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Abstract

In this paper, the modified matrix exponential (MME) method under zero-order hold (ZOH) assumption, is applied
to solve systems of stiff ordinary differential equations. Some examples are given to illustrate the accuracy and
effectiveness of the method. We compare our results with results obtained by matrix exponential (ME) method and
by the Matlab ode23 solver.
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1 Introduction

Stiff initial and boundary value problems for ordinary differential equations arise in fluid mechanics, elasticity,
electrical networks, chemical reactions, and many other areas of physical importance. A stiff equation is a differential
equation for which certain numerical methods for solving the equation are numerically unstable unless the step size is
taken to be extremely small. Because of analytical methods which can solve the stiff system are restricted, the ability
to solve these equations numerically is important. In the last several decades, some of the numerical methods for stiff
differential equations have been studied, such as Haar Wavelets [7], Adomian decomposition [4], Runge-Kutta [3] and
so on.

In this paper, we apply the modified matrix exponential method to solve the stiff equations. The paper is organized
as follows: a brief description of the MME method is given in section 2. The accuracy of the method with several
examples is demonstrated in section 4 and the conclusion is described in section 5.

2 A brief description of the MME

Our objective is to present a time discretization of non-linear systems using modified matrix exponential methods
as follows [5, 9]:

dY (t)

dt
= f(Y (t)) + g(Y (t))

⊙
v(t), (2.1)
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where the vector Y (t) = [y1(t), y2(t), y3(t), ..., yn(t)]
t ∈ X ⊂ Rn×1 represents a set of open and connected states, and

v(t) = [v1(t), v2(t), ..., vn(t)] ∈ Rn×1 are the input variables and
⊙

is a scalar product. Suppose that f(x) and g(x)
are real analytic vector fields on X. In general, the mesh T = tk+1 − tk > 0 represents an equidistant grid of points
on the time axis, [tk, tk+1) = [kT, (k + 1)T ) and T are the sampling interval and the sampling period, respectively.

It is also assumed that (2.1) is driven by an input, vi(t), that is piecewise constant over the sampling interval, i.e.
the ZOH is true.

For the ZOH assumption,
vi(t) = vi(tk) = constant, (2.2)

for a ≤ tk ≤ b. For i, j = 1, 2, 3, ..., n, we consider a time interval t ∈ [tk, tk+1) with the ZOH assumption, we have

ζj(t) = Yj(t)− Yj(tk) (2.3)

and the following second-order approximation can be obtained:

fi(Y (t)) ≈ fi(Y (tk)) +
∂fi(Y (tk))

∂yj(t)
ζj(t) +

∂2fi(Y (tk))

∂yj(t)2
ζ2j (t)

2
, (2.4)

gi(Y (t)) ≈ gi(Y (tk)) +
∂gi(Y (tk))

∂yj(t)
ζj(t) +

∂2gi(Y (tk))

∂yj(t)2
ζ2j (t)

2
. (2.5)

From (2.3), we have
ζ̇j(t) = Ẏj(t). (2.6)

Thus, (2.2) can be approximated as follows:

ζ̇j(t) ≈ fi(Y (tk)) +
∂fi(Y (tk))

∂yj(t)
ζj(t) +

∂2fi(Y (tk))

∂yj(t)2
ζ2j (t)

2
+

(
gi(Y (tk)) +

∂gi(Y (tk))

∂yj(t)
ζj(t) +

∂2gi(Y (tk))

∂yj(t)2
ζ2j (t)

2

)
vi

= (fi(Y (tk)) + gi(Y (tk))vi) +

(
∂fi(Y (tk))

∂yj(t)
+

∂gi(Y (tk))

∂yj(t)
vi

)
ζj(t) +

(
∂2fi(Y (tk))

∂yj(t)2
+

∂2gi(Y (tk))

∂yj(t)2
vi

)
ζ2j (t)

2

= f̃ik + Jikζj(t) + J ′
ik

ζ2j (t)

2
, (2.7)

where
f̃ik = f̃i(Y (tk), vi) = fi(Y (tk)) + gi(Y (tk))vi (2.8)

Jik = Ji(Y (tk), vi) =
∂fi(Y (tk))

∂yj(t)
+

∂gi(Y (tk))

∂yj(t)
vi (2.9)

J ′
ik = J ′

i(Y (tk), vi) =
∂2fi(Y (tk))

∂yj(t)2
+

∂2gi(Y (tk))

∂yj(t)2
vi (2.10)

Rewriting (2.7), we get:

ζ̇j(t) = f̃ik + Jikζj(t) + J ′
ik

ζ2j (t)

2
, ζj(tk) = 0. (2.11)

Let N > 0 be an integer number, the step length is as follows:

hk =
tk+1 − tk

N
(2.12)

An expand vector is considered:

ηj(t) =

ζj(t)
ζ2
j (t)

2
1

 (2.13)

(2.11) can be written as follows: ζ̇j(t)

ζ̇j(t)ζj(t)
0


(i+1)×1

=

 Jik J ′
ik f̃ik

ζ̇j(t) 0 0

0
T

0 0


(i+1)×(i+1)

ζj(t)
ζ2
j (t)

2
1


(i+1)×(1)

(2.14)
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Rewriting (2.14), we get:
η̇j(t) = Cikηj(t) (2.15)

where

ζ̇j(tk) = f̃ik(tk), ηj(tk) =

0
0
1

 = ηj0, (2.16)

Cik(tk) =

Jik(tk) J ′
ik(tk) f̃ik(tk)

f̃ik(tk) 0 0

0
T

0 0

 ∈ R(n+1)×(n+1) (2.17)

and 0 is an n-dimensional zero column vector and Jik is the first-order derivative and J ′
ik is the second-order derivative

of the Jacobian matrix and f̃ik is the values of equations in yi(tk).

The solution of (2.15) within the time interval [tk, tk+1) is as follows:

ηj(tk+1) = eCik(tk)(tk+1−tk)ηj0. (2.18)

An exponential matrix is calculated by taking Z as the square matrix and I as the identity matrix. Its exact
formula would be as follows:

eZ = lim
N→∞

(
I +

Z

N

)N

. (2.19)

The following truncated approximation is applicable for an appropriate value of N :

eZ ≈
(
I +

Z

N

)N

, (2.20)

Using (2.18) and (2.20) we get:

eCik(tk+1−tk) ≈ (I(i+1)×(i+1) + Cik(tk)hk)
N . (2.21)

From (2.18) and (2.21), we can obtain:

ηj(tk+1) = (I(2i+1)×(2i+1) + Cik(tk)hk)
Nηj0 (2.22)

By multiplying the vector
(
Ii×i 0 0

)
on the sides of (2.22)

ζj(tk+1) =
(
Ii×i 0 0

)
(I(2i+1)×(2i+1) + Cik(tk)hik)

N

0
0
1

 , (2.23)

where
(
I 0 0

)
∈ R(n)×(n+1). So, The final equation can be obtained as follows:

y(tk+1) = y(tk) +
(
Ii×i 0 0

)
(I(2i+1)×(2i+1) + Cik(tk)hik)

N

0
0
1

 , (2.24)

we used the extended vector to apply the modified matrix exponential method. The (2.24) can be written in extended
form as follows: 

y1(tk+1)
y2(tk+1)

...
yi(tk+1)


i×1

=


y1(tk)
y2(tk)

...
yi(tk)


i×1

+H(tk, yi(tk)), (2.25)

where

H(tk, yi(tk)) =
(
Ii×i 0 0

)
(I(2i+1)×(2i+1) + Cik(tk)hik)

N

0
0
1

 ,

for i = 1, 2, 3, · · · , n. If J ′
ik(tk) = 0, then MME and ME methods are equivalent to each other.
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3 Finding the appropriate value of N in MME

A proper value for N is essential [2]. An improved form for (2.20) is

eZ ∼=
(
I +

Z

2b

)2b

,

for an appropriate value of b. We can show that analytical relative matrix error Et defined by(
1 +

Z

2b

)2b

≡ eZ(1 + Et),

is given approximately by

Et ≈ −1

2
.
Z2

2b

and therefore, for any matrix form,

∥Et∥ ≈ 1

2
.
∥Z∥2

2b
≤ 1

2
.
∥Z∥2

2b

Estimating the value of b required to have Et < ϵ, as follows

b∗ ≡ int+

(
log2

(
∥Z∥2

2ϵ

))
,

where int(x) is the lowest integer greater than or equal to x, Et < ϵ is a preassigned tolerance (maximum tolerable
value) for Et and

Z = (tk+1 − tk)Cik.

For the sake of safety, it’s recommended to choose

b = b∗ + 3.

4 Numerical illustration and discussion

Example 4.1. Consider the nonlinear stiff ODE problem as follows [8]:{
x′(t) = −x2

1(t)x2(t)− x3
2(t),

x′(t) = −x1(t)− 103(2cos(t)x2(t)− sin(2t)).

where t ∈ [0, π
2 ]. The initial values are x1(0) = 1 and x2(0) = 0 and the exact solutions are x1(t) = cos(t) and

x2(t) = sin(t). Now we construct as follows:

Jik =

(
−2x1(tk)x2(tk) −3x2

2(tk)
1 −103(2cos(tk))

)
2×2

,

J ′
ik =

(
−2x2(tk)x2(tk) −6x2(tk)

0 0

)
2×2

,

f̃ik =

(
−x2

1(tk)x2(tk)− x3
2(tk)

−x1(tk)− 103(2cos(tk)x2(tk)− sin(2tk))

)
2×1

,

where i = 1, 2. The solutions of example 4.1 are plotted in figure 1 for iteration=2 × 105 and N = 25 and the error
values of the methods which is compared to exact solution are presented in figure 2. The average of absolute error of
example 4.1 listed in table 1.
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Table 1: The average of absolute error of example 4.1.

methods iter=2× 104

N = 25
iter=2× 104

N = 220
iter=2× 104

N = 25
iter=2× 104

N = 25

MME X1 : 6.8318× 10−6

X2 : 9.3791× 10−6
6.9150× 10−6

8.6239× 10−6
6.7304× 10−7

9.8446× 10−7
6.7205× 10−8

9.8911× 10−8

ME X1 : 1.8980× 10−5

X2 : 1.1864× 10−5
1.9633× 10−5

1.2187× 10−5
1.8710× 10−6

1.1579× 10−6
1.8683× 10−7

1.1551× 10−7

ode23 X1 : 1.9670× 10−4

X2 : 4.4654× 10−4
1.9670× 10−4

4.4654× 10−4
2.0007× 10−6

4.4502× 10−4
2.0007× 10−6

4.4502× 10−4

Figure 1: The exact and MME solution of example 4.1.

Figure 2: The errors of the MME method of example 4.1.

Example 4.2. Consider the stiff nonlinear initial value problem as follows [1]:
x′
1(t) = −0.04x1(t) + 104x2(t)x3(t)− 0.96e−t,

x′
2(t) = 0.04x1(t)− 104x2(t)x3(t)− 107x2

2(t)− 0.04e−t,

x′
3(t) = 3× 107x2

2(t) + e−t.

where t ∈ [0, 15]. The initial values are x1(0) = 1, x2(0) = 0 and x3(0) = 0 and the exact solutions are x1(t) = e−t,
x2(t) = 0 and x3(t) = 1− e−t.

Now we construct as follows:

Jik =

−0.04 104x3(tk) 104x2(tk)
0.04 −104x3(tk)− 2× 107x2(tk) −104x2(tk)
0 6× 107x2(tk) 0


3×3
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J ′
ik =

0 0 0
0 −2× 107 0
0 6× 107 0


3×3

,

f̃ik =

 −0.04x1(tk) + 104x2(tk)x3(tk)− 0.96e−tk

0.04x1(tk)− 104x2(tk)x3(tk)− 107x2
2(tk)− 0.04e−tk

3× 103x2
2(tk) + e−tk


3×1

,

where i = 1, 2, 3. The values of error of example 4.2 rather than exact solution for iteration = 6× 105 and N = 25 are
exhibited in table 2 and the solutions of example 4.2 are plotted in figure 3. The average of absolute error of example
4.2 listed in table 3 and the error values of the methods which is compared to exact solution are presented in figure 4.

Table 2: The values of error of example 4.2 rather than exact solution.

t x MME ME Ode23
0.8 X1

X2

3.18696× 10−7

3.18720× 10−7
3.03377× 10−6

3.03380× 10−6
3.03380× 10−6

9.3791× 10−5

1.6 X1

X2

7.91787× 10−7

7.91831× 10−7
3.73712× 10−6

3.73714× 10−6
1.97248× 10−5

5.69838× 10−5

2.4 X1

X2

1.15260× 10−6

1.15265× 10−6
3.75668× 10−6

3.75670× 10−6
3.01947× 10−5

8.77373× 10−5

3.2 X1

X2

1.38133× 10−6

1.38138× 10−6
3.63226× 10−6

3.63227× 10−6
3.82825× 10−5

1.18487× 10−4

4 X1

X2

1.51404× 10−6

1.51409× 10−6
3.51649× 10−6

3.51651× 10−6
4.99561× 10−5

1.49231× 10−4

Table 3: The average of absolute error of example 4.2

methods iter=6× 104

N = 25
iter=105

N = 25
iter=6× 105

N = 25
iter=6× 105

N = 210

MME X1 : 7.6581× 10−6

X2 : 8.5399× 10−6
4.4304× 10−6

4.6280× 10−6
7.2261× 10−7

7.2352× 10−7
7.2268× 10−7

7.2370× 10−7

ME X1 : 1.0223× 10−4

X2 : 1.0223× 10−4
6.1335× 10−5

6.1335× 10−5
1.0222× 10−5

1.0223× 10−5
1.0222× 10−5

1.0223× 10−5

ode23 X1 : 9.4592× 10−5

X2 : 2.8378× 10−4
9.4592× 10−5

2.8378× 10−4
failed
failed

failed
failed

Figure 3: The exact and MME solution of example 4.2.
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Figure 4: The errors of MME method of example 4.2.

Example 4.3. Consider the very stiff nonlinear initial value problem as follows [6]:
x′
1(t) = 2tx

1
5
2 (t)x4(t),

x′
2(t) = 10te5(x3(t)−1)x4(t),

x′
3(t) = 2tx4(t), ,

x′
4(t) = −2tLn(x1(t)),

where t ∈ [0, 2.5]. The initial values are x(0) = (1, 1, 1, 1) and the exact solutions are x(t) = (esin(t
2), e5sin(t

2), sin(t2)+
1, cos(t2)). Now we construct as follows:

Jik =


0 2

5 tx4(tk)x2(tk)
− 4

5 0 2tx2(tk)
1
5

0 0 50tx4(tk)e
5(x3(tk)−1) 10te5(x3(tk)−1)

0 0 0 2t
− 2t

x1(tk)
0 0 0


4×4

,

J ′
ik =


0 − 8

25 tx4(tk)x2(tk)
− 9

5 0 0
0 0 250tx4(tk)e

5(x3(tk)−1) 0
0 0 0 0
2t

x2
1(tk)

0 0 0


4×4

,

f̃ik =


2tkx

1
5
2 (tk)x4(tk)

10tke
5(x3(tk)−1)x4(tk)
2tkx4(tk)

−2tkLn(x1(tk))


4×1

,

where i = 1, 2, 3, 4. The solutions of example 4.3 are plotted in figure 5 for iteration = 7× 105 and N = 220 and the
error values of the methods which is compared to exact solution are presented in figure 6. The average of absolute
error of example 4.3 listed in table 4.

Table 4: The average of absolute error of example 4.3.

methods iter=6.5× 104

N = 22
iter=6.5× 104

N = 220
iter=7× 105

N = 220

MME X1 : 6.5617× 10−3

X2 : 9.8648× 10−3

X3 : 8.7241× 10−3

X4 : 8.8071× 10−3

9.7823× 10−6

5.6039× 10−4

9.2018× 10−6

9.4651× 10−6

9.4725× 10−7

5.2057× 10−5

9.2412× 10−7

9.5627× 10−7
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ME X1 : 6.6945× 10−3

X2 : 1.0348× 10−2

X3 : 8.8022× 10−3

X4 : 8.9189× 10−3

1.5367× 10−5

1.1610× 10−3

1.029× 10−5

9.5505× 10−6

1.4271× 10−6

1.0778× 10−4

9.6492× 10−7

9.2195× 10−7

ode23 X1 : 1.6524× 10−2

X2 : 5.6368× 10−2

X3 : 2.2230× 10−2

X4 : 1.9485× 10−2

1.6524× 10−2

5.6368× 10−2

2.2230× 10−2

1.9485× 10−2

1.8311× 10−2

6.5253× 10−2

2.4547× 10−2

2.1365× 10−2

Figure 5: The exact and MME solution of example 4.3.

Figure 6: The errors of MME of example 4.3.

5 Conclusion

In this paper, we studied the modified matrix exponential method for solving the stiff differential equations. In
order to apply the modified matrix exponential method, we used the extended vector as (2.25). The results were
compared with the matrix exponential method and Matlab ode23 solver. The various examples and their errors
display that MME method is a very good method for solving the type of stiff differential equation. It is important to
appropriately set the value of N in this method. By increasing the iteration of the method or the value of N, we can
get a better approximation with fewer errors. Because the MME method uses a small step size of hk, it is appropriate
for solving very stiff systems of ODEs and it is largely independent of ill-conditioning.
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