitation data of the east Isfahan synoptic station is used as the reference data to calculate the target variable
(SPI). The study period is between 2003 and 2017.

Table 1: Summary of the Remote Sensing data used in this study

Parameter Satellite
Coverage Resolution

Source
Spatial Temporal Spatial Temporal

Evapotranspiration Combined 90◦N−
−60◦S

2002-2019 500m 8-Day [30]

Precipitation TRMM and other source data 50◦N−
50◦S

1998-2019 0.25◦ Monthly [9]

2.3 Methods

2.3.1 Calculation of drought indices

According to the results of Behifar et al. [5], the ETCI and PCI drought indices were defined as appropriate
indices for the study area. So, these indices were used to forecast the drought. The ETCI (Evapotranspiration
Condition Index) and PCI (Precipitation Condition Index) were calculated by Equation (2.1) [5] and Equation (2.2)
[31], respectively. The 6-month SPI (Standardized Precipitation Index) was selected as the target variable and was
calculated by MATLAB code [4].

ETCI =
ETi,j − ETmin,j

ETmax,i − ETmin,i
(2.1)

where, ETi,j is the actual evapotranspiration in the location i and time j. ETmax,i and ETmin,i are the maximum and
minimum of actual evapotranspiration in location i during the study period, respectively.

PCI =
Pi,j − Pmin,j

Pmax,i − Pmin,i
(2.2)

where, Pi,j is the precipitation in the location i and time j. Pmax,i and Pmin,i are the maximum and minimum of
precipitation in location i during the study period, respectively.
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2.3.2 Drought forecasting

In this study, a wavelet neural network model has been applied to forecasts the drought. In this section, first, the
method’s theoretical basis is presented, and then then the implementation of the method is explained.

2.3.3 Wavelet neural network

In the wavelet neural network model, the input signal is first transformed into sub-signals by the wavelet technique.
The extracted features are then fed as input to the neural network, and the neural network weights each feature
according to its importance in generating the target signal.

The first step in wavelet transform is selecting the mother wavelet. A parent wavelet that can better fit the time
series curve will provide better results.

Wavelets are defined as a family of functions obtained from the expansion and transmission of the mother wavelet.
The function ψ(t) is called the mother wavelet, and the daughter wavelet ψa,b(t) is defined as Equation (2.3) [13].

ψa,b(t) =
1√
a
ψ

(
t− b

a

)
(2.3)

where a is the scale parameter, and b is the shift that determines the position of the wavelet. Higher scales (longer
wavelets) correspond with lower frequencies. There are different wavelet functions. Next, the most important step is
the level of decomposition. The maximum decomposition levels can be estimated from Equation (2.4) [22].

l = Int[log(N)] (2.4)

The recommended decomposition level is represented by L, with N denoting the length of the time series. There
are two categories of wavelet transforms: continuous and discrete. The function of Equation (2.5) mathematically
outlines a continuous wavelet transform.

Xω(a, b) =
1√
a

∫ ∞

−∞
x(t)ψ̄

(
t− b

a

)
dt (2.5)

in this function, ψ(t) is a continuous mother wavelet scaled by a factor a and propagated by a factor b. As scale and
shift are continuous numbers, continuous transforms possess an infinite number of wavelets. In contrast, the discrete
wavelet transform utilizes discrete values for scaling and shifting. The scale amplifies by powers of two, yielding
a = 1, 2, 4, ..., while the shift factor increases as integers, meaning b = 1, 2, 3, ....

Meteorologists, climatologists, and hydrologists often work with discrete-time signals rather than continuous time
signals for practical applications. Notably, the discrete wavelet transform is discrete only in scale and offset, not in
time. To accommodate discrete-time signals, wavelets must also be discrete in the time domain, which is referred to
as discrete wavelet transforms in time.

According to Merry [20], the discrete wavelet transform operates as a filter bank. At each decomposition level,
the original signal splits into two signals: approximation and detail. The approximation contains the low-frequency
component, while the detail holds the high-frequency information of the original signal. This process continues as the
decomposition level reaches its maximum, and the original signal eventually divides into multiple sub-signals. The
depiction of the discrete wavelet transform as a filter bank is illustrated in Figure 1.

Figure 1: Diagram of the discrete wavelet transform as a filter bank.
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After transforming the input signal, the next step is constructing a neural network. GMDH neural network is used
in this study.

GMDH Neural Network

The Group method of data handling (GMDH) operates based on self-organized learning and forms a complex
polynomial with high orders [2]. The GMDH algorithm is an inductive mechanism that extracts knowledge from
data patterns. This method is particularly useful for complex systems and experimental data under conditions of
uncertainty. When constructing a mathematical model to approximate an unfamiliar pattern of an object or process,
this issue emerges [10]. One significant attribute of the GMDH is its ability to identify and eliminate redundant
variables [2]. GMDH is often considered the pioneer of deep networks [25].

In the GMDH algorithm, the input-output relationship is approximated by nonlinear mapping through successive
layers of neurons using polynomial functions. Given an input vector X, the goal is to predict an output that closely
aligns with the target. Consequently, based on M observations of multi-input-single-output data pairs, Equation (2.6)
is derived [26].

X = (x1, x2, x3, ..., xN )

i = 1, 2, 3, ...,M

yi = f(xi1, xi2, xi3, ..., xin) (2.6)

in this equation, X signifies the input data vector with N variables, M denotes the number of observations, yi
represents the target output, and f is the unknown function. To train the GMDH network to predict ŷi with the
input vector X, Equation (2.7) is utilized.

ŷi = f̂(xi1, xi2, xi3, ..., xin) (2.7)

where, ŷi is the predicted output using the approximation function f̂ . The GMDH neural network needs to minimize
the squared difference between the target and predicted values, so:

Minimize : E =

M∑
i=1

(f̂(xi1, xi2, xi3, ..., xin)− yi)
2 (2.8)

The GMDH neural network employs the Kolmogorov-Gabor polynomial to map input and output variables, estab-
lishing a relation between M input variables and a single output variable as per Equation (2.9) [16].

ŷ = a0 +

m∑
i=1

(aixi) +

m∑
i=1

m∑
j=1

(aijxixj) +

m∑
i=1

m∑
j=1

m∑
k=1

(aijkxixjxk) + ... (2.9)

this equation can be rendered as a system of partial quadratic polynomials, each comprising only two variables
(neurons), in the form of Equation (2.10).

ŷ = G(xi, xj) = a0 + a1xi + a2xj + a3x
2
i + a4x

2
j + a5xixj (2.10)

The main objective of GMDH is to ascertain the coefficients ai in Equation (2.5), thereby minimizing the difference
between the target and predicted output for each pair of input variables (xi, xj) [15, 16]. Hence, the least square error
is leveraged in the form of Equation (2.11) to optimize the coefficients of each quadratic function.

Minimize : E =

∑M
i=1(ŷi − yi)

2

M
(2.11)

In the basic form of the GMDH algorithm, all feasible combinations of two independent variables out of the total
N input variables are applied to formulate the polynomial regression, as shown in Equation (2.5), which best fits the
dependent variable. Consequently, in the first hidden layer of the neural network from observations (yi, xip, xiq), the
number of neurons for different p and q is deduced from Equation (2.12).(

n

2

)
=
n(n− 1)

2
(p, q ∈ {1, 2, 3, ..., n}) (2.12)
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So, for each triple M, the matrix of Equation (2.13) is given:

Y = Aa (2.13)

where Y is the target vector, a is the vector of quadratic polynomial coefficients, and A is calculated as Equation
(2.14):

Y = {y1, y2, y3, ..., yM}
a = (a0, a1, a2, a3, a4, a5)

A =


1 x1p x1q x1px1q x21p x21q
1 x2p x2q x2px2q x22p x22q
...

...
...

...
...

...
1 xNp xNq xNpxNq x2Np x2Nq

 (2.14)

The least squares method produces a solution that is written as Equation (2.15):

a = (ATA)−1ATY (2.15)

this equation calculates the vector of optimal coefficients for all M triples. It’s worth noting that this procedure is
reiterated for each neuron in the subsequent hidden layer according to the network connection topology. A standout
feature of this network is that the neurons of the previous stage or layer are the producers of new neurons. To prevent
network divergence, some of the generated neurons are removed [3].

2.4 Model implementation

Two strategies were assessed for drought forecasting. Initially, the competency of remote sensing indices was
evaluated. Subsequently, the utility of adjoining information in the remote sensing data was inspected. The 6-month
SPI was chosen as the benchmark for drought intensity.

In the first step, the 6-month SPI value at East Isfahan station was forecasted using ETCI and PCI indices via
the wavelet neural network method from 2003 to 2016. The derived model was then used to predict the SPI in 2017.
The input dataset was partitioned into training (70%) and testing (30%) segments.

Next, in the second step, three adjoining pixel values were utilized to model drought at the East Isfahan station.
More precisely, pixel values located at the East Isfahan, Isfahan, and Kabutrabad synoptic stations were employed to
predict the SPI time series. The target values in this phase were also the 6-month SPI of the East Isfahan station.
This stage assumes that drought conditions (intensity, duration, and frequency) in a homogenous hydroclimatic unit
are similar.

In the pixels of a hydroclimatic unit, components containing information will be analogous, while those housing
noises (instantaneous and nonsystematic changes) will differ. Therefore, the components of information and noise can
be more confidently separated.

A homogeneous hydroclimatic region refers to a collection of sub-regions bearing geographical similarities and
similar hydrological responses [7]. That is, within a homogeneous hydroclimatic region, each hydrological and meteo-
rological event is alike, and the basin exhibits a consistent response to these events [17].

Following this analysis, the subsequent steps were executed:

The first step in the wavelet transform involves selecting the mother wavelet and decomposition level. In this study,
the Daubechies wavelet (db2) was chosen, and a decomposition level of three was applied, following an examination
of different wavelet functions at five decomposition levels.

The subsequent step was the construction of a neural network. The GMDH model was chosen, featuring five
layers with a maximum of 10 neurons per layer. The number of layers and neurons was determined via the trial-
and-error method, and the best network was identified by comparing errors. A preference was given to the model’s
simplicity; thus, when errors were equal, the network with fewer neurons was selected. All the approximations and
details extracted at the three decomposition levels were integrated into the neural network model, with the 6-month
SPI introduced as the target.

Based on autocorrelation analysis, the optimal lags for drought forecasting were identified as one, two, and 12
months. For long-term forecasting purposes, lags of 12 and 24 months were applied, enabling the neural network
model to predict the 12th month in advance.
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3 Results and discussion

The capacity of remote sensing data for drought forecasting was assessed in two stages. Initially, remote sens-
ing indices were evaluated for their ability to forecast drought. Subsequently, the benefit of incorporating spatial
information to enhance forecast accuracy was explored.

3.1 First step

The db2 wavelet was applied to the ETCI and PCI indices at three decomposition levels, and the sub-signals were
then employed as inputs for the neural network. This wavelet neural network model was implemented at the East
Isfahan synoptic station, with results assessed against the station’s 6-month SPI. Figures 2(a, b) display the neural
network results on the training and validation datasets, while Figure 2(d) reveals the error histogram in the time
series. Observed and predicted values in the training and validation datasets are depicted in Figure 3.

Figure 2: Neural network results in a) train dataset, b) validation dataset, c) All data, d) Error histogram of forecast

Figure 3: Time series of observed and predicted values in train and validation datasets.

As can be seen in Figure 2, model accuracy in the training and validation datasets was 0.708 and 0.532, respectively.
It’s worth noting that drought forecasting for each stage was performed 12 months in advance. The error distribution
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displayed in Figure 2(d) indicates a relatively uniform distribution around zero, though the model does show a tendency
to underestimate.

3.2 Second step

Wavelet transforms were applied to the ETCI and PCI indices at three locations (East Isfahan, Isfahan, and
Kabutarabad station). All components extracted at three decomposition levels were used as input for the neural
network model. In this stage, the wavelet type, decomposition level, and neural network parameters were used as in
the previous stage.

Figures 4(a, b) illustrate the neural network results on the training and evaluation datasets, while Figure 4(d)
reveals the error histogram in the time series. Observed and predicted values in the training and validation datasets
are depicted in Figure 5. The correlation between the observed and predicted values in the training and validation
datasets were 0.64 and 0.67, respectively.

Figure 4: Neural network results in a) train dataset, b) validation dataset, c) All data, d) Error histogram of forecast

Figure 5: Time series of observed and predicted values in train and validation datasets.

Figure 4 illustrates that by incorporating proximity information from satellite images, model accuracy in the
training and validation datasets was recorded as 0.643 and 0.675, respectively. Even though there was a decrease in
accuracy during the training phase, a significant increase was observed during the validation phase. Furthermore, the
error distribution seen in Figure 4(d) shows a reasonably uniform distribution around zero, with a significant reduction
in error frequency.
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The high accuracy of the wavelet neural network model can be attributed not only to the preprocessing and
decomposition of the time series into sub-signals but also to the assignment of distinct weights for different sub-
signals. Artificial neural networks are capable of modeling nonlinear behaviors; however, they struggle with accurately
modeling non-stationary signals [29]. Given the non-stationary and nonlinear nature of the 6-month SPI time series,
the application of the wavelet transform in the neural network assembly was deemed necessary. The wavelet transform
substantially enhances model accuracy by generating multi-scale features by decomposing the original signal into high
and low frequencies.

The findings indicated that employing adjoining information can result in more accurate drought forecasting than
with the simple neural wavelet model alone. This is substantiated by Cannas et al. [8], who used a neural wavelet
model to estimate monthly river flows in Italy, with results indicating that discrete wavelet preprocessing notably
enhances the accuracy of neural network models.

The wavelet neural network model demonstrated acceptable accuracy in drought forecasting, thereby proving its
potential for application in drought forecasting to facilitate improved water resource management and appropriate
drought response decisions. The artificial intelligence technique, which employs satellite data in modeling and fore-
casting the SPI index, was found to be accurate.

4 Conclusion

Drought is one of the most devastating natural disasters and is currently affecting numerous countries. Remote
sensing data can monitor most drought parameters, providing continuous spatial and temporal data. Nonlinear
methods prove to be helpful in modeling and predicting this phenomenon better, given the nonlinear relationship of
many drought parameters.

The precipitation condition and evapotranspiration condition indices are included among these drought parameters.
Time series of these indices were generated using satellite products, and drought forecasting was executed using the
hybrid wavelet neural network method.

The findings demonstrated that the wavelet neural network method could accurately forecast drought intensity for
the subsequent year, as the R2 value for 2016 was equal to 0.675. These findings further substantiated that artificial
neural network algorithms are beneficial in forecasting the SPI drought index, and the usage of proximity information
available in satellite data can enhance the accuracy of forecasts.
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