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Abstract

In this brief note, we present a fixed point theorem in the Fréchet space. Also we study a new family of measures
of noncompactness on C∞(R+) and Cn(R+) and we investigate the construction of compact-integral operators on
C∞(R+) and Cn(R+). Finally, we provide various examples which illustrate the existence of solutions for a wide
variety of functional integral-differential equations.
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1 Introduction

Many of the operators that arise in the study of integral equations are compact. Some compactness results in this
direction are often vital in existencing proving differential, integral and functional integral equations (see [1, 3, 7, 8, 12],
for example).

The degree of noncompactness of a set is measured by means of functions called measures of noncompactness. The
first measure of noncompactness, the function α, was defined and studied by Kuratowski [17] for purely topological
considerations. In 1955, Darbo [11] used this measure to generalize Banachś contraction mapping principle for so-called
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condensing operators. Measures of noncompactness are very useful tools in characterizing compact operators as well
as in differential and integral equations (see for instance [1, 4, 5, 6, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22] and the
references therein).

Now, we organize this paper as follows. In Section 2, we present a fixed point theorem in the Fréchet space. In
Section 3, we study a new family of measures of noncompactness on C∞(R+) and C

n(R+). In Section 4, we investigate
the construction of compact-integral operators on C∞(R+) and Cn(R+). Finally, in Section 5, we provide various
examples which show how the previous sections can be useful for proving the existence of solutions for a wide variety
of the functional integral-differential equations. A deep approach in this work as a motivating factor for the readers
is to see how the operator H, in Theorem 4.6 and Theorem 4.7, is not compact on space C∞(R+), but it can be
λk,m-condensing on the space C∞(R+) (see Example 5.2) and also how the functional integral-differential equation in
Example 5.1 has at least one solution which belongs to the space C∞(R+), but it has no solution in the space Cn(R+)
for any n ∈ N.

2 Notation and auxiliary facts

Definition 2.1. Let M be a class of subsets of a Fréchet space E and NE indicates the subfamily consisting of all
relatively compact sets, we say M is an admissible set if X ∈ M, then Conv(X), X ∈ M.

Definition 2.2. Suppose that M be an admissible subset of a Fréchet space E and I be an index set, we say that
a family of functions {µα}α∈I , where µα : M −→ R+, is said to be a family of measures of noncompactness in E if it
satisfies the following conditions:

1◦ The family ker{µα} = {X ∈ M : µα(X) = 0 for α ∈ I} is nonempty and ker{µα} ⊆ NE .

2◦ X ⊂ Y =⇒ µα(X) ≤ µα(Y ) for α ∈ I.

3◦ µα(X) = µα(X) for α ∈ I.

4◦ µα(ConvX) = µα(X) for α ∈ I.

5◦ µα(λX + (1− λ)Y ) ≤ λµα(X) + (1− λ)µα(Y ) for λ ∈ [0, 1] and α ∈ I.

6◦ If {Xn} is a sequence of closed sets from M such that Xk+1 ⊂ Xk for k = 1, 2, · · · and if lim
k→∞

µα(Xk) = 0 for

α ∈ I then X∞ = ∩∞
k=1Xk ̸= ∅.

We say that a family of measure of noncompactness is regular if it additionally satisfies the following conditions:

7◦ µα(X ∪ Y ) = max{µα(X), µα(Y )} for α ∈ I.

8◦ µα(X + Y ) ≤ µα(X) + µα(Y ) for α ∈ I.

9◦ µα(λX) = |λ|µα(X) for λ ∈ R and α ∈ I.

10◦ ker{µα} = NE .

Definition 2.3. Let M be an admissible subset of a Fréchet space E. An operator (not necessarily linear) F : E −→
E is compact if the closure of F (Y ) is compact whenever Y ∈ M.

Theorem 2.4. (Tychonoff fixed point theorem [2]). Let E be a Hausdorff locally convex linear topological space, C
be a convex subset of E and F : C −→ E be a continuous mapping such that

F (C) ⊆ A ⊆ C,

with A compact. Then F has at least one fixed point.
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Theorem 2.5. Let Ω be a nonempty and convex subset of a Fréchet space X, M an admissible set such that Ω ∈ M
and µα is a family of regular measures of noncompactness in E and let F : Ω −→ E be a continuous operator such
that

µα(F (X)) ≤ φα(µα(X)), (2.1)

and F (X) ∈ M for any nonempty subset X ∈ M where φα : R+ −→ R+ are given functions such that φα are
continuous on R+, φα(0) = 0 and φα(t) < t for t > 0. Assume that H : Ω −→ E is a compact and continuous
operator. Define T (x) := F (x) +H(x) and assume that T (x) ∈ Ω for all x ∈ Ω. Then T has a fixed point in Ω.

Proof . We define a sequence {Ωn} by letting Ω0 = Ω and Ωn = Conv(TΩn−1), n ≥ 1. Then we have TΩ0 = TΩ ⊆
Ω = Ω0,Ω1 = Conv(TΩ0) ⊆ Ω = Ω0, and by continuing this process we obtain

Ω0 ⊇ Ω1 ⊇ Ω2 ⊇ · · · .

If there exists an integer N ≥ 0 such that µα(ΩN ) = 0 for all α ∈ I, then ΩN is relatively compact. Thus, Tychonoff
fixed point theorem implies that T has a fixed point. Next, we assume that µα(Ωn) > 0 for n = 1, 2, . . . and for all
α ∈ I. Since µα(Ωn) is a positive decreasing sequence of real numbers, there is rα ≥ 0 such that µα(Ωn) −→ rα as
n −→ ∞. On the other hand, in view of (2.1) and since H is a compact operator and µα is a regular measure of
noncompactness, we obtain

lim sup
n−→∞

µα(Ωn+1) ≤ lim sup
n−→∞

φα(µα(Ωn)).

This show that rα ≤ φα(rα). Consequently rα = 0. Hence we deduce that µα(Ωn) −→ 0 as n −→ ∞ for all α ∈ I.

Since the sequence (Ωn) are nested, in view of axiom (6◦) of Definition 2.2 we derive that the set Ω∞ =

∞⋂
n=1

Ωn is

nonempty, closed and convex subset of the set Ω. Moreover, the set Ω∞ is invariant under the operator T and belongs
to Ker{µα}. Now, Tychonoff fixed point theorem implies that T has a fixed point in the set Ω. □

3 Construction of the family of measures of noncompactness on C∞(R+) and Cn(R+)

Let n ∈ N, we denote by Cn(R+) the space of all real functions which are n times continuously differentiable on

R+ and C∞(R+) =
⋂
k∈N

Ck(R+) with the familly of seminorm

|x|k,m = sup{|x(k
′)(t)| : t ∈ [0,m], 0 ≤ k′ ≤ k},

for k,m ∈ N. The space C∞(R+) is a Fréchet space furnished with the distance

d(x, y) = sup
{ 1

2km
min{1, |x− y|k,m} : k,m ∈ N

}
.

A nonempty subset X ⊂ C∞(R+) is said to be bounded if

|X|k,m := sup{|x|k,m : x ∈ X} <∞,

for all k,m ∈ N. Further, let MC∞ be the family of all nonempty and bounded subsets of C∞(R+). Obviously, MC∞

is an admissible set and NC∞ ⊂ MC∞ .

Let us recall two facts which are crucial in our considerations.

(A) A sequence {xn} is convergent to x in C∞(R+) if and only if {xn} is convergent to x in Ck[0,m] for all k,m ∈ N.

(B) A subset F ⊂ C∞(R+) is totally bounded (relatively compact) if and only if F (k) = {f (k) : f ∈ F} are bounded
and equicontinuous on [0,m] for all k,m ∈ N.

Now, we recall the definition of quantities which will be used in our further investigations. Let X be a bounded
subset of the space C∞(R+) and k,m ∈ N. Fix x ∈ X and ε > 0. Let us denote

ωk,m(x, ε) = sup{|x(k)(t1)− x(k)(t2)| : t1, t2 ∈ [0,m], |t1 − t2| < ε}.
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Further,
ωk,m(X, ε) = sup{ωk,m(x, ε) : x ∈ X},

ωk,m(X) = lim
ε→0

ωk,m(X, ε). (3.1)

Theorem 3.1. The family of mappings {ωk,m}, where ωk,m : MC∞ −→ R+ given by (3.1) defines a regular family of
measure of noncompactness on C∞(R+). Also, ωk,m1(X) ≤ ωk,m2(X) for all X ∈ MC∞ , k ∈ N and m1 ≤ m2.

Proof . The property ker{ωk,m} = NC∞ is a simple consequence of (B). The conditions 2◦, 3◦, 4◦ and 5◦ are
obvious. Now, we prove that 6◦ holds. Suppose that {Xn} is a sequence of closed and nonempty sets of MC∞ such
that Xn+1 ⊂ Xn for n = 1, 2, · · · , and lim

n→∞
ωk,m(Xn) = 0 for all k,m ∈ N. Now for any n ∈ N, take xn ∈ Xn and set

G = {xn}.
Claim: ωk,m(G) = 0 for all k,m ∈ N.
Let ε > 0 and k,m ∈ N be fixed, since lim

n→∞
ωk,m(Xn) = 0, then there exists N ∈ N such that ωk,m(XN ) < ε.

Hence, we can find δ1 > 0 such that
ωk,m(XN , δ1) < ε.

Thus, we have ωk,m(xn, δ1) < ε for all n ≥ N . Also, we know that the set {x1, x2, . . . , xN−1} is compact, hence
there exists δ2 > 0 such that ωk,m(xn, δ2) < ε for all 1 ≤ n ≤ N . Therefore, we have

ωk,m(xn, δ) < ε.

If we define δ < min{δ1, δ2}, then we obtain
ωk,m(G, δ) < ε,

and ωk,m(G) = 0 for all k,m ∈ N. This claim shows that there exist a subsequence {xnj
} and x0 ∈ C∞(R+) such that

xnj
→ x0. Since xn ∈ Xn, Xn+1 ⊂ Xn and Xn is closed for all n ∈ N, we get

x0 ∈
∞⋂

n=1

Xn = X∞,

which completes the proof of 6◦. It remains to prove 7◦, 8◦ and 9◦. Suppose that X,Y ∈ MC∞ . Since for all ε > 0,
λ > 0 and k,m > 0, we have

ωk,m(X ∪ Y, ε) ≤ max{ωk,m(X, ε), ωk,m(Y, ε)},
ωk,m(X + Y, ε) ≤ ωk,m(X, ε) + ωk,m(Y, ε),

ωk,m(λX, ε) ≤ λωk,m(X, ε),

then the hypotheses 7◦, 8◦ and 9◦ are satisfied. Moreover, if m1 ≤ m2, then for all X ∈ MC∞ and ε > 0 we have

{|x(k)(t1)− x(k)(t2)| : t1, t2 ∈ [0,m1], |t1 − t2| < ε}

⊂ {|x(k)(t1)− x(k)(t2)| : t1, t2 ∈ [0,m2], |t1 − t2| < ε},
and we obtain ωk,m1(X) ≤ ωk,m2(X). □

On the other hand, the space Cn(R+) is a Fréchet space furnished with the family of semi-norms

|x|k,m = sup{|x(k)(t)| : t ∈ [0,m]},

for m ∈ N and 0 ≤ k ≤ n and the distance

d(x, y) = sup
{ 1

2km
min{1, |x− y|k,m} : m ∈ N, 0 ≤ k ≤ n

}
.

A nonempty subset X ⊂ Cn(R+) is said to be bounded if

sup{|x|k,m : x ∈ X} <∞,

for all k,m ∈ N. Further, let MCn be the family of all nonempty and bounded subsets of Cn(R+). Obviously, MCn

is an admissible set and NCn ⊂ MCn . Let us recall two facts which are crucial in our considerations.
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(A) A sequence {xl} is convergent to x in Cn(R+) if and only if {xl} is convergent to x in Ck[0,m] for all m ∈ N
and 0 ≤ k ≤ n.

(B) A subset F ⊂ Cn(R+) is totally bounded (relatively compact) if and only if F (k) = {f (k) : f ∈ F} are bounded
and equicontinuous on [0,m] for all m ∈ N and 0 ≤ k ≤ n.

Let X be a bounded subset of the space Cn(R+) and k,m ∈ N. Fix x ∈ X and ε > 0. Then, the condition (3.1)
also holds on Cn(R+).

Theorem 3.2. The family of mappings {ωk,m}, where ωk,m : MCn −→ R+ given by (3.1) defines a regular family of
measure of noncompactness on Cn(R+). Also, ωk,m1(X) ≤ ωk,m2(X) for all X ∈ MCn , 0 ≤ k ≤ n and m1 ≤ m2.

4 Compact-integral operators on C∞(R+) and Cn(R+)

In this section, we obtain main results about the compactness and continuity of Volterra and Fredholm integral
operators.

Theorem 4.1. Suppose that the following conditions hold true.

(i) T : C∞(R+) −→ C(R+) be a continuous operator and there exists a continuous function a : R+ −→ R+ such
that

|Tx(t)| ≤ a(t),

for all t ∈ R+ and x ∈ C∞(R+).

(ii) k : R+ × R+ −→ R is a continuous function and has a continuous derivative of order n with respect to the first

argument such that n ∈ N. Also, functions s −→ a(s)k(t, s) and s −→ a(s)∂
ik

∂ti (t, s) are integrable over R+ for
any fixed t ∈ R+ and i ∈ N.

Then H : C∞(R+) −→ C∞(R+) defined by

Hx(t) =

∫ ∞

0

k(t, s)Tx(s)ds, (4.1)

is a compact and continuous operator and
|Hx|n,m ≤ αn,m,

where αn,m = sup{
∫∞
0

∂ik
∂ti (t, s)a(s)ds : t ∈ [0,m], 0 ≤ i ≤ n}.

Remark 4.2. Note that according to the hypotheses (ii) of Theorem 4.1, we have

lim
T−→∞

∫ ∞

T

∂nk

∂tn
(t, s)a(s)ds = 0,

for any fixed t ∈ R+ and n ∈ N. Since [0,m] is compact interval, so we get

lim
T−→∞

sup{
∫ ∞

T

∂ik

∂ti
(t, s)a(s)ds : t ∈ [0,m], 0 ≤ i ≤ n} = 0,

for all m,n ∈ N.

Proof . In view of the imposed assumptions, the function Hx(t) is continuous on R+ for any x ∈ C∞(R+). Also, for
any t ∈ R+ and n ∈ N we have

dn(Hx)

dtn
(t) =

∫ ∞

0

∂nk

∂tn
(t, s)Tx(s)ds,

and Hx has continuous derivative of order n ∈ N. Now, we show that the map H is continuous. To do this, let us fix
ε > 0, m ∈ N and take arbitrary x, y ∈ C∞(R+) with d(x, y) < ε. Then, for t ∈ [0,m], we have∣∣∣Hx(t)−Hy(t)

∣∣∣ =
∣∣∣ ∫ ∞

0

k(t, s)
[
Tx(s)− Ty(s)

]
ds
∣∣∣.
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This result together condition (ii) imply that there exists b > 0 such that

sup
{∫ ∞

b

a(s)|k(t, s)|ds : t ∈ [0,m]
}
< ε,

and we obtain∣∣∣Hx(t)−Hy(t)
∣∣∣ ≤

∣∣∣ ∫ b

0

k(t, s)
[
Tx(s)− Ty(s)

]
ds
∣∣∣+ 2

∣∣∣ ∫ ∞

b

k(t, s)a(s)ds
∣∣∣

≤ bK0
b,mω

b
{rj}(T, ε) + 2ε,

and similarly∣∣∣dn(Hx)
dtn

(t)− dn(Hy)

dtn
(t)

∣∣∣ ≤ bKn
b,mω

b
{rj}(T, ε) + 2ε,

for all n ∈ N, where

rj = sup{|x(j)(t)| : t ∈ [0,m]}+ 2jmε, j ∈ N,
K0

b,m = sup{|k(t, s)| : t ∈ [0,m], s ∈ [0, b]},

Kn
b,m = sup{|∂

nk

∂tn
(t, s)| : t ∈ [0,m], s ∈ [0, b]},

ωb
{rj}(T, ε) = sup{|Tx(s)− Ty(s)| : s ∈ [0, b], x, y ∈ [−rj , rj ], d(x, y) ≤ ε}.

By using the continuity of T on the compact set
∏
j∈N

[−rj , rj ] (Tychonoff’s theorem implies that
∏
j∈N

[−rj , rj ] is a

compact space), we have ωb
{rj}(T, ε) −→ 0 as ε −→ 0. Moreover, in view of assumption (ii), we can choose b in such

a way that the last term of the above estimate is sufficiently small. Thus, H is a continuous operator on C∞(R+).
Now, let X be a nonempty and bounded subset of C∞(R+), n,m ∈ N and assume that ε > 0 is an arbitrary constant.
Then for x ∈ X and t1, t2 ∈ [0,m], with |t2 − t1| ≤ ε, we have∣∣∣dn(Hx)

dtn
(t2)−

dn(Hx)

dtn
(t1)

∣∣∣ =∣∣∣ ∫ ∞

0

∂nk

∂tn
(t2, s)Tx(s)ds−

∫ ∞

0

∂nk

∂tn
(t1, s)Tx(s)ds

∣∣∣.
Combining this result with condition (ii) imply that there exists b > 0 such that

sup
{∫ ∞

b

a(s)|k(t, s)|ds : t ∈ [0,m]
}
< ε,

and we obtain

∣∣∣dn(Hx)
dtn

(t2)−
dn(Hx)

dtn
(t1)

∣∣∣ ≤∣∣∣ ∫ b

0
[
∂nk

∂tn
(t2, s)−

∂nk

∂tn
(t1, s)]a(s)ds

∣∣∣+ |
∫ ∞

b

∂nk

∂tn
(t1, s)a(s)ds|+ |

∫ ∞

b

∂nk

∂tn
(t2, s)a(s)ds|

≤
∫ b

0
a(s)dsωn,m(k, ε) + 2ε,

(4.2)

where

ωn,m(k, ε) = sup{|∂
nk

∂tn
(t2, s)−

∂nk

∂tn
(t1, s)| : t1, t2 ∈ [0,m], s ∈ [0, b], |t2 − t1| ≤ ε}.

Since x was an arbitrary element of X in (4.2), we obtain

ωn,m(H(X), ε) ≤
∫ b

0

a(s)dsωn,m(k, ε) + 2ε.
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On the other hand, by using the uniform continuity of k on the compact set [0,m]× [0, b], we have ωn,m(k, ε) −→ 0
as ε −→ 0. Therefore, we obtain

ωn,m(H(X)) = 0.

Also, the hypothesis (ii) ensures that |Hx|k,m ≤ αk,m for all k,m ∈ N. □

Corollary 4.3. Let h : R+×Rω −→ R be continuous and there exists a continuous function a : R+ −→ R+ such that
|h(t, (xj)∞j=1)| ≤ a(t), for all t ∈ R+ and (xj)

∞
j=1 ∈ (R)ω. Let the hypotheses (ii) of Theorem 4.1 is satisfied. Then

H : C∞(R+) −→ C∞(R+) defined by

Hx(t) =

∫ ∞

0

k(t, s)h(s, x(s), x′(s), x′′(s), . . .)ds,

is compact and continuous operator and |Hx|k,m ≤ αk,m, where αk,m satisfies in Theorem 4.1.

Proof . It is enough to defined Tx(t) = h(t, x(t), x′(t), x′′(t), . . .) in Theorem 4.1. □

Theorem 4.4. Let T : Cn(R+) −→ C(R+) be continuous and hypotheses (i) and (ii) of Theorem 4.1 are satisfied.
Then H : Cn(R+) −→ Cn(R+) defined by (4.1) is compact and continuous operator and |Hx|k,m ≤ αk,m, where αk,m

satisfies in Theorem 4.1.

Proof . The proof is similar to the proof of Theorem 4.1. □

Corollary 4.5. Let h : R+ × Rn+1 −→ R be continuous and there exists a continuous function a : R+ −→ R+ such
that |h(t, (xj)n+1

j=1 )| ≤ a(t), for all t ∈ R+ and (xj)
n+1
j=1 ∈ Rn+1. Let the hypotheses (ii) of Theorem 4.1 is satisfied.

Then H : C∞(R+) −→ C∞(R+) defined by

Hx(t) =

∫ ∞

0

k(t, s)h(s, x(s), x′(s), x′′(s), . . . , x(n)(s))ds,

is a compact and continuous operator and |Hx|k,m ≤ αk,m, where αk,m satisfies in Theorem 4.1.

Proof . It is enough to defined Tx(t) = h(t, x(t), x′(t), x′′(t), . . . , x(n)(t)). □

Theorem 4.6. Let β : R+ −→ R+ be continuous such that β(t) ≤ t for all t ∈ R+ and assume that g : R+ × R+ ×
Rn+1 −→ R is continuous and has a continuous derivative of order n with respect to the first argument such that{

sup{|g(t, t, x0, x1, . . . , xn)| : t ∈ R+, xi ∈ R} = 0,

sup{|∂
kg

∂tk
(t, t, x0, x1, . . . , xn)| : t ∈ R+, xi ∈ R} = 0, 1 ≤ k ≤ n

Also, there exist nondecreasing and continuous functions ψ : R+ −→ R+ and Mi : R+ −→ R+ (0 ≤ i ≤ n) such
that 

sup{
∣∣∣∣ ∫ t

0

∂kg

∂tk

(
t, s, x0(β(s)), x1(β(s)), . . . , xn(β(s))

)
ds

∣∣∣∣ : t ∈ [0,m], |xi|k,m ≤ r} ≤Mk(m)ψ(r),

sup{
∣∣∣∣ ∫ t

0
g
(
t, s, x0(β(s)), x1(β(s)), . . . , xn(β(s))

)
ds

∣∣∣∣ : t ∈ [0,m], |xi|k,m ≤ r} ≤M0(m)ψ(r),

for any r ∈ R+ and m ∈ N. Then H : Cn(R+) −→ Cn(R+) defined by

Hx(t) =

∫ t

0

g(t, s, x(β(s)), x′(β(s)), x′′(β(s)), . . . , x(n)(β(s)))ds,

is a compact and continuous operator and |Hx|k,m ≤Mk(m)ψ(|x|n,m).

Proof . In view of the imposed assumptions, the operator Hx(t) is continuous on R+ for any x ∈ Cn(R+). Also, for
any t ∈ R+ and 1 ≤ k ≤ n we have

dk(Hx)

dtk
(t) =

∂k−1g

∂tk−1

(
t, t, x(β(t)), x′(β(t)), x′′(β(t)), . . . , x(n)(β(t))

)
+

∫ t

0

∂kg

∂tk
(
t, s, x(β(s)), x′(β(s)), x′′(β(s)), . . . , x(n)(β(s))

)
ds,
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and Hx has continuous derivative of order 1 ≤ k ≤ n. Now, we show that the map H is continuous. (For this we only
need to H is a continuous operator of Cn[0,m] into itself). For this, take x ∈ Cn(R+), m ∈ N and ε > 0 arbitrarily,
and consider y ∈ Cn(R+) with max0≤k≤n |x− y|k,m < ε and t ∈ [0,m]. Then we have

|Hx(t)−Hy(t)| ≤
∫ t

0

|g(t, s, x(s), x′(s), . . . , x(n)(s))− g(t, s, y(s), y′(s), . . . , y(n)(s))|ds

≤ mζm(ε),

where
a = max

0≤k≤n
|x− y|k,m + ε,

ζm(ε) = sup{
∣∣g(t, s, x0, x1, . . . , xn)− g(t, s, y0, y1, . . . , yn)

∣∣ : t, s ∈ [0,m], xi, yi ∈ [−a, a], |xi − yi| ≤ ε}.

By similar argument, we have

|d
k(Hx)

dtk
(t)− dk(Hy)

dtk
(t)| ≤ mθm(ε),

where

θm(ε) = sup{
∣∣∂kg
∂tk

(t, s, x0, . . . , xn)−
∂kg

∂tk
(t, s, y0, . . . , yn)

∣∣ : t, s ∈ [0,m], xi, yi ∈ [−a, a], |xi − yi| ≤ ε, 0 ≤ k ≤ n}.

Thus, we get

|Hx−Hy|k,m ≤ mθm(ε),

and since g is continuous on [0,m]× [0,m]× [−a, a]n+1, we have θ(ε) −→ 0 as ε −→ 0 for all m ∈ N and k = 0, 1, . . . , n.
Thus H is a continuous operator from Cn(R+) into Cn(R+). Now, let X be a nonempty and bounded subset of
Cn(R+), m ∈ N, 0 ≤ k ≤ n and assume that ε > 0 is an arbitrary constant. Then for x ∈ X and t1, t2 ∈ [0,m], with
|t2 − t1| ≤ ε we have∣∣∣dk(Hx)

dtk
(t2)−

dk(Hx)

dtk
(t1)

∣∣∣ ≤∣∣∣ ∫ t2

0

∂kg

∂tk
(t2, s, x(s), x

′(s), x′′(s), . . . , x(n)(s))ds

−
∫ t1

0

∂kg

∂tk
(t1, s, x(s), x

′(s), x′′(s), . . . , x(n)(s))ds
∣∣∣

≤|
∫ t2

t1

∂kg

∂tk
(t2, s, x(s), x

′(s), x′′(s), . . . , x(n)(s))ds|

+

∫ t1

0

|∂
kg

∂tk
(t2, s, x(s), x

′(s), x′′(s), . . . , x(n)(s))

− ∂kg

∂tk
(t1, s, x(s), x

′(s), x′′(s), . . . , x(n)(s))|ds

≤εUk,m +mωk,m(g, ε),

(4.3)

where

Uk,m = sup{|d
kg

dtk
(t, s, x0, x1, . . . , xn)| : t, s ∈ [0,m], |xi| ≤ |X|n,m, 0 ≤ k ≤ n},

ωk,m(g, ε) = sup{|d
kg

dtk
(t2, s, x0, x1, . . . , xn)−

dkg

dtk
(t1, s, x0, x1, . . . , xn)| : t1, t2 ∈ [0,m],

s ∈ [0,m], |t2 − t1| ≤ ε, |xi| ≤ |X|n,m}.

Since x was an arbitrary element of X in (4.3), we obtain

ωk,m(H(X), ε) ≤ εUk,m +mωk,m(g, ε).
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On the other hand, by using the uniform continuity of g on the compact set [0,m] × [0,m] × [−a, a]n+1, we have
ωk,m(g, ε) −→ 0 as ε −→ 0. Therefore, we obtain

ωk,m(H(X)) = 0,

for all m ∈ N and 0 ≤ k ≤ n. Also, the hypothesis (ii) ensures that |Hx|k,m ≤ Mkψ(|x|n,m) for all m ∈ N and
0 ≤ k ≤ n. □

Theorem 4.7. Assume that g : R+ × R+ × R −→ R is continuous and has a continuous derivative of order n with
respect to the first argument such that{

sup{|g(t, t, x)| : t ∈ R+, x ∈ R} = 0,

sup{|∂
kg

∂tk
(t, t, x)| : t ∈ R+, x ∈ R} = 0, 1 ≤ k ≤ n,

and there exist nondecreasing and continuous functions ψ : R+ −→ R+ and Mi : R+ −→ R+ (0 ≤ i ≤ n) such that
sup{

∣∣∣∣ ∫ t

0

∂kg

∂tk
(
t, s, x(s)

)
ds

∣∣∣∣ : t ∈ [0,m], |x|k,m ≤ r} ≤Mk(m)ψ(r),

sup{
∣∣∣∣ ∫ t

0

g
(
t, s, x(s)

)
ds

∣∣∣∣ : t ∈ [0,m], |x|k,m ≤ r} ≤M0(m)ψ(r),

for any r ∈ R+ and m ∈ N. Also, T : Cn(R+) −→ C(R+) is a continuous operator and there exists a positive
increasing sequence {βm} such that for any x ∈ Cn(R+) and m ∈ N we have

|Tx|k,m ≤ βm|x|k,m.

Then H : Cn(R+) −→ Cn(R+) defined by

Hx(t) =

∫ t

0

g(t, s, Tx(s))ds,

is a compact and continuous operator and |Hx|k,m ≤Mk(m)ψ(βm|x|k,m).

Proof . In view of the imposed assumptions, the operator Hx(t) is continuous on R+ for any x ∈ Cn(R+). Also, for
any t ∈ R+ and 1 ≤ k ≤ n we have

dk(Hx)

dtk
(t) =

∂k−1g

∂tk−1

(
t, t, Tx(t)

)
+

∫ t

0

∂kg

∂tk
(
t, s, Tx(s)

)
ds,

and Hx has continuous derivative of order 1 ≤ k ≤ n. Now, we show that the map H is continuous. (For this we only
need to H is a continuous operator of Cn[0,m] into itself). For this, take x ∈ Cn(R+), m ∈ N and ε > 0 arbitrarily,
and consider y ∈ Cn(R+) with max0≤k≤n |x− y|k,m < ε and t ∈ [0,m]. Then we have

|Hx(t)−Hy(t)| ≤
∫ t

0

|g
(
t, s, Tx(s)

)
− g

(
t, s, Ty(s)

)
|ds

≤ mζm(ε),

where
a = max

0≤k≤n
|x− y|k,m + ε,

ζm(ε) = sup{
∣∣g(t, s, x)− g(t, s, y)

∣∣ : t, s ∈ [0,m], x, y ∈ [−a, a], |x− y| ≤ ε}.
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By similar argument, we have

|d
k(Hx)

dtk
(t)− dk(Hy)

dtk
(t)| ≤ (m+ 1)θm(ε),

where

θm(ε) = sup{
∣∣∂kg
∂tk

(t, s, x)− ∂kg

∂tk
(t, s, y)

∣∣ : t, s ∈ [0,m], xi, yi ∈ [−a, a], |xi − yi| ≤ ε, 0 ≤ k ≤ n}.

Thus, we get

|Hx−Hy|k,m ≤ (m+ 1)θm(ε),

and since g and T are continuous on [0,m]× [0,m]× [−a, a] and Cn[0,m], we have θ(ε) −→ 0 as ε −→ 0 for all m ∈ N
and k = 0, 1, . . . , n. Thus H is a continuous operator from Cn(R+) into Cn(R+). Now, let X be a nonempty and
bounded subset of Cn(R+), m ∈ N, 0 ≤ k ≤ n and assume that ε > 0 is an arbitrary constant. Then for x ∈ X and
t1, t2 ∈ [0,m], with |t2 − t1| ≤ ε we have

∣∣∣dk(Hx)
dtk

(t2)−
dk(Hx)

dtk
(t1)

∣∣∣ ≤∣∣∣ ∫ t2

0

∂kg

∂tk
(
t2, s, Tx(s)

)
ds−

∫ t1

0

∂kg

∂tk
(
t1, s, Tx(s)

)
ds
∣∣∣

≤|
∫ t2

t1

∂kg

∂tk
(
t2, s, Tx(s)

)
ds|+

∫ t1

0

|∂
kg

∂tk
(
t2, s, Tx(s)

)
− ∂kg

∂tk
(
t1, s, Tx(s)

)
|ds

≤εUk,m +mωk,m(g, ε),

(4.4)

where

Uk,m = sup{|d
kg

dtk
(t, s, x)| : t, s ∈ [0,m], |x| ≤ |T (X)|n,m, 0 ≤ k ≤ n},

ωk,m(g, ε) = sup{|d
kg

dtk
(t2, s, x)−

dkg

dtk
(t1, s, x)| : t1, t2, s ∈ [0,m], |t2 − t1| ≤ ε, |x| ≤ |T (X)|n,m}.

Since x was an arbitrary element of X in (4.4), we obtain

ωk,m(H(X), ε) ≤ εUk,m +mωk,m(g, ε).

On the other hand, by using the uniform continuity of g on the compact set [0,m] × [0,m] × [−a, a], we have
ωk,m(g, ε) −→ 0 as ε −→ 0. Therefore, we obtain

ωk,m(H(X)) = 0,

for all m ∈ N and 0 ≤ k ≤ n. Also, the hypothesis (ii) ensures that |Hx|k,m ≤ Mkψ(|x|n,m) for all m ∈ N and
0 ≤ k ≤ n. □

Remark 4.8. The operator H, in Theorem 4.6 and Theorem 4.7, is not compact in the space C∞(R+), but it can be
λk,m-condensing in the space C∞(R+) (see example 5.2).

5 Application and Examples

In this section, as an application of the above section, we prove the existence of solutions for some integral equations
in C∞(R+) and C

n(R+).

Example 5.1. Consider the following functional integral-differential equation

x(t) =
1

2
x(
t

2
) +

∞∑
n=0

∫ ∞

0

e−(1+t)s(−s)nx(n)(s)
1 + (x(n)(s))2

ds. (5.1)
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Now, we define

Fx(t) :=
1

2
x(
t

2
) and Hx(t) :=

∫ ∞

0

e−(1+t)s
∞∑

n=0

(−s)nx(n)(s)
1 + (x(n)(s))2

ds.

If we define

k(t, s) = e−(1+t)s, h(t, (xj)
∞
j=1) =

∞∑
n=0

(−t)nxn
1 + (xn)2

and a(t) =
1

1 + s
,

then, by Corollary 4.3, H is a compact operator. Also, F is a λk,m-condensing if λk,m = 1
2k+1 . On the other hand, to

find Ω such that T (x) = F (x) +H(x) ∈ Ω for all x ∈ Ω. For this, it is enough to define

Ω = {x ∈ C∞(R+) : |x|k,m ≤ rk,m},

such that rk,m > 2k+1

2k+1−1
. Therefore, by Theorem 2.5, T has a fixed point and the functional differential-integral

equation (5.1) has at least one solution which belongs to the space C∞(R+), but it has no solution in the space
Cn(R+) for any n ∈ N.

Example 5.2. Consider the following functional integro-differential equation

y(t) =

∫ t
2

0

(
t

2
− s)e−

t
2 y′′(s)ds+

∫ ∞

0

e−v cos(vt) ln(2 + cos vy(v))dv. (5.2)

Now, we define

Fx(t) :=

∫ t
2

0

(
t

2
− s)e−

t
2 y′′(s)ds and Hx(t) :=

∫ ∞

0

e−v cos(vt) ln(2 + cos vy(v))dv.

If we define

k(t, s) = e−s cos(st), Tx(t) = ln(2 + cos tx(t)) and a(t) = 1,

then, by Theorem 4.1, H is a compact operator. On the other hand,

dn(Fx)

dtn
(t) =

1

2n

(∫ t
2

0

(
(−1)n(

t

2
− s)e−

t
2 + (−1)n+1ne−

t
2
)
y′′(s)ds+

i=n∑
i=2

(n

i

)
(−1)ie−

t
2 x(n)(

t

2
)
)
.

Thus, F is a λk,m-condensing if λk,m = 0 for k = 0, 1 and λk,m < 1− 1+n
2n . To find Ω such that L(x) = F (x)+H(x) ∈

Ω for all x ∈ Ω. For this, it is enough to define

Ω = {x ∈ C∞(R+) : |x|k,m ≤ rk,m},

such that rk,m > 2n ln 3
7
8+

n
2

. Therefore, by Theorem 2.5, L has a fixed point and the functional differential-integral

equation (5.2) has at least one solution which belongs to the space C∞(R+) . Also, for each n ≥ 2, it has a solution
in space Cn(R+).

Example 5.3. Consider the following functional integro-differential equation

(
x(t)− 1

t+ 2
x(ln t+ 2)

)′′′

=
(
cos t ln(|x(t)|+ 1) +

x′′(t) arctan(t2 + 1)

(x′′(t))2 + 1
+

√
|
∫ t

0

x(s)ds|+ 1− 1
)
, (5.3)

with the initial condition of the form

x(0) = x′(0) = x′′(0) = 0. (5.4)
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The differential equation (5.3) with the initial condition (5.4) has at least one solution in the space C3(R+) if and
only if a nonlinear differential-integral equation

x(t) =
1

t+ 2
x(ln t+ 2) +

1

2

∫ t

0
(t− s)2

(
cos s ln(|x(s)|+ 1) +

x′′(s) arctan(s2)

(x′′(s))2 + 1
+

√
|
∫ s

0
x(v)dv|+ 1− 1

)
ds,

has at least one solution in the space C3(R+). Now, we define

Fx(t) :=
1

t+ 2
x(ln t+ 2),

H1x(t) :=
1

2

∫ t

0

(t− s)2
(
cos s ln(|x(s)|+ 1) +

x′′(s) arctan(s2)

(x′′(s))2 + 1

)
ds

H2x(t) =
1

2

∫ t

0

(t− s)2(

√
|
∫ s

0

x(v)dv|+ 1− 1)ds.

If we define

g(t, s, x0, x1, x2) =
(t− s)2

2
(cos s ln(|x0|+ 1) +

x2 arctan(s
2)

(x2)2 + 1
), and β(t) = t.

Then, by Theorem 4.6, H1 is a compact operator. Also, if we define

g(t, s, x) =
(t− s)2

2
(
√

|x|+ 1− 1), and Tx(t) =

∫ t

0

x(s)ds,

then, by Theorem 4.7, H2 is a compact operator. Thus, H1 + H2 is a compact operator. To find Ω such that
L(x) = F (x) +H1(x) +H2(x) ∈ Ω for all x ∈ Ω, it is enough to define

Ω = {x ∈ C3(R+) : |x|k,m ≤ rk,m},

such that m3

6 (ln(rk,m + 1) + π
6 +

√
rk,m + 1 − 1) ≤ rk,m for k = 0, 1, 2, 3 and m ∈ N. Therefore, by Theorem 2.5, L

has a fixed point and the functional differential-integral equation (5.3) has at least one solution which belongs to the
space C3(R+).
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