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Abstract

In this paper, we investigate a discrete-time prey-predator model. The model is formulated by using the piecewise
constant argument method for differential equations and taking into account Holling type III. The existence and local
behavior of equilibria are studied. We established that the system experienced both Neimark-Sacker and period-
doubling bifurcations analytically by using bifurcation theory and the center manifold theorem. In order to control
chaos and bifurcations, the state feedback method is implemented. Numerical simulations are also provided for the
theoretical discussion.
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1 Introduction

Predator-prey models offer a broad variety of ecological and biological applications [I4]. Despite the fact that
numerous essential features of continuous-time nonlinear prey-predator models have been explored, discrete-time
Predator-prey systems remain relatively poorly understood.

In 1970, May [I0] realized that a simple-discrete model may exhibit complicated dynamics, from stable points, to a
bifurcating hierarchy of stable cycles, to apparently random fluctuations. Discrete-time models may offer more complex
and rich dynamics (such as, bifurcation and chaos) than their continuous counterparts represented by differential
equations [3 [7]. Discritization of continuous systems is an important way to attain discrete models. To achieve
this purpose, many schemes are applied. The most popular methods to obtain the discrete-time counterparts of
continuous-time models are the forward Euler scheme and the piecewise constant arguments for differential equations.
Singh et al. [I7] discussed period-doubling and Neimark-Sacker bifurcations of a discrete-time prey-predator model
derived following the forward Euler’s scheme and by choosing step size in the discretization method as the bifurcation
parameter. It is observed that both types of bifurcations occur for larger values of step size used in Euler’s scheme,
and this fact violates the accuracy of the numerical method for discretization. In order to remove this deficiency, Din
gives an alternate discretization exponential model, formulated by the method of piecewise constant arguments [6].
The analysis of local dynamics seems to be more challenging compared to the Euler scheme developed in [I7]. Further,
different chaos control methods are implemented to avoid chaotic orbits.
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In 1995, Hsu and Huang [§] studied the following prey-predator system of the Leslie type with sigmoidal functional
response:

dx x ma?
@ T GraseaY 1)
% :y(s(l— ?)), (1.2)

where
z(0) > 0, y(0) > 0.

In the system (1.1)-(1.2)),  and y denote the numbers of prey and predator, respectively, and all parameters are
nonnegative. It is assumed that the prey grows logistically with carrying capacity K and an intrinsic growth rate r
in the absence of predation. The prey is consumed by the predator in accordance with the Holling type-III functional

mx2

(A+z)(B+x)
are proportionate to the population size of the prey. The model’s parameter m stands for the maximum specific
rate of product formation. Some results on global stability are established for a non-dimensional form of the system

CD-C2).

Motivated by the above discussions, we propose the following discrete-time prey-predator model:

response y, and the predator grows logistically with an intrinsic rate s and carrying capacity that

Ty ma,
T4l = Tp €XP (r(l - ?) T A+a) B ern)yn), (1.3)
hyn
Yn+1 = Yn €XP (5(1 - xy )) (14)

It is our aim to analyze the asymptotic stability of the system’s equilibria —. We will use bifurcation
theory and the center manifold theorem with numerical simulation to study the Neimark-Sacker bifurcation and
period-doubling bifurcation in the system. In addition, we implement the state feedback control (SFC) method to
achieve the stability of unstable orbits. Some recent works on the stability and chaos in a discrete-time dynamical
system can be found, among many others, in [I]-[2].

The remainder of this manuscript is organized as follows: The existence and local dynamics of the equilibria are
developed in Section [2] The bifurcation analysis is carried out in Sections [3]and @ In Section [f] we employ the SFC
method to stabilize chaotic orbits. Numerical simulations are developed in Section [6} Finally, Section [7] draws the
conclusion to this paper.

2 Local dynamics

The results about the existence of the equilibria of the system (1.3)-(1.4) in R2, are summarized as follows:

Lemma 2.1. The system (1.3)-(1.4) has a boundary equilibrium and a unique interior equilibrium in R .

1. For all positive parametric values, the system has one boundary equilibrium B(K,0).
2. If s2 4+ 4% > 0 then, the system 1'1) has a unique interior equilibrium

s —s 44 /2 +48 8| —s— /2 + 4D«
C(JZ*,y*):( 27+ 27 JC)

2 2 " h

Proof . The equilibria of the system (1.3])-(|1.4]), satisfy the two isocline equations

2

® h(A+z)(B + z) =0 @1)

r(l—

x = hy. (2.2)

Eq.(2.1) implies
24 ar? +br4+c=0, (2.3)
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where

h(r(A+ B) — Kr) h(rAB —rAK — rBK))

¢ hr ’ hr » ¢
By using the transformation z; = = + §, the equation (2.3) reduces to
3+ pry +5=0, (2.4)
where ) 5
a ab  2a
=b— —and s=c— —+ —.
P gand s=c— ot o7
Let 1 = v+ w , then (2.4) becomes
v® 4+ w? + (v 4+ w)(3vw 4 p) + 5 =0, (2.5)
which is equivalent to
VPt w? = —s, 3vw = —p. (2.6)
Let again V = v3 and W = w?, yields
P’
V+eW=—-s, VW =—-=—, (2.7)
27
thus, V and W are the roots of the second polynomial degree below
2 P’
Z Z ——=0. 2.8
+8Z - o (2.8)

The discriminant of 1D is A =352+ 45—?, Now if s2 + 4’2’—;’ > 0, the the roots of 1) are

—544/s2 + 45 —5— /s 4B
Vet — T g W=t = — 2 (2.9)

2 2

Since x = v + w,

s —s+ /2 + 48 5| —s— /52 + 42
el =Ll (2.10)

= 2 + 2 )

Thus, the unique interior equilibrium is

3 —s+\/s2+4§’—; 3 —s—\/52+412’—37’ z*
C(x*,y*):( )

2 + 2 " h

Now, for y = 0, the system (|1.3)-(1.4) has a boundary equilibrium noted D(XK,0). The Jacobian matrix of the
system (1.3)-(1.4) at any equilibrium (z,y) is given by

J(z,y) = ( e ) (2.11)

Jo1 J22

where

i1 = exp (r(l - )= M%) (1 B x(;; - (Amf(;)lf(;fiﬁ))’

b =G = (0 %) G )
J21 = h;f exp (5(1 - l;y))

jog = exp (5(1 - hi)) (1 - yzh)
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For the equilibrium B(K,0), we have

K2%m
J(B) = U —amomm . (2.12)
0 exp(s)

The equilibrium B(K,0) is non-hyperbolic since A\; = 1. For the equilibrium C(z*,y*), we have

wf r my(AB—z*?) z*%m
Je)=[ 17" (K + <A+z*>2<B+m*>2> @B | (2.13)
2 1-s
h

The characteristic equation associated to ([2.13)) is

w? — trJ(C)w + det J(C) = 0. (2.14)
where
T m — 2
T:=trJ(C)=2—2a" (K + A _:jifl)?(B n x)*)2> — s, (2.15)
and
. B T my(AB — x*?) x*2sm
D :=detJ(C) = (1 -z (K + (A+x*)2(B+x*)2>> (1 - s) + AT BT (2.16)
U

The following lemma describes the various conditions associated with the local stability analysis of feasible equi-
libria.

Lemma 2.2. [3] Let ¢(w) = w? — Tw + D. Suppose that ¥(1) > 0, wy, wp are two roots of ¥(w) = 0. Then

e |wy |<1land|ws|<1ifand only if¢(—1) >0and D < 1;

(Jwi|>1land |we |<1)or (Jwy|[<1and|ws|>1)if and only if ¢(—1) < 0;

| wy |[>1and |wse [>1if and only if ¢(—1) > 0 and D > 1;
e w; =—1and |wsy |#1if and only if ¢)(—1) =0 and D # 1;

e p; and py are complex and | wy |=1 and | wy |= 1 if and only if 72 — 4D < 0 and D = 1.

Let wy and ws be two roots of (2.14)), which called eigenvalues of the equilibrium (z,y). The following typological
classifications are considered:

1. (x,y) is locally asymptotically stable if | wy |< 1 and |ws [< 1.
2. (z,y) is called a source if | wy [> 1 and | wy [> 1. A source is locally unstable.
3. (z,y) is called a saddle if | wy |[< 1 and |wa |[> 1 or (Jwy |[> 1 and | we |< 1).
4. (z,y)

x,y) is called non-hyperbolic if either | wy |=1 or | wy |= 1.
We set
2h (x* (1’% + (Arii(:?:igf;)y) - 2)
A= )
h(x* (C + (Aﬁi(*?ﬁéi*53>z) - 2) + h(AJr;I;Zr];’er*)
and
o (7 + ATy
B =

«[ T my(AB—z*2) r*2m .
h(x <K+Mw> —1> t RAT (BT

The following proposition summarizes the local dynamics of the interior equilibrium C"
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*2
Proposition 2.3. Let z* <IT( + m) > 2.

e The interior equilibrium C(z*,y*) is locally asymptotically stable if

A<s<B. (2.17)

e The interior equilibrium C'(z*,y*) is source if
s < A (2.18)

e The interior equilibrium C(z*,y*) is saddle if
§ > max {A,B}. (2.19)

e The interior equilibrium C(z*,y*) is non-hyperbolic if
s=A, (2.20)

or
s=B. (2.21)

If the non-hyperbolic condition (2.20) in (2.3) holds, then one of the eigenvalues of C'(z*,y*) is -1 and the other is
neither 1 nor -1. Thus (2.20) can be written as

Pd={(nK,m7A,B,h7s)>0,T>0, s=A}. (2.22)

If the non-hyperbolic condition (2.21) in (2.3)) holds, then the eigenvalues of C(z*,y*) are a pair of complex
conjugate numbers with modulus 1. Thus (2.21)) can be written as

NSZ{(T,K7m,A,B,h78)>07 | T[<2, s:B}- (2.23)

3 Period-doubling bifurcation
For the fixed point (*,y*) associated to the system (1.3)-(1.4). The set (2.22]) can be written as

Pd:{s:§, T >0, (7‘,6,m,K,8,A)>0}. (3.1)

Thus, the system (1.3)-(1.4)) undergoes a period-doubling bifurcation at the interior equilibrium (a*, y*) if s varies
in the small neighborhood of s = § and the other model’s parameters are kept constant in P;. Giving a perturbation
s* ( s* < 1) of the parameter s in the neighborhood of s = § in the system (1.3)-(1.4), we obtain

T, My, .
Tpy1 = T €XP (7‘( K) (AJrIn)(BHn)yn) F(@nsYny 87), (3.2a)
* h *
Yntl = Yn €XP ((s +sM)(1— xyn)> = g(zn, Yn, s¥). (3.2b)
n
The system ([3.2) can be linearized near the origin as follows:
Up+1 = a1V + QWy + Q12U Wy, + anv% + Oéggwi,
Wpy1 = B1vn + Bowy, + Br2vnwy, + B1102 + Baow?+

Bi3s* v + Bazs*wy, + Br238 vnwn + Br13s 02 + Poozs w?.
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where
T my(AB — x*? a*?m
o =fo(a®,y",0) =1 —a" (K + (A _|_ya(:*)2(3_|_x)*)2>’ a2 = fy(2",y7,0) = (A+29)(B+z*)
s = fun (2 4", 0) = — 2m (A+ B+ 22%)2**m n m2z*3

e (A+a*)(B+a*)  (A+a*)?(B+a*)?  h(A+a*)*(B+a*)?
m2z* (A + B + 2z%) n rma*?
hA+2*)3(B+2*)2  K(A+z*)(B+x*)’

(L 0) = — ma*y* (A+ B+ 2z )ma*y* 7 (A4 B+ 22 )ma*?y*
L =Jaal 8 e (A+a)(Btaz) | (A+z)2B+a)2 K (A+z)2(B+a)?

N mx*zy* B (A+B+2£C*)2$L'*2y TI’LQ,’E*y*Q (A+B+2x*)m2x*2y*2
(A+z*)2(B+2*)?2  (A+2*)3(B+az*)3  2(A+2*)%(B+ x*)? (A+ z*)3(B + x*)3
m2x*3y 2 (A + B + 22*)? rmz*y* rma*?y*(A+ B + 2z*) n rlx

2(A+ 2*)4(B + x*)* KA+z*)(B+x*) K(A+z*)2(B+z*)?2 2K?’
m2a3

* % * % S * %
Q22 :fyy(x 'Y 70): 2( *)27ﬂ1 :gw(x Y ,O)ZE, ﬁ2:gy(x 'Y 70):1_83

A+ z)2(B+x

*

S ST S

s 1
=Yz *a *70 =—2-— ) = Yzs* *7 *70 = 7 = Yzz *7 *,0 = -1 )
Bi2 =gy (z*,y",0) x*( x*) Biz = gus+(z*,y", 0) 5 Bi1 = gua (¥, 9", 0) o (=1+ x*g)
* % sh S k% * ok 2 S

622 :g’ﬂ/(x Y 70)2;(_1—1_5),623:9?/8*(1‘ Y ao):_176123:gazy8*(‘r Y 70)25(1_5%
—x* s h s sh
—Yzxs* *; *70 = PR = s* *7 *70 =—(-1 5 .
B113 =gzas- (™, 9", 0) o + o B223 = Gyys+ (", y",0) x*( + 2)+ o

. . X
a2 o2 , with the transformation Un ) = T "o
—1—a1 wy—oq Wnp, Y,

Writing v, = (X, + Yn) , wp = —(1 + a1) X, + (w2 — @)Y,,. Thus, the system (3.3]) becomes
Xns1 -1 0 X, Fi(X,,Y,,s")
- 7 3.4
( Yot ) ( 0 w2 ) ( Y, ) + ( Gl(Xnaans*) ( )

Wy — (1
- OéQ(]. + UJQ)

Let us define the invertible matrix Ty =

(( — 0412042(1 =+ Oé]) + 0411045 + 0422(1 + 061)2) X721

+ OZ12042(UJQ — al) — algag(l + al) + 20(110(% — 20[22(1 + Oél)((,«JQ — Ozl))XnYn

1
2 2 \y2
+ [ apan(we — 1) + ag105 + aga(wa — « Y: —
1202 (w2 — 1) + a1103 + aza(ws 1)>n oy 1

(( — Broca(1+ a1) + Br1aj + Baa(1 + 041)2>X3L

+ ( Bi13a3 + Baos(1 + a1)? — Bragan(1 + 041)) X2s*

Braaa(wa — a1) — Braaa(l + a1) + 2B1105 — 2B22(1 + 1) (wa — al))XnYn

+ <6120¢2(w2 — o) + P13 + Bag(ws — 041)2) Y2+ (5223043 + Baga(wa — a1)? + Bragaa(wa — Oél)) Y2 s*
(25113,@% + 208293(1 + a1) (w2 — 1) + Prazaa(wa — o) — Prazae(1 + a1)>XnYn5*

+ ( Bizaz — Pas(1 + 061)>Xn8* + (513042 + Baz(wa — Q1)>Yn8*>)~
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and

1+C¥1

Gl(XnaYnaS ) = m

(( - a12a2(1 -+ al) -+ auag =+ 0422(]. + 061)2>X2

1209 LUQ — Oél) — 0112()[2(1 —+ Oél) —+ 204110[2 — 20[22(1 —+ (11)(&)2 — Oél)>XnYn

1
UJ2+1

+ [ arpas(we — 1) + 1103 + age(w 2—041)2>Y712+ <<—5120¢2(1+a1)+ﬂ11a§+ﬁ22(1+041)2>X§

+ <6113a2 + Bazs(1 4 a1)® — Bragaa(l + a1)> X2s*

+ | froaa(wa — 1) + 511a2 + Bas(wa — 1) )Yt2 + (5223@3 + Baoz(wa — 041)2 + Braza(we — al)) YnQS*
+ [ Brzaa(ws — a1) — Braaa(1 + ay) + 2B1103 — 2B2a(1 + 1) (wa — a1)>XnYn
+ | 2811303 + 2B203(1 + 1) (w2 — ay) + Brazaz(we — a1) — Biazas(l + 041)>Xnyn8*

+ <513042 — Pas(1 + 041)>Xn8* + (513% + Bag(wa — a1)>Yn3*>)-

Hereafter, we determine the center manifold W,(0,0) of (3.4) about (0,0) in a small neighborhood of s*. By center
manifold theorem [3], there exists a center manifold W, (0,0) that can be represented as follows:

We(0,0,0){(Xn.,Yn,s*) €RY 1Y, = h(X,,5%) = a1 X7 + asXns* +azs™ +O((| X | +|s* )*)}, (3.5)

where O((] X,, | + | s* |)?) is a function with order at least three in their variables (X, s*), Moreover, the center
manifold must satisfy

h( — X + F1( X, h( Xy, 87)),8%), s*> — wah(X,, s*) — G1 (X, h(X,, s¥),s*) = 0. (3.6)

By equating (3.6]), we obtain

1+« 1
ay = 712 —apas(l+ar) + o103 + ase(1+a1)’ | + —— (= Breao(1+ a1) + friad + Boz(1+ a1)? ) ),
as(1 —w3) 1—wj
-1
ag = ——— Qg — 1+a1) ),
2= At wa)? <ﬁ13 2 — B23( 1))
asz = 0.

Therefore, we consider the map which is the map (3.4) restricted to the center manifold W, (0, 0)

f=Xp1= X+ 1 Xps™ + X2+ 3 X2s™ +ca X, (3.7)
where )
- ~ Bas(l
c1 T (3136@ Bas( +a1)),
cg = et ( —appas(l+ ;) + ap103 + o (1 + oz1)2> S ( — Braaa(l+ o) + B1105 + Baa(1 + 041)2)7
az(1 4 wy) wy +1
Wo —
c3 = <ﬂ1302 — Ba3(1 + al)) {21 (Oélzoéz(wz —ay) — apaa(l + 1) + 201103 — 2092 (1 + o) (wa — 041))
1 + wo 042(1 +WQ)
1
— ———— | Brzaa(ws — a1) — Braaa(l+ a1) + 2B1105 — 2Baa(1 + ay) (w2 — Oé1)>}
1 “FWQ)
1 2 2 1 +a1
— a5+ 1+« — as(l+a — — aje0n(l +
1T o (5113 3+ Bazs( 1)” = Brazoa( 1)) <a2(1w2)(1+w2)( 12002 1)

1

Fonod +on(+ o) gy
%2

( — Biaaa(l + aq) + Br1a3 + Paa(1 + C¥1)2>> <5130l2 + Baz (w2 — 041))
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1

=] ( — Braaa(1+ o) + Brias + Baa(1+ a1)2)>

1+
Cyq <M ( - a12a2(1 —+ O[l) —+ allag -+ 0122(1 -+ Oé1)2> -+

Wy — (1
{042(1+w2)

1
1+w

(a12a2(w2 —a1) —apas(l+aq) + 2041101§>

; <ﬁ12a2(w2 —a1) — Braas(l + a1) + 2B1105 — 2B22 (1 + a1)(wa — 011))} .

In order for the map (3.7) to undergo a period-doubling bifurcation, we require that the following discriminatory
quantities are non zero [3}, 9]

([ PF 10f &f

01 = <8Xn38* + 2 95" 52Xn> (0,007 0,
1 an 1 an

7 (68)&'5’; G axg>2> 0,07 0-

After calculating we get
01 =C1,

02 = Cq4 + cg.
From the above analysis, we have the following theorem.

Theorem 3.1. If 05 # 0, and o1 # 0 the system (1.3))-([L.4]) undergoes period-doubling bifurcation about the interior
fixed point C(x*,y*) when s* varies in a small neighborhood of O(0,0). Moreover, if g5 > 0 ( resp o2 < 0 ), then the
period 2 points that bifurcate from C(x*,y*) are stable (unstable).

4 Neimark-Sacker bifurcation

Neimark-Sacker bifurcation occurs when the roots of (2.14) at C(z*,y*) are pair of complex conjugate numbers
w1, Wy given by

trJ(C) £iy/4det J(C) — (trJ(C))2

2 )
with ¢rJ(C) and det J(C') are given in (2.15)and(2.16) respectively. Let Neimark-Sacker bifurcation occurs for s =3,
we construct then the following set

(4.1)

w12 =

NSB = {(r,K,m,A,B,h,S) > Oa 5§ =5, |t7’J(C) |< 2}

If we vary s in the neighborhood of s = 5 keeping other parameters in NSB constant, then the interior equilibrium
C(z*,y*) undergoes Neimark-Sacker bifurcation. Taking a perturbation s* (s* < 1) of the parameter s in the
neighborhood of s = § in the system ([1.3)-(1.4)), we have

T, MTy, _ N

Lp4+1 =Tp €XP (T(l - ?) - (A T I‘n)(B n xn)yn> — f(CCmym S )7 (423’)
* h n *

e = (550 = ) = g ) (4.20)

Let v, =z, — ™ , w, = y, — y*, Then from (4.2)) we obtain

(Un—|—x*)) 3 m(v, + x*)
K (A+ (v +2%))(B + (v + 2%))

Upt1 =(vp + x7) exp (r(l - (wp, + y*)) -z, (4.3a)

wnsr =G + ) (5731 = AT ) (4.30)
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Expanding the above in Taylor series at (v, w,) = (0,0) considering the terms up to second order, we have

Ung1 = 01Uy + QoWy, + Q1oUn Wy + a1102 + agow? + O((| Un | + | wy |)2)7 (4.4a)

W1 = B1vn + Bawn + Bravnwn + f110], + Saaw), + O((| Un |+ [ wn |)2>7 (4.4b)

where the expression of «;, o;j, B, Bij, for 4,5 = 1,2 are given in (3.3). The roots of the characteristic equation
associated with the linearized map (4.4) at (vy, wy) = (0,0) are given by

trJ(s*) £i\/ddet J(s*) — (tr(s*))2

wy,2(s%) = 5 , (4.5)
and
lwi2(s™)| = +/det J(s*).
when s* = 0, we have
det(J(0)) =1 ,and d';";f' s —0# 0. (4.6)

Additionally, we required that when s* =0, wi’, # 1, m = 1,2,3,4. This is equivalent to trJ(0) # —2,—1,1,2.
Let n = Re(w1,2), and £ = Im(w; 2),. The model (4.4) is written as

Unpr | _ [ 01 ao vn ) o ( Qu2vnwn + vy + azwy @7)
Wn+1 B B2 Wn, Bravp Wy + B1105 + Poswl ) ’
Let consider the invertible matric P associated to the eigenvalue w2 =1+ i&

o () 0
P<77—a1 —f)'

Using the following translation

The system (4.7]) becomes

) (3 )+ (&) s

< Xn+1 )
Yn+1

1 1 1
F(Xn,Yy) = o <a12a2(77 —ay) + ay1aj + az(n — a1)2>X3 . (auazf +2(n — 041)04225) XY, + ;2&22§2Y7127

I
N
|
md
= |

xS

with

and

G(Xn,Yn) = (Tl — <a12a2(77 — 1) + 1105 + ag(n — 041)2) - 1<512a2(77 —ay) + B1105 + Baa(n — 0é1)2>>XT2L

§an i
_ _ 2 2
- (nfa;ll (a12a2§ +2(n - 041)%25) - ;(/@120425 +2(n - al)ﬁmf))XnYn + ((77 ?;);mf - ﬁ22£ )Ynz

In order for (4.8) to undergo a Neimark Sacker bifurcation, it is mandatory that the following discriminatory
quantity, (i.e, M # 0 [9]),

1 — 2w)w? 1

M= §R{(l_W)Plleo} —5lpn 2 — 1 poz [* +R(@p21), (4.9)
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where
1
P02 WX, — Fyy, —2Gx,y, +i(Gx,x, — Gy,v, +2Fx,v,)]0,0)

1 1 — o
K (0412062 —aq) + 0411045 + ag(n — 041)2) - 072042252 + <77 ! (04120625 +2(n— 041)0422§>

o Eao

(1204254-2 —(11)/6225))) ((ngag (0412042(7]—041)+Oé11045+0422(77—041)2>

— p ) €2 2
(512042 — o) + P13 + Baz(n — 041)2>> - ((77 5;)2 28 _ 6226 > - ;<a12a2€+ 2(n — 041)0225))}

1 .
P11 :Z[FX,LX" + Fy,yv, +i(Gx,x, + Gy,v,)l0,0

1 1 1
=5 [( <0¢12042(77 —o)+ 0¢1104§ + agn(n — 041)2> + 0122§2>
(65) (%)
. —
+ l<<n£a ! <6V12042(7) — 1) + a1103 + as(n — 041)2>
2

—ag)agé® 522§2>)}

- 1<512012(770¢1) +51104§+522(770¢1)2>) + ((77 7 ¢

§

1 .
P20 Zg[Fann - Fy,y, +2Gx,v, +i(Gx,x, — Gv,v, — 2Fx,v,)]0,0)

1 1 1 —«
= [(a <0‘12042(77 — 1) + 1103 + aga(n — a1)2> - 072042252 - (77 ! <a12a2§ +2(n— al)a225>

4 2 Eap

- % <512042f +2(n— 041)5225))) + i<<n€_ajl <a12a2(n —oq) + 0411043 + o (n — 041)2>
- 2(512042(77 —a1)+ 511043 + Baa(n — (11)2>) + (ng—ajl <a12a2§ +2(n— 041)0225)

- ;(5120425 +2(n— 041)5225)) + O% (amazf +2(n — 041)%25)” )

pa1 = —[Fx,x,x, + Fx,v,v, + Gx,x,v, + Gv,v,v, +i(Gx,x,x, + Gx,v,v, — Fx,x,v, = Fy,v,v,)]©0,0 =0.

16

Based on the above analysis, we state the following result on Neimark-Sacker bifurcation:

Theorem 4.1. If the condition holds and M defined in is nonzero, then the system — experiences
Neimark-Sacker bifurcation at the interior fixed point C(x*, y*) when s* varies near the origin and (r, K,m, A, B,h) €
NSB. Moreover, if M < 0 (M > 0) then an attracting (respectively repelling) invariant closed curve bifurcates from
the fixed point C'(z*,y*) for s > 3 (respectively, s < 3 ).

5 Chaos Control

Controlling chaos attempts to stabilize an unstable orbit in a given system. To do this, we apply small perturbations
to the values of certain parameters known as bifurcation parameters. In this paper, we employ The state feedback
method [6]. We consider the following controlled system associated to (1.3)-(|1.4)

T may,
Tpal = Tp €XP (r(l — ?) — At2.)(B ern)yn) (5.1)
hyn
Uit = Yo €XP ( 31— xy)) — P, (5.2)

P, = u(‘rn - LL'*) + v(yn - y*)7 (53)
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where P, is the feedback control force with feedback gains u and v. Here, the value of s belongs to some chaotic
regions and noted 5. The Jacobian matrix of (5.1)-(5.2)) evaluated at C(z*,y*) is

oo myAB—a®) \ a?m
T(z,y) = 1—2 (K ": (A+m)2(B+m)2) (A+z)(B+z) ) (5.4)
nou 1-5—v

The corresponding characteristic equation of (5.4]) is

AQ—(1—x(;—rgﬁﬂ3§;f2y>+l—§—v)x+ (5.5)

(o5 (Amj’f;ﬁ;fj)z)) (1-5-0) <A+§>Z79+x><;‘“> -

Let Ay , Ay are the eigenvalues of Eq.(5.4), then the sum and the product of their roots are given by

T my(AB — 1?)
K (A4 2)?)(B+x)?

(ol R ) e () e

Lemma 5.1. The system ([5.1))-(5.2)) is locally asymptotically stable if all the eigenvalues of the characteristic Eq.((5.4])
lie in an open unit disc.

Proof . The marginal stability lines can be obtained from the conditions A\; = +1 , A Ay = 1. For the conditions

Mg =1, Eq.(5.7) gives

L : (AJF;:;ZZWU + <1 - x(l’; + (Amf(xf)l:?B—ix-z))?))U =1+ (5.8)

T my(AB — x?) R ’ms
l—z| =+ 1-5)+ .
K (A4 2)?(B+x)? h(A+x)(B+x)
The Eq. (5.8) expresses the first condition for marginal stability. For \; = 1, the Eq. (5.6]) yields

2 2 _ 52
Lzzmu_x(u my(AB — 27) )v:gx(u my(AB — a7) )+ (5.9)

(A+2z)(B +x) K " (A+2)2(B+x)? K " (A+2)%(B+x)?
x2ms
h(A+z)(B+x)’
similarly for \; = —1, it gives
’m r my(AB — ?)
ECRR O Ty S (2 “"”(K * (A+x)2(B+x)2>)” = (5.10)

r my(AB — x?) R r’ms
2—2( =+ 2—5|+ .
K (A4 2)?(B+x)? h(A+z)(B + x)
The lines Ly, Lo, L3 give the conditions for the eigenvalues to have absolute value less than one. The triangular
region bounded by these lines accommodates stable eigenvalues. [J
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6 Numerical Simulations

To illustrate the theoretical results numerically, we choose the parameters as (r, K, m, A, B, s, h) = (1.5,2,3,0.5,0.4,2.1,2)
and the initial value (x(0),y(0)) = (0.5, 0.4) for the system ((1.3)-(1.4). The interior equilibrium C(0.51,1.02) is locally
asymptotically stable, see Fig.(a).

1.6 1.6
1.4 1.4
121 1.2

> 1 > 1
08 08
06 06
04 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 04 ‘ ‘ ‘ ‘ ‘ ‘ ‘
o1 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 1
X X
(a): s =1.60 (b): s = 1.70
16 18
161 E PO Y L
141 i e,
. ..
141 e
12t
12t
. -
> 1 > 1 PR .
M
.‘
08F
. i
08
i LT
06f I,‘ .}:. .
06 : e
04ry %
EN
04 L L L L L L L L 02 . L L L L L
01 02 03 04 05 06 07 08 09 1 0 0.2 04 06 08 12 14
X X
(c): s =1.78 (d): s =26

Figure 1: Phase portrait of system (1.3)-(1.4) for different values of s.

As shown in Fig., by increasing the value of s from s = 1.6 to s = 1.88, the system — starts to lose

its asymptotic stability. The existence of an attracting closed invariant curve implies that the discrete-time model
— undergoes Neimark-Sacker bifurcation about C'(0.51,1.02), the value M = —0.114392726 < 0 in the
Theorem proves theoretically the existence of an attracting Neimark-Sacker bifurcation. The full chaos induced
by Neimark-Sacker bifurcation is drawn in Fig.(1])(d).
For exploring complexity in the system —, the bifurcation diagram related to the period-doubling bifurcation
of z and y is plotted with respect to s and m in Figs. (2))(a) and(3[)(c). The chaotic behavior is justified by considering
maximal Lyapunov exponent diagram given in Figs.(2])(b) andd). Biologically chaotic behavior means the species
may go to extinction.
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y
0.4 [
-0.6
1414515155 1.6 165 1.7 1.75 1.8 12 13 14 15 16 1.7 18
S S
(a) (b)
Figure 2: Bifurcation diagrams of y w.r.t s and the corresponding maximal Lyapunov exponent (MLe)
o 0.4 [
. 0 V -
1.6 ¢ 02t
X MLe 0
1.4 ¢ -0.4 ¢
-0.6
1.2
-0.8
0 02040608 1 121416 1.8 0 02040608 1 121416 1.8
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Figure 3: Bifurcation diagrams of  w.r.t m and the corresponding maximal Lyapunov exponent (MLe)

We use the SFC method to control the chaos produced by the Neimark-Sacker bifurcation. We choose the following
parameter values: (r, K,m, A, B,h) = (1.5,2,3,0.4,0.5,2) and 5§ = 1.88 see ([I)(d). Using lemma (5.1)), one gets the
following lines of marginal stability for the system (5.1)-(5.2)).

{y : 1.4460711638u + 0.5165229356v = —0.028887365, (6.1)
ly :1.4460711638u — 0.483477064v = 2.702588328, (6.2)
l3:1.4460711638u + 1.5165229356v = 1.2556342. (6.3)

The system ([5.1)-(5.2) is stable in the domain bounded by the three lines (6.1)), (6.2) and (6.3). Now, in order to
stabilize the interior fixed point C, we consider the controlling force P, = u(x, — 1.02) + v(y, — 0.51) with feedback

gains u = 1, v = —1.6, chosen, from the domain defined in Fig.(4]). For these values, bifurcation diagrams are drawn
for z and y with respect to the feedback gain w and v in Figs. () and @, respectively.
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2L
1.5
X 1t
0.5
0
-2
u u
Figure 5: Bifurcation diagram for the controlled system — at v = —2.7 and u € (—2,0.5);
1.3 07
1.2 ¢ 06 r
14 | 05 F
X y
T 04 |
09 | 03 |
0.8 t 02 |
09 1 11 12 13 14 15 1.6 09 1 11 12 13 14 15 16
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7 Conclusion

Figure 6: Bifurcation diagram for the controlled system (5.1)-(5.2) at v =1 and v € (0,2)

In this paper, we have explored the dynamical properties of a discrete-time, two-dimensional prey-predator system.
The proposed system exhibits various bifurcations of codimension 1, including Neimark-Sacker and period-doubling
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bifurcations, as the values of the parameters vary, as stated in Theorems [3.1] and [£.] We observed the rich dynamics
of the model when the intrinsic growth rate of the predator varies near 2:22] and 2:23] The Lyapunov exponents are
numerically computed to further confirm the complexity of the dynamical behavior. The SFC method is implemented
to achieve the asymptotic stability of the interior equilibrium, and numerical simulations give evidence of the suc-
cessful implementation of the chaos control method. Bifurcation and chaos have always been regarded as unfavorable
phenomena in biology. Because of their unpredictability, they can cause populations to run a higher risk of extinction,
so they are harmful for the breeding of biological populations. Therefore, the use of the chaos control method makes
prey and predator maintain stable dynamical behavior.
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