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Abstract

Optimal control theory is a branch of mathematics. It is developed to find optimal ways to control a dynamic system.
In 1957, R.Bellman applied dynamic programming to solve optimal control of discrete-time systems. His procedure
resulted in closed-loop, generally nonlinear, and feedback schemes. Optimal control problems which will be tackled
involve the minimization of a cost function subject to constraints on the state vector and the control. Lagrange
multipliers provide a method of converting a constrained minimization problem into an unconstrained minimization
problem of higher order. The necessary condition for optimality can be obtained as the solution of the unconstrained
optimization problem of the Lagrange function and the bordered Hessian matrix is used for the second-derivative test.
A spectral method for solving optimal control problems is presented. The method is based on Bernoulli polynomials
approximation. By using the Bernoulli operational matrix of integration and the Lagrangian function, stochastic
optimal control is transformed into an optimisation problem, where the unknown Bernoulli coefficients are determined
by using Newton’s iterative method. The convergence analysis of the proposed method is given. The simulation
results based on the Monte-Carlo technique prove the performance of the proposed method. Some error estimations
are provided and illustrative examples are also included to demonstrate the efficiency and applicability of the proposed
method.

Keywords: Bernoulli polynomials, open loop, feedback, optimal control problem, operational matrix, Brownian
motion
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1 Introduction

A range of application areas, including epidemiology, chemistry, biology, mechanics, economics, physics,... etc are
modelled by stochastic differential equations [12, 33, 36]. So the study of this type of problem is very useful and there
is increasing demand for studying the behavior of the number of dynamic systems which depend on more sources
such as Gaussian white noise. Control optimal theory is a long field in which a lot of researchers are interested in
solving various aspects. The aim is to find the control variable which minimizes a given performance index, where
all the given constraints are satisfied [4, 10, 39]. Stochastic optimal control is one of the main sub-fields in control
theory, it is the subject of study in industry and in cyber security systems in computer science [34]. When the system
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randomness is bounded and the bound is known the problem of finding a suitable control can be dealt with robust
control or while the bound of uncertainty is known with the probability distribution of the noise is available, the
stochastic framework can be used [13, 41, 46]. One of the ideas to convert stochastic optimal control to deterministic
one is by using the Fokker equation which models the time evolution of probability density of the corresponding
Fokker-Planck stochastic process. Several researches have been used to solve stochastic optimal control problems
where the control function is only dependent on time, it is state-dependent as well as time-dependent [1, 2]. The
use of spectral techniques for solving optimal control problems is one of the interesting research areas. One of the
advantages of using this technique is its exponential convergence and it is an efficient approximation method for
integration in the cost function. Also, it is one of the top methods for solving differential and partial differential
equations. The stochastic optimal theory is a combination of optimal control theory and probability theory in which
the indeterminate factors or objective is indeterminacy. There are few kinds of literature which focus on continuous
time uncertain stochastic optimal control [1, 2, 18, 38]. In recent years there has been increasing activity in providing
some numerical schemes based on orthogonal polynomials or the so-called spectral or pseudo-spectral methods. Many
different techniques based on different basis functions such as block pulse functions [26, 27, 32], hat basis functions
[28], Bernoulli polynomials [3, 5, 29, 43], have been used for solving deterministic and stochastic integral equations.
In [44], the authors proposed a stochastic linear quadratic (LQ) optimal control problem with an expectation-type
linear equality constraint on the terminal state. The constrained stochastic LQ problem is solved completely by the
Lagrangian duality theory. A kind of stochastic optimal control problems where the cost functional is defined by
a symmetric function where the authors applied the theories of BSDEs and PDEs to find the explicit form of the
optimal control [8]. A recent work to characterize the optimal feedback controls for general linear quadratic optimal
control problem of a stochastic evolution equation with random coefficients is given by Qi Lü et al [24]. Another
improved iterative algorithm based on a Newton iterative algorithm, which is used to research the stochastic linear
quadratic optimal tracking (SLQT) control for stochastic continuous-time systems is introduced in [42]. In [15], the
authors represent necessary and sufficient conditions for the solvability of discrete time, mean-field, and stochastic
linear-quadratic optimal control problems. Secondly, the optimal control within a class of linear feedback controls is
investigated using a matrix dynamical optimization method.

In this study, main concern is focused on numerically solving optimal control problem by using spectral method.
So, we concentrate on the following optimisation problem.

Let (Ω,F ,Ft, P ) be a filtrated probability space and B(t), t ≥ 0 is a Brownian motion Ft -measurable. Consider
the following controlled stochastic Volterra integral equation

xu(t) = x0 +

∫ t

0

a(xu(s), u(s))ds+

∫ t

0

σ(xu(s), u(s))dB(s), x(0) = x0, (1.1)

where u(t) is the optimal control process belonging to the space of admissible controls denoted U which is a closed
and convex subset of R and x(t) is the behavior of dynamic system. The optimal control problem system consists in
finding a control u(t) that minimizes the performance function

J(u) = E

[∫ T

0

c(xu(t), u(t))ds+ g(xu(T ))

]
, (1.2)

where a : R × U 7→ R and c, σ : R × U 7→ R are Ft-predictable and g : R 7→ R is FT -measurable, and T is a positive
constant.
In [19], The authors introduced a set of sufficient conditions for the existence of unique optimal control and its
corresponding Hamiltonian system [19] and also in [31].

2 Bernoulli polynomials

Bernoulli polynomials have been used by researchers to solve various problems for instant see [5, 3, 37].

Definition 2.1. Bernoulli polynomials of degree i noted by Bi(t) satisfy the equation [23]

i∑
j=0

(
i+ 1

j

)
Bj(t) = (i+ 1)ti, i = 0, 1, 2, · · · (2.1)
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The first six Bernoulli polynomials are

B0(t) = 1,

B1(t) = t− 1

2
,

B2(t) = t2 − t+
1

6
,

B3(t) = t3 − 3

2
t2 +

1

2
t,

B4(t) = t4 − 2t3 + t2 − 1

30
,

B5(t) = t5 − 5

2
t4 +

5

3
t3 − 1

6
t.

Bernoulli polynomials satisfy the following properties [11]:

� B′
i(t) = iBi−1(t), i ≥ 1,

� Bi(t+ 1)−Bi(t) = iti−1, i ≥ 1,

� Bi(t) =
∑i

k=0

(
i
k

)
Bk(0)t

i−k, i ≥ 1,

�

∫ 1

0
Bi(t)dt = 0, i ≥ 1,

�

∫ 1

0
Bi(t)Bj(t)dt = (−1)i+j i!j!

(i+j)!Bi+j(0).

Let B(x) = [B0(t), B1(t), · · ·Bm(t)]T be the Bernoulli vector, then we can write

B(t) = DTm(t), (2.2)

such that

D =



(
0
0

)
B0(0) 0 0 · · · 0(

1
1

)
B1(0)

(
0
1

)
B0(0) 0 · · · 0(

2
2

)
B2(0)

(
2
1

)
B1(0)

(
2
0

)
B0(0) · · · 0

...
...

...
. . .

...(
m
m

)
Bm(0)

(
m

m−1

)
Bm−1(0)

(
m

m−2

)
Bm−2(0) · · ·

(
m
0

)
B0(0)

 ,

and
Tm(x) = [1, t, t2, · · · , tm]. (2.3)

2.1 Function approximation

Let L2([0, 1]) be the space of square integrable functions with respect to Lebesgue mesure on [0,1], each function
f ∈ L2([0, 1]) can be expanded by using Bernoulli polynomials as follows

f(t) =

m∑
i=0

fiBi(t) = FTB(t), (2.4)

where F = (f1, f2, · · · , fm)T . The coefficients f1, f2, · · · , fm can be determined by

fm =
1

m!

∫ 1

0

f (m)(t)dt. (2.5)

The coefficients fm decrease as follows

fm ≤ Fm

m!
,
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where Fm is the maximum of f (m)(t) in the interval [0,1]. Assume that k(x, t) ∈ L2([0, 1]×[0, 1]), so we can approximate
k(x, t) as follows

k(x, t) ≃
m∑
i=0

m∑
j=0

kijBi(x)Bj(t) = BT (x)KB(t), (2.6)

where K = [kij ]
m
j,i=0 is an (m+ 1)× (m+ 1) matrix, and can be calculated by the following formula

kij =
1

i!j!

∫ 1

0

∫ 1

0

∂i+jk(x, t)

∂xi∂tj
dxdt, i, j = 0, 1, ...,m, (2.7)

the coefficients kij decrease as follows

kij ≤
K ′

i,j

i!j!
,

where K ′
i,j is the maximum of

∂i+jk(x,t)
∂xi∂tj

in the unit square [0, 1]× [0, 1].

Proof . See [37] □

Theorem 2.2. Let g(t) be an enough smooth function in the interval [0, 1] andQm[g](t) is the approximate polynomial
of g(t) in terms of Bernoulli polynomials. Then we have

g(t) = Qm[g](t) +Rm[g](t), t ∈ [0, 1], (2.8)

Qm[g](t) =

∫ 1

0

g(t) +
m∑
j=0

Bj(t)

j!
(gm−1(1)− gm−1(0)),

Rm[g](t) =
−1

m!

∫ 1

0

B∗
m(x− t)g(m)(t)dt,

where B∗
m(x) = Bm(x− [x]).

Theorem 2.3. Suppose g(t) ∈ C∞(0, 1), then the error between g(t) and its approximate polynomial Qm by Bernoulli
polynomials is given by

E(g) = ||g(t)−Qm[g](t)||∞ ≤ 1

m!
BmGm, (2.9)

where Bm and Gm are respectively the maximum values of Bm(t) and g(m)(t) in the interval [0, 1]. By the same
technique we can see that if K(x, t) is approximated by Bernoulli series then, we have

E(K) = ||K(x, t)−Qm[K](x, t)||∞ ≤ 1

(m!)2
B2

mKm,m, (2.10)

where

Bm = max
t∈[0,1]

Bm(t) and Km,m = max
(x,t)∈[0,1]×[0,1]

∂2m

∂xm∂tm
K(x, t).

2.2 Deterministic Bernoulli operational matrix

We have ∫ t

0

Bm(s)ds =
1

m+ 1
(Bm+1(t)−Bm+1(0)), m ≥ 0. (2.11)

So, we can approximate the integration of the vector B(t) as∫ t

0

B(s)ds ≃ PB(t), (2.12)

where P is the (m+ 1)× (m+ 1) Bernoulli operational matrix of integration given by

P =


−B1(0) 1 0 · · · 0
−B2(0)

2 0 1
2 · · · 0

...
...

...
. . . 0

−Bm(0)
m 0 0 · · · 1

m
−Bm+1(0)

m+1 0 0 · · · 0


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From Eqs.(2.12) and (2.4), we can approximate the integral of function f(t) by∫ t

0

f(s)ds =

∫ t

0

FTB(s)ds ≃ FTPB(t). (2.13)

2.3 Stochastic Bernoulli operational matrix

We can approximate the integration of the vector B(t) as∫ t

0

B(s)dB(s) ≃ PsB(t), (2.14)

where Ps is the (m+1)× (m+1) stochastic Bernoulli operational matrix of integration given by Ps = DDsD
−1 where

Ds =


B(0.5) 0 0 · · · 0

0 5
6
B(0.5)− 2

3
B(0.25) 0 · · · 0

...
...

...
. . . 0

0 0 0 · · · (1− m
6
)B(0.5)− m

3×2m−2B(0.25)

 .

3 Stochastic linear quadratic (LQ) optimal control

The linear quadratic gaussian control optimal problem with quadratic cost is the well known solvable stochastic
control in continuous time. One of the fondamental issues in control theory is to design feedback controls which are
particulary important in practical applications. An optimal linear feedback control is determined by the solution of a
stochastic Riccati equation. The main of introducing Riccati equations is the study of deterministic control problem
which is an problem well know [35, 45]. For the stochastic case there is also equivalence between the existence of
control optimal and the solvability of backward stochastic Riccati equations in a suitable case [6, 7, 9, 21, 22, 25, 40].

Let (Ω,F ,Ft, P ) be a complete filtrated probability space and {B(t), t ∈ [0, T ]} is a standard Brownian motion,
where {Ft}t∈[0,T ] is the natural filtration generated by Bt. Let consider the stochastic optimal control

J = min
us∈H

E

∫ T

0

(A(s)x2s + C(s)u2s)ds+ STx
2
T , (3.1)

subjet the stochastic differential equation{
dxs = (a(s)xs + b(s)us)ds+ (c(s)xs + d(s)us)dBs

x(0) = x0

where, ut is the control variable, xt represents the state variable, T represent the terminal time and a(t), b(t), c(t)
and d(t) : [0, T ] 7→ R are a given continuous functions. The stochastic linear quadratic problem is well posed if
J(t, xt) > −∞, ∀(t, xt) ∈ [0, T ]× R.

Theorem 3.1. The control u∗t is the optimal control of equation (3.1) if and only if

u∗t =
−b(t)k(t)− c(t)d(t)k(t)

2c(t) + d2(t)k(t)
, (3.2)

where k(t) satisfy the following Riccati equation{
dk(t)
dt = −2A(t)− [2a(t) + c2(t)]k(t) + [b(t)k(t)+c(t)d(t)k(t)]2

2c(t)+d2(t)k(t)

k(T ) = 2ST and 2c(t) + d2(t)k(t) > 0.
(3.3)

The optimal value J(t, xt) is given by

J(t, xt) =
1

2
k(t)x2t .
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If we assume that the state of the system is generated by a linear noisy system

ẋ = Ax(t) +Bu(t) + B(t), (3.4)

with B(t) is a Brownian motion, J is the performance index function defined by

J = E

{∫ T

0

(Qx2(s) +Ru2(s))ds+QTx(T )
2

}
, (3.5)

where the expectation operation is taken with respect to the statistics of B(t), t ≥ 0.

Theorem 3.2. [16] The optimal control solution which minimize the performance function

min
u(t)=F (t)x(t)

E

{∫ T

0

(Qx2(s) +RF 2x2(s))ds+QTx(T )
2

}
, (3.6)

is given by
ufb(t) = −R−1Bk(t)x(t), (3.7)

where k(t) is the solution of the following Riccati differential equation:

k̇(t) = −2Ak(t) + Sk2(t)−Qk(t) = QT , S = R−1B2. (3.8)

The space of control feedback admissible is given by:

Γfb = {u(t) /u(t) = F (t)x(t)}, (3.9)

where F(.) is a piecewise continuous function.

4 Bernoulli operational matrices for solving optimal control problem

The success of spectral methods in practical computations has led to an increasing interest in their theoretical and
numerical aspects, so there is a challenge in developing accurate numerical methods by using spectral methods. In this
paper, we use Bernoulli operational matrix to get approximate solution of stochastic optimal control. Let consider the
stochastic Volterra control problem given by equation (1.1). We approximate x(t) and u(t) as follows

x(t) ≃ xm(t) =

m∑
i=0

xiBi(t) = XTB(t), (4.1)

u(t) ≃ um(t) =

m∑
i=0

uiBi(t) = UTB(t), (4.2)

where X = (x0, x1, ..., xm)T and U = (u0, u1, ..., um)T . For a given function P (x(t), u(t)) ∈ R such that

P (x(t), u(t)) =

l′∑
i=0

l∑
j=0

Pijfi(x(t))wj(u(t)), (4.3)

we approximate fi(x(t)) and wj(u(t)) as follows

fi(x(t)) =

m∑
j=0

fijBj(t) = FT
i B(t), (4.4)

wi(x(t)) =

m∑
j=0

wijBj(t) =WT
i B(t), (4.5)
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where Fi = (Fi,0, Fi,1, ..., Fi,m)T and Wi = (Wi,0,Wi,1, ...,Wi,m)T , now we suppose that the functions a and σ in
equation (1.1) are written in the forme

a(x(t), u(t)) =

l′∑
i=0

l∑
j=0

aijf
1
i (x(t))w

1
j (u(t)), (4.6)

σ(x(t), u(t)) =

k′∑
i=0

k∑
j=0

σijf
2
i (x(t))w

2
j (u(t)). (4.7)

replacing Eqs. (4.1),(4.2),(4.6) and (4.7) in (1.1), we get

XTB(t) ≃ x0 +

∫ t

0

l′∑
i=0

l∑
j=0

aijf
1
i (x(s))w

1
j (u(s))ds+

∫ t

0

k′∑
i=0

k∑
j=0

σijf
2
i (x(s))w

2
j (u(s))dB(s)

(2.2)
≃ x0 +

l′∑
i=0

l∑
j=0

aij(F
1
i )

T

(∫ t

0

(DTm(s))(DTm(s))T ds

)
W 1

j

+

k′∑
i=0

k∑
j=0

σij(F
2
i )

T

(∫ t

0

(DTm(s))(DTm(s))T dB(s)
)
W 2

j

≃ x0 +

l′∑
i=0

l∑
j=0

aij(F
1
i )

TD

(∫ t

0

Tm(s)TT
m(s)ds

)
DTW 1

j

+

k′∑
i=0

k∑
j=0

σij(F
2
i )

TD

(∫ t

0

Tm(s)TT
m(s)dB(s)

)
DTW 2

j . (4.8)

Now, we calculate the integrals in Eqs.(4.8), we have

Tm(s)TT
m(s) =


1 s s2 · · · sm

s s2 s3 · · · sm+1

...
...

...
. . .

...
sm sm+1 sm+2 · · · s2m

 .

Let

H =

∫ t

0

Tm(s)TT
m(s)ds =


t t2

2
t3

3 · · · tm+1

m+1
t2

2
t3

3
t4

4 · · · tm+2

m+2
...

...
...

. . .
...

tm+1

m+1
tm+2

m+2
tm+3

m+3 · · · t2m+1

2m+1

 ,

and

L =

∫ t

0

Tm(s)TT
m(s)dB(s),

so

L =


∫ t

0
1dB(s)

∫ t

0
sdB(s)

∫ t

0
s2dB(s) · · ·

∫ t

0
smdB(s)∫ t

0
sdB(s)

∫ t

0
s2dB(s)

∫ t

0
s3dB(s) · · ·

∫ t

0
sm+1dB(s)

...
...

...
. . .

...∫ t

0
smdB(s)

∫ t

0
sm+1dB(s)

∫ t

0
sm+2dB(s) · · ·

∫ t

0
s2mdB(s)

 .

Each components in the matrix L is written as follows∫ t

0

sidB(s), i = 0, ..., 2m, (4.9)
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we use the integration by parts, we get∫ t

0

sidB(s) = tiB(t)− i

∫ t

0

si−1B(s)ds︸ ︷︷ ︸
(I)

. (4.10)

Applying Simpson quadrature to calculate the integral (I), we get∫ t

0

si−1B(s)ds = t

6

[
4

(
t

2

)i−1

B
(
t

2

)
+ ti−1B(t),

]
(4.11)

so we have ∫ t

0

sidB(s) =

{
B(t) if i = 0,

tiB(t)− i t6

[
4
(
t
2

)i−1 B
(
t
2

)
+ ti−1B(t)

]
if i = 1, ..., 2m,

(4.12)

by replacing the values of deterministic and stochastic integrals in Eq.(4.8), we get

XTB(t)− x0 −
l′∑

i=0

l∑
j=0

aij(F
1
i )

TDHDTW 1
j −

k′∑
i=0

k∑
j=0

σij(F
2
i )

TDLDTW 2
j = 0. (4.13)

Eq.(4.13) can be written as follows
ψ(X,U) = 0, (4.14)

where

ψ(X,U) = XTB(t)− x0 −
l′∑

i=0

l∑
j=0

aij(F
1
i )

TDHDTW 1
j −

k′∑
i=0

k∑
j=0

σij(F
2
i )

TDLDTW 2
j .

Now for the performance index function, we suppose that the function c in equation (1.2 ) is written in the forme

c(x(t), u(t)) =

n′∑
i=0

n∑
j=0

cijf
3
i (x(t))w

3
j (u(t)), (4.15)

so we have

J(u) = E

∫ T

0

n′∑
i=0

n∑
j=0

cijf
3
i (x(s))w

3
j (u(s))ds+ g(xu(T ))


= E

 n′∑
i=0

n∑
j=0

cij(F
3
i )

T

(∫ T

0

B(t)BT (t)

)
W 3

j +RTB(t)


= E

 n′∑
i=0

n∑
j=0

cij(F
3
i )

TD

(∫ T

0

Tm(t)TT
m(t)

)
DTW 3

j +RTB(t)


= E

 n′∑
i=0

n∑
j=0

cij(F
3
i )

TDH ′DTW 3
j +RTB(t)

 (4.16)

where R is the Bernoulli coefficients vector defined as

R = [g(xu(T )), 0, 0, · · · , 0]T ,

and

H ′ =

∫ T

0

Tm(s)TT
m(s)ds =


T T 2

2
T 3

3 · · · Tm+1

m+1
T 2

2
T 3

3
T 4

4 · · · Tm+2

m+2
...

...
...

. . .
...

Tm+1

m+1
Tm+2

m+2
Tm+3

m+3 · · · T 2m+1

2m+1

 .
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In the next section, we solve the optimisation problem (4.8)-(4.16). For each sample trajectory of Brownian motion,
we have

J i(X,U) =

∫ T

0

ci(t,XTB(t), UTB(t))dt+ gi(XTB(T )), i = 1, 2, ..., r1. (4.17)

Now, we can approximate the expectation function (1.2) by the sample average

Jr1(X,U) =
1

r1

r1∑
i=1

J i(X,U). (4.18)

For simplicity, we use J(X,U) rather to J i(X,U). The optimization problem is as follows{
minimize J(X,U),
s.t. ψ(X,U) = 0,

(4.19)

If (X̌, Ǔ) is a solution of (4.19), then there exist a vector λ = (λ0, λ1, ..., λm)T such that

L(X,U, λ) = J(X,U) + λTψ(X,U), (4.20)

where L(X,U, λ) is the Lagrangian function, and λ is the Lagrange multiplier associated with the constraint of equality.
So to find the solution of problem (4.19), we have to solve the following system

∂L

∂Xi
(X,U, λ) = 0,

∂L

∂Ui
(X,U, λ) = 0, i = 0, 1, · · ·m, (4.21)

∂L

∂λi
(X,U, λ) = 0,

5 Convergence and error estimation

Let (a,b) be a bounded interval of the real line, and M ≥ 0 be an integer, we define HM (a, b) to be the vector
space of the functions v ∈ L2(a, b) such that all the distributional derivatives of v of order up to M can be represented
by functions in L2 that is

HM (a, b) =

{
v ∈ L2(a, b), for 0 ≤ k ≤M,

dkv

dxk
∈ L2(a, b)

}
, (5.1)

HM (a, b) is endowed with the inner product

(u, v)M =

M∑
k=0

∫ b

a

dku

dxk
(x)

dkv

dxk
(x)dx.

The space HM (a, b) is an Hilbert space with the associated norm

∥v∥HM (a,b) =

(
M∑
k=0

∥∥∥∥dkvdxk

∥∥∥∥2
L2(a,b)

) 1
2

.

Properties

1. The space HM (a, b) verify
HM+1(a, b) ⊂ HM (a, b) ⊂ H0(a, b) = L2(a, b),

2. CM (a, b) ⊂ HM (a, b),

3. C∞(a, b) dense in HM (a, b).
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Remark 5.1. For the bound error of the approximation of solution, it is suitable to introduce the semi norm

|v|HM,m(a,b) =

 M∑
j=min(m,M)

∥∥∥v(j)∥∥∥2
L2(a,b)

 1
2

.

We can see that
|v|HM,m(a,b) ≤ ∥v∥HM (a,b),

and if M ≤ m, we have
|v|HM,m(a,b) = ∥vM∥L2(a,b) = |v|HM (a,b),

Theorem 5.2. Let v ∈ HM (a, b) such that

v(t) =

m∑
i=0

αiBi(t), (5.2)

and Imv is the approximation by Bernoulli polynomials. Then the truncation error v − Imv satisfies

∥v − Imv∥L2(a,b) ≤ cMm
−M∥v∥HM,m(a,b), (5.3)

where

∥v∥HM,m(a,b) =

 M∑
j=min(m,M)

(
b− a

2

)2j ∥∥∥v(j)∥∥∥2
L2(a,b)

 1
2

.

Moreover, in the maximum norm, we have

∥v − Imv∥L∞(a,b) ≤ c̃Mm
1
2−M

√
2

b− a
∥v∥HM,m(a,b) , (5.4)

where c̃M is a constant independent of m and depend of M and

∥v∥L∞(a,b) = sup
t∈[a,b]

|v(t)|.

Theorem 5.3. Let xum(t) be the approximate solution of xu(t) by the proposed method. Suppose that a and σ
satisfy the Lipshitz conditions (with constants L1 and L2 respectively) and linear growth conditions (these conditions
ensures the existence and uniqueness of the solution). Then the numerical approximation (4.1) of the exact solution
is convergent in the sense that E|xu(t)− xum(t)|2 → 0, as m→ ∞.

Proof . We have

xum = x0 +

∫ t

0

a(xum, um)ds+

∫ t

0

σ(xum, um)dBs. (5.5)

Let, em(t) = xu(t)− xum(t) so

em(t) =

∫ t

0

a(s, xus , u)− a(s, xm(s), um)ds+

∫ t

0

σ(s, xus , u)− σ(s, xm(s), um)dBs,

then

|xu(t)− xum(t)| ≤
∫ t

0

|a(s, xus , u)− a(s, xm(s), um)|ds+
∫ t

0

|σ(s, xus , u)− σ(s, xm(s), um)|dBs,

so

|xu(t)− xum(t)|2 ≤
(∫ t

0

|a(s, xus , u)− a(s, xm(s), um)|ds+
∫ t

0

|σ(s, xus , u)− σ(s, xm(s), um)|dBs

)2

.
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Using the inequality
(a+ b)2 ≤ 2a2 + 2b2 a, b ∈ R, (5.6)

we get

|xu(t)− xum(t)|2 ≤ 2

(∫ t

0

|a(s, xus , u)− a(s, xm(s), um)|ds
)2

+ 2

(∫ t

0

|σ(s, xus , u)− σ(s, xm(s), um)|dBs

)2

.

By taking expectation and using Cauchy-Shwartz inequality, we get

E|xu(t)− xum(t)|2 ≤ 2

∫ t

0

E|a(s, xus , us)− a(s, xm(s), um)|2ds+ 2

∫ t

0

E|σ(s, xus , us)− σ(s, xm(s), um)|2ds,

by using Lipschitz conditions, we obtain

E|xu(t)− xum(t)|2 ≤ 2L2
1

∫ t

0

E (|xus − xm|+ |us − um|)2 ds+ 2L2
2

∫ t

0

E (|xus − xm|+ |us − um|)2 ds.

Using inequality (5.6), we get

E|xu(t)− xum(t)|2 ≤ 2L2
1

∫ t

0

E
(
2|xus − xm|2 + 2|us − um|2

)
ds+ 2L2

2

∫ t

0

E
(
2|xus − xm|2 + 2|us − um|2

)
ds

≤ 4(L2
1 + L2

2)

(∫ t

0

E|xus − xm|2ds+
∫ t

0

E|us − um|2ds
)

= 4(L2
1 + L2

2)||us − um||2 + 4(L2
1 + L2

2)

(∫ t

0

E|xus − xm|2ds
)
,

by Gronwal inequality, we obtain

E|xu(t)− xum(t)|2 ≤ 4(L2
1 + L2

2)||us − um||2
(
1 + 4(L2

1 + L2
2)

∫ t

0

e4(L
2
1+L2

2)(t−s)ds

)
,

by using Theorem 5.2, we get

E|xu(t)− xum(t)|2 ≤ 4(L2
1 + L2

2)cMm
−M∥u∥HM,m(0,1)

(
1 + 4(L2

1 + L2
2)

∫ t

0

e4(L
2
1+L2

2)(t−s)ds

)
,

when m→ ∞, we get the result. □

Theorem 5.4. Let J and J∗ be the exact and approximate optimal perfermance index for problem (1.1)-(1.2). Sup-
pose that the functions g and c satisfy the Lipschitz conditions that is

|c(t, x1, u1)− c(t, x2, u2)| ≤ k1|x1 − x2|+ k2|u1 − u2|,

|g(t, x1)− g(t, x2)| ≤ k3|x1 − x2|.

Then we have

||J − J∗||L2 ≤ max(4k21, 4k
2
2)cMm

−M (∥x∥HM,m(0,1) + ∥u∥HM,m(0,1)) + 2k23E|xum(T )− xu(T )|2. (5.7)

Proof . For each fixed ω ∈ Ω, we have

|J − J∗|2 =

∣∣∣∣∫ t

0

c(s, x, u)− c(s, xm, um)ds+ g(xum(T ))− g(xu(T ))

∣∣∣∣2
≤ 2|

∫ t

0

c(s, x, u)− c(s, xm, um)ds|2 + 2|g(xum(T ))− g(xu(T ))|2,
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by Cauchy Schwartz inequality, and Lipschitz condition, we get

|J(u)− J∗(u)|2 ≤ 2

∫ T

0

[k1|x− xm|+ k2|u− um|]2 ds+ 2|g(xum(T ))− g(xu(T ))|2

≤ 4k21

∫ T

0

|xu − xm|2ds+ 4k22

∫ T

0

|u− um|2ds+ 2|g(xum(T ))− g(xu(T ))|2,

taking the expectation, we get

E|J(u)− J∗(u)|2 ≤ 4k21

∫ T

0

E|xu − xm|2ds+ 4k22

∫ T

0

E|u− um|2ds+ 2k23E|xum(T )− xu(T )|2

≤ 4k21||xu − xm||2 + 4k22||u− um||2 + 2k23E|xum(T )− xu(T )|2.

By using theorem 5.2, we get

E|J(u)− J∗(u)|2 = ||J(u)− J∗(u)||2L2 ≤ max(4k21, 4k
2
2)cMm

−M (∥x∥HM,m(0,1) + ∥u∥HM,m(0,1)) + 2k23E|xum(T )− xu(T )|2

by using Theorem 5.3 with m → ∞, or M −→ ∞, in the sens that the functions u and x are enough smooth, we
obtain the result. □

6 Numerical examples

In this section, we consider some numerical examples to illustrate the applicability and accuracy of the proposed
method. For numerical simulations, it is useful to consider a discretization of Brownian motion on the time interval
[0, 1]. We take K = 100 simultations to approximate the exact solutions. In the most examples, we use open loop
and feedback controls. Some numerical tests are compared with some existing results in literature. We can see from
examples that this spectral technique is efficiency for solving optimal control problems.

Example 6.1. Consider the following problem

J = min
u∈U

E

{
1

2

∫ 1

0

2x2(t) + u2(t)dt

}
, (6.1)

x(t) = x(0) +

∫ t

0

(
−1

2
x(s) + u(s)

)
ds+ σ

∫ t

0

dB(s), x(0) = v, (6.2)

where σ > 0, and v is a constant. The analytical solution is unknown, so, we need approximate solution to the
problem. The aim here is to compare between open loop and feed back control to get approximate solution for the
stochastic problem (6.1)-(6.2). The agreement between the results of simulations of the two strategies open loop and
feedback controls, and the simplicity of the proposed method, enables the method as an excellent approach to solve
the problem.

Open loop control The approximation of functions in equation 6.2 by Bernoulli polynomials leads to the following
equation

XTB(t) ≃ XT
0 B(t) +

∫ t

0

(
−1

2
XTB(s) + UTB(s)ds

)
+ σ

∫ t

0

1 dB(s)

≃ XT
0 B(t)− 1

2
XTPB(t) + UTPB(t) + σ

∫ t

0

qTB(t) dB(t)

≃ XT
0 B(t) +

(
−1

2
XT + UT

)
PB(t) + σqTPsB(t) (6.3)

where σ > 0, q = [1, 0, · · · , 0]T and X0 is written as follows

X0 = [v, 0, · · · , 0]T .
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For the performance index function, we have

J(X,U) =
1

2

∫ 1

0

(
2XTB(t)B(t)TX + UTB(t)B(t)TU

)
dt

= XT

(∫ 1

0

B(t)B(t)T dt

)
X +

1

2
UT

(∫ 1

0

B(t)B(t)T dt

)
U

= XTDHDTX +
1

2
UTDHDTU. (6.4)

So we obtain

ψ(X,U) = X −X0 − σPT
s q +

1

2
PTX − PTU, (6.5)

and

J(X,U) = XTDHDTX +
1

2
UTDHDTU. (6.6)

Feedback control Applying Theorem 3.2, the Riccati differential equation associated to this problem is

k̇(t) = k(t) + 2k2(t)− 1, k(1) = 0, (6.7)

with A = −1
2 , B = 1, Q = 1, T=1, QT = 0, R = 1

2 and S = 2. We can find the solution of this differential equation
by using the approach in [16], so let

Z =

(
− 1

2 −2
−1 1

2

)
,

the eigenvalues of Z are { 3
2 ,

−3
2 } and corresponding eigenvectors are

v1 =

(
1
−1

)
, v2 =

(
2
1

)
.

The solution of the differential equation (6.7) is given by

k(t) =
v(t)

u(t)
, (6.8)

where (
u(t)
v(t)

)
= eZ(1−t)

(
1
0

)
, (6.9)

so the solution of Riccati differential equation is

k(t) =
e−3t+3 − 1

1 + 2e−3t+3
. (6.10)

Then the optimal control for the stochastic control problem is

ufb(t) = −2k(t)x(t), (6.11)

for simplicity we denoteK(t) = −2k(t), then we approximate the state and the function k(t) via Bernoulli polynomials,
we obtain

ψ(X,U) = X −X0 − σPT
s q +

1

2
PTX − PT X̃DTK, (6.12)

and

J(X,U) = XTDHDTX +
1

2
KTDK̃TDHDT X̃DTX, (6.13)

where

K(t) =

m∑
i=0

KiBi(t) = KTB(t), K = [K0,K2, ...,Km]T

and X̃ = [Ẽ0, Ẽ1, ...Ẽm] is a matrix of size (m+ 1) × (m+ 1), where

Ẽi = EkX = [ek,0, ek,1, ..., ek,m]X, i = 0, ...,m,
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Table 1: Approximate solutions by open loop and feedback strategies for different times with m=3 and σ = 0.1 for Example 1.

t Xopen loop(t) Xfeed back(t) Uopen loop(t) Ufeed back(t)

0 0.10198589 0.10287844 -0.08930474 -0.09538202

0.1 0.08888342 0.08913076 -0.07985662 -0.08043775

0.2 0.07754017 0.07733824 -0.06942082 -0.06727094

0.3 0.06781306 0.06733815 -0.05845357 -0.0556828

0.4 0.05955903 0.05896777 -0.04741109 -0.04546297

0.5 0.05263500 0.05206436 -0.03674961 -0.03638764

0.6 0.04689791 0.04646521 -0.02692535 -0.0282202

0.7 0.04220469 0.04200758 -0.01839456 -0.02071710

0.8 0.03841227 0.03852875 -0.01161344 -0.01364065

0.9 0.03537758 0.03586600 -0.007038242 -0.00678324

1 0.03295754 0.03385660 -0.00512517 0

Table 2: Approximate solutions by open loop and feedback strategies for different times with m=3 and σ = 1 for Example 1.

t Xopen loop(t) Xfeed back(t) Uopen loop(t) Ufeed back(t)

0 0.01216786 0.01227435 -0.01065488 -0.01137996

0.1 0.01060462 0.01063413 -0.009527640 -0.00959697

0.2 0.009251265 0.00922717 -0.008282552 -0.008026050

0.3 0.008090730 0.008034070 -0.006974056 -0.006643478

0.4 0.007105947 0.007035405 -0.005656585 -0.005424157

0.5 0.00627984 0.006211764 -0.00438457 -0.00434138

0.6 0.005595359 0.005543733 -0.003212446 -0.003366941

0.7 0.00503541 0.005011896 -0.002194642 -0.002471743

0.8 0.004582942 0.00459683 -0.001385592 -0.001627457

0.9 0.004220875 0.004279148 -0.000839728 -0.0008093038

1 0.003932142 0.004039408 -0.000611481 0

Table 3: Absolute Errors between Open loop and feedback strategies for m=3, σ = 1 and σ = 0.1 for Example 1.

σ = 0.1 σ = 1

t State Error Control Error State Error Control Error

0 8.92e−4 6.07e−3 1.06e−4 7.25e−4

0.1 2.47e−4 5.81e−4 2.95e−5 6.93e−5

0.2 2.01e−4 2.14e−3 2.40e−5 2.56e−4

0.3 4.74e−4 2.77e−3 5.66e−5 3.30e−4

0.4 5.91e−4 1.94e−3 7.05e−5 2.32e−4

0.5 5.70e−4 3.61e−4 6.80e−5 4.31e−5

0.6 4.32e−4 1.29e−3 5.16e−5 1.54e−4

0.7 1.97e−4 2.32e−3 2.35e−5 2.77e−4

0.8 1.16e−4 2.02e−3 1.38e−5 2.41e−4

0.9 4.88e−4 2.55e−4 5.82e−5 3.04e−5

1 8.99e−4 5.12e−3 1.07e−4 6.11e−4

Table 4: Approximate solutions by open loop and feedback strategies for different times with m=5 and σ = 0.1 for Example 1.

t Xopen loop(t) Xfeed back(t) Uopen loop(t) Ufeed back(t)

0 0.09784629 0.10286199 -0.10007600 -0.09536678

0.1 0.08545688 0.08932835 -0.07941320 -0.08061607

0.2 0.07666973 0.07780160 -0.06815421 -0.06767398

0.3 0.06975341 0.06801113 -0.05873993 -0.05623930

0.4 0.06348507 0.05973073 -0.04823578 -0.04605120

0.5 0.05712513 0.05277399 -0.03680254 -0.03688360

0.6 0.05039195 0.04698974 -0.02616722 -0.02853883

0.7 0.04343647 0.04225746 -0.01809389 -0.02084033

0.8 0.03681689 0.03848269 -0.01285456 -0.01362434

0.9 0.03147332 0.03559245 -0.007699995 -0.006731504

1 0.02870247 0.03353065 0.00466942 0
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Table 5: Approximate solutions by open loop and feedback strategies for different times with m=5 and σ = 1 for Example 1.

t Xopen loop(t) Xfeed back(t) Uopen loop(t) Ufeed back(t)

0 0.03161785 0.03323862 -0.03233836 -0.03081663

0.1 0.02761436 0.02886538 -0.02566142 -0.02605012

0.2 0.02477490 0.02514065 -0.0220232 -0.02186803

0.3 0.02253998 0.02197698 -0.01898110 -0.01817305

0.4 0.02051444 0.01930127 -0.01558681 -0.01488089

0.5 0.01845930 0.01705328 -0.01189230 -0.0119184

0.6 0.01628355 0.01518417 -0.008455624 -0.009221983

0.7 0.01403597 0.01365499 -0.005846826 -0.00673430

0.8 0.01189693 0.01243522 -0.004153799 -0.004402543

0.9 0.01017022 0.01150127 -0.002488161 -0.002175205

1 0.00927486 0.01083502 0.001508869 0

Table 6: Absolute Errors between Open loop and feedback strategies for m=5, σ = 1 and σ = 0.1 for Example 1.

σ = 0.1 σ = 1

t State Error Control Error State Error Control Error

0 5.01e−3 4.70e−3 1.62e−3 1.52e−3

0.1 3.87e−3 1.20e−3 1.25e−3 3.88e−4

0.2 1.13e−3 4.80e−4 3.65e−4 1.55e−4

0.3 1.74e−3 2.50e−3 5.62e−4 8.08e−4

0.4 3.75e−3 2.18e−3 1.21e−3 7.05e−4

0.5 4.35e−3 8.10e−5 1.40e−3 2.61e−5

0.6 3.40e−3 2.37e−3 1.09e−3 7.66e−4

0.7 1.17e−3 2.74e−3 3.80e−4 8.87e−4

0.8 1.66e−3 7.69e−4 5.38e−4 2.48e−4

0.9 4.11e−3 9.68e−4 1.33e−3 3.12e−4

1 4.82e−3 4.66e−3 1.56e−3 1.50e−3
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and the {ek,i} are the Bernoulli coefficients vector of tkBi(t), see [3]. The following results summarized in tables 1, 2,
4 and table 5 represents the state variable and the control with both strategies open loop and feedback controls with
m = 3, m = 5 and x(0) = 0.1. The absolute errors between the open loop and feedback controls for m = 3, m = 5 are
presented in tabels 3 and 6.

Example 6.2. Consider the stochastic optimal control problem [14]

J(u) =
1

2

∫ T

0

E|x∗t − xt|2dt+
1

2

∫ T

0

u2tdt, (6.14)

dxt = utxtdt+ σxtdBt, x(0) = v. (6.15)

where σ > 0, v is a constant and the exact solutions are

xt = ve
∫ t
0
usds−σ2

2 t+σBt , ut =
T − t

1
v − Tt+ t2

2

. (6.16)

The function x∗t is given in [14]

x∗t =
eσ

2t − (1− t)2

1− t+ t2

2

+ 1. (6.17)

Let T = 1, and x(0) = v = 1.

Open loop controlWe approximate all functions oppeared in the problem (6.14)-( 6.15) by Bernoulli polynomials,
we get

XTB(t) ≃ XT
0 B(t) +

∫ t

0

UTB(s)B(s)TXds+ σ

∫ t

0

XTB(s) dB(s)

≃ XT
0 B(t) + UT

∫ t

0

B(s)B(s)TXds+ σXT

∫ t

0

B(s) dB(s)

≃ XT
0 B(t) + UTDX̃TPB(t) + σXTPsB(t). (6.18)

We have
ψ(X,U) = X −X0 − PT X̃DTU − σPT

s X. (6.19)

The approximation of performance index is as follows

J(X,U) =
1

2
(X∗)TDHDTX∗ +

1

2
XTDHDTX − (X∗)TDHDTX +

1

2
UTDHDTU,

where X∗ represents the Bernoulli coefficients vector of x∗t .

Table 7 and table 10 represents the state variable and the control with open loop strategy with m = 3, m = 5 and
σ = 0, and σ = 0.3. Table 8 represents the absolute error between the approximate and exact solution for m = 3.
The approximate solution of optimal control problem (6.14)-( 6.15) and the exact solution with m = 3 are illustrated
in Figures 1-4 with σ = 0, σ = 0.01, σ = 0.1 and σ = 0.3 respectively. The exact and approximate optimal control
solutions for m = 5 are presented in Figures 5-6 for σ = 0 and σ = 0.01. Table 9 represents the approximate optimal
cost function J∗

op in different choices of σ, the exact cost function Jexa and the error between them form = 3. Form = 5
with σ = 0 and σ = 0.01, the approximate optimal cost functions are J∗

op = 0.50019565431 and J∗
op = 0.49945429789

respectively with an error equal to 1.95e−3 and 6.93e−4 respectively.

From the experiment tests, we see that, There is no significant difference between exact and approximate solutions
for different values of the diffusion parameter σ. The error gradually increases in proportion to the value of diffusion
parameter σ.

Example 6.3. Consider the following optimal control problem [17]

J =
1

2

∫ 1

0

(x2(t) + u2(t))dt, (6.20)
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Table 7: Approximate solutions by open loop control strategy for different times with m=3 for Example 2.

σ = 0 σ = 0.3

t Xopen loop(t) Uopen loop(t) Xopen loop(t) Uopen loop(t)

0 0.98554555 0.97980248 1.06536456 0.80200833

0.1 1.09066353 0.98795670 1.14554643 0.89456451

0.2 1.21196779 0.97387065 1.25698605 0.93608244

0.3 1.34286845 0.93686953 1.38928650 0.93196985

0.4 1.47677562 0.87627853 1.53205087 0.88763446

0.5 1.60709941 0.79142286 1.67488223 0.80848401

0.6 1.72724994 0.68162772 1.80738367 0.69992621

0.7 1.83063733 0.54621829 1.91915826 0.56736880

0.8 1.91067168 0.38451977 1.99980910 0.41621950

0.9 1.96076312 0.19585737 2.03893925 0.25188603

1 1.97432176 -0.02044371 2.02615180 0.07977612

Table 8: Computed errors when m=3 for Example 2.

σ = 0 σ = 0.3

t State Error Control Error State Error Control Error

0 1.44e−2 2.01e−2 6.53e−2 1.19e−1

0.1 1.43e−2 6.51e−3 4.14e−2 9.99e−2

0.2 7.54e−3 1.73e−3 3.71e−2 3.95e−2

0.3 5.86e−4 2.72e−3 2.71e−2 7.62e−3

0.4 6.18e−3 6.07e−3 5.14e−2 5.28e−3

0.5 7.09e−3 8.57e−3 5.65e−2 8.48e−3

0.6 3.11e−3 8.02e−3 6.24e−2 1.02e−2

0.7 4.22e−3 4.24e−3 4.74e−2 1.69e−2

0.8 1.24e−2 9.56e−5 3.43e−2 3.16e−2

0.9 1.94e−2 2.16e−3 2.78e−2 5.38e−2

1 2.56e−2 2.04e−2 1.13e−2 7.97e−2

Table 9: Optimal cost function for different choices of σ with m=3 in Example 2.

Jexa J∗
op |J∗

op − Jexa|
σ = 0 0.5 0.5000744766 7.4e−5

σ = 0.01 0.5001478657 0.5014163273 1.2e−3

σ = 0.1 0.5148980636 0.4901163308 2.4e−2

σ = 0.3 0.6425918186 0.5525869602 9.0e−2

Table 10: Approximate solutions by open loop strategy and estimate errors for different times with m=5 and σ = 0 for Example 2.

t Xopen loop(t) Uopen loop(t) State Error Control Error

0 0.96335843 0.95655876 3.66e−2 4.43e−2

0.1 1.06888356 0.97364998 3.60e−2 2.08e−2

0.2 1.19740152 0.96524833 2.21e−2 1.03e−2

0.3 1.34039511 0.93851170 1.88e−3 1.08e−3

0.4 1.48741892 0.89132711 1.68e−2 8.97e−3

0.5 1.62743599 0.81678371 2.74e−2 1.67e−2

0.6 1.75015454 0.70764575 2.60e−2 1.79e−2

0.7 1.84736464 0.56082561 1.25e−2 1.03e−2

0.8 1.91427490 0.38185677 8.80e−3 2.75e−3

0.9 1.95084916 0.18936682 2.93e−2 8.65e−3

1 1.96314316 0.01955043 3.68e−2 1.95e−2
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Figure 1: Exact and approximate solutions for m=3 and σ = 0 for Example 2.
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Figure 2: Exact and approximate solutions for m=3 and σ = 0.01 for Example 2.
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Figure 3: Exact and approximate solutions for m=3 and σ = 0.1 for Example 2.



Spectral method for solving SOCP 19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

t

T
h

e
 s

ta
te

 x
(t

)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

T
h

e
 c

o
n

tr
o

l 
u

(t
)

 

 

Accurate

Numerical

Accurate

Numerical

Figure 4: Exact and approximate solutions for m=3 and σ = 0.3 for Example 2.
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Figure 5: Exact and approximate solutions for m=5 and σ = 0 for Example 2.
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Figure 6: Exact and approximate solutions for m=5 and σ = 0.01 for Example 2.



20 Boukhelkhal, Zeghdane

x(t) = x(0) +

∫ t

0

sx(s)ds+

∫ t

0

u(s)ds, x(0) = 1, (6.21)

where the exact solution is unknown. In this example, we compare between the obtained results of the proposed
method and some numerical results obtained by other numerical techniques [17]. From the results, we remark that all
methods gives approximatively the same values for state variable and control.

Open loop control

XTB(t) ≃ XT
0 B(t) +

∫ t

0

qTB(s)B(s)TXds+

∫ t

0

UTB(s)ds

≃ XT
0 B(t) + qT

∫ t

0

B(s)B(s)TXds+ UTPB(t)

≃ XT
0 B(t) + qTDX̃TPB(t) + UTPB(t), (6.22)

where q is the Bernoulli coefficients vector of the function t given by

q = [
1

2
, 1, 0, ..., 0]T .

We have
ψ(X,U) = X −X0 − PT X̃DT q − PTU. (6.23)

For the performance index function, we have

J =
1

2
XTDHDTX +

1

2
UTDHDTU. (6.24)

The approximate solutions of problem (6.20)-(6.21) for m = 6 is given by

x(t) = 0.16121349t6 + 1.00228234t5 − 3.035104676t4

+ 2.12328867t3 + 0.84023095t2 − 1.17150851t+ 0.99999999

u(t) = 7.299826t6 − 21.815416t5 + 24.51146t4

− 12.7833604t3 + 3.07268461t2 + 0.68309244t− 0.96045177.

The performance index function with m = 6 is J = 0.483998 and the value of objective functions of Bernstein
polynomials, power series, shifted Chebyshev (1st kind) and shifted Chebyshev (2nd kind) with m = 6 are J =
0.484228,J = 0.484072, J = 0.484265 and J = 0.484265 respectively. Tables 11 -12 illustrates numerical results of
state and control with different methods with m=6. The approximate solutions of optimal control problem with the
proposed method and Bernstein method are plotted in Figure 7.

Table 11: Different approaches of x(t) in different time for Example 3.

t The proposed Bernstein Power series Shifted Chebyshev Shifted Chebyshev

method approximation (2nd kind) (1st kind)

0 1 1 0.999999 0.999999 1

0.1 0.893081 0.912841 0.9125870 0.9128372 0.9128436

0.2 0.811768 0.844075 0.843908 0.844080 0.844087

0.3 0.759465 0.792566 0.792471 0.792579 0.792584

0.4 0.734949 0.75766 0.757555 0.757679 0.757683

0.5 0.733860 0.739162 0.739019 0.739185 0.739188

0.6 0.750317 0.7737388 0.737186 0.737366 0.737371

0.7 0.778636 0.752962 0.752840 0.752996 0.753002

0.8 0.815174 0.78739 0.787292 0.787431 0.787436

0.9 0.860287 0.84268 0.842556 0.842727 0.842731

1 0.920402 0.92174 0.921603 0.921792 0.921799
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Table 12: Different approaches of u(t) in different time for Example 3.

t The proposed Bernstein Power series Shifted Chebyshev Shifted Chebyshev

method approximation (2nd kind) (1st kind)

0 -0.960451 -0.968575 -0.968348 -0.968525 -0.968532

0.1 -0.871958 -0.868473 -0.868375 -0.868533 -0.868540

0.2 -0.770488 -0.768625 -0.768501 -0.768640 -0.768646

0.3 -0.673280 -0.669056 -0.668942 -0.669060 -0.669065

0.4 -0.579716 -0.570052 -0.569985 -0.570084 -0.570088

0.5 -0.484359 -0.47197 -0.471934 -0.472016 -0.472019

0.6 -0.384735 -0.375096 -0.375055 -0.375120 -0.375123

0.7 -0.283860 -0.279572 -0.279515 -0.279562 -0.279564

0.8 -0.187513 -0.185361 -0.185332 -0.185357 -0.185359

0.9 -0.096248 -0.092280 -0.092312 -0.092316 -0.092318

1 0.007841 −8.24e−5 −1.74e−8 −5.25e−9 −8.99e−8
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Figure 7: Approximate solutions x(t) and u(t) with both methods for Example 3.
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Example 6.4. Consider the following problem [30]

J =
1

2

∫ 1

0

(u2(t) + 2x2(t))dt (6.25)

ẋ(t) = u(t) +
x(t)

2
, x(0) = 1. (6.26)

The analytical solutions are

x(t) =
2e3t + e3

e
3t
2 (2 + e3)

, u(t) =
2(e3t − e3)

e
3t
2 (2 + e3)

, (6.27)

and the optimal value of performance index function is Jexa = 0.86416449776911.

Open loop control We have

ψ(X,U) = X −X0 − PTU − 1

2
PTX, (6.28)

J = XTDHDTX +
1

2
UTDHDTU. (6.29)

Feedback control Using Theorem 3.2, the feedback optimal control is given by

u(t) = K(t)x(t), (6.30)

where

K(t) =
−2(e−3t+3 − 1)

1 + 2e−3t+3
, (6.31)

and

ψ(X,U) = X −X0 − PT X̃DTK − 1

2
PTX, (6.32)

J(X,U) = XTDHDTX +
1

2
KTDK̃TDHDT X̃DTX. (6.33)

Numerical results by open and feedback control are summarized in Tables 13 and 14 with m = 3 and m = 5
respectively. Table 15 represents a comparison between the open loop and feedback strategies with m = 3 and m = 5.
Figure 9 represents the approximate solution with both proposed strategies comparing with the exact solutions for
m = 3. Tables 16-17 represents the main error between exact and approximate solutions with m = 3 and m = 5.

By taking m = 2, the optimal cost function obtained by open loop strategy is

J∗
op = 0.86434463794683776.

The error between the exact performance and J∗
op is

Error = |J∗
op − Jexa| = 1.8014e−4,

by comparing this result with the numerical results given in Table 1 in reference [20], the obtained error is less
than all errors presented in table 1 of reference [20]. In [30], the approximate values of performance function are
J = 0.864374131 and J = 0.86444444238 with errors E1 = 2.0963e−4 and E2 = 2.7999e−4 respectively. It is clear
that, the obtained error by the proposed method is less than the errors E1 and E2, which confirm the good agreement
between exact and approximate solutions.

7 Conclusion

In this paper, we have solved the stochastic optimal control problem from the view of open loop and feedback
strategies. The proposed technique used operational matrices for the integration of Bernoulli polynomials. Then these
operational matrices are used to reduce the considered problem to an optimisation problem and then has been reduced
to a problem of solving a system of algebraic equations. The method is based on expanding the existing functions in
terms of Bernoulli polynomials. Some advantages of the proposed methods are:
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Table 13: Approximate solutions by open loop and feedback strategies in different times with m=3 for Example 4.

t Xexa Xopen loop(t) Xfeedback(t) Uexa Uopen loop(t) Ufeedback(t)

0 1.0 0.98807949 1.00669549 -1.72832899 -1.63233705 -1.73990101

0.1 0.88797706 0.88311942 0.89013900 -1.46031746 -1.45551431 -1.46387286

0.2 0.79597111 0.79527708 0.794036958 -1.22522472 -1.26224344 -1.22224751

0.3 0.72190810 0.72362006 0.71717611 -1.01775126 -1.06064101 -1.01108006

0.4 0.66411851 0.66721596 0.65834322 -0.83322018 -0.85882358 -0.82597435

0.5 0.62129962 0.62513235 0.61632504 -0.66747173 -0.664907715 -0.66212746

0.6 0.59248621 0.59643685 0.58990833 -0.51676957 -0.487009964 -0.51452114

0.7 0.57702875 0.58019703 0.57787985 -0.37771655 -0.333246892 -0.37827367

0.8 0.57457880 0.57548050 0.57902636 -0.24717810 -0.21173505 -0.24909139

0.9 0.58508112 0.58135485 0.59213460 -0.12221159 -0.13059102 -0.12368491

1 0.60877248 0.59688766 0.61599134 -3.6927e−18 -0.097931344 0

Table 14: Approximate solutions by open loop and feedback strategies for different times with m=5 for Example 4.

t Xopen loop(t) Xfeedback(t) Uopen loop(t) Ufeedback(t)

0 0.90789344 1.00064883 1.804310211 -1.72945040

0.1 0.80924777 0.88723619 -1.43561218 -1.45909907

0.2 0.76250895 0.79431660 -1.23291225 -1.22267797

0.3 0.74101299 0.72000613 -1.06174073 -1.01506984

0.4 0.72459700 0.66258986 -0.87063649 -0.83130230

0.5 0.69997931 0.62056697 -0.66348403 -0.66668463

0.6 0.66113957 0.59269566 -0.47185048 -0.51695226

0.7 0.60969884 0.57803823 -0.32732266 -0.37837735

0.8 0.55529972 0.57600609 -0.23384406 -0.24779210

0.9 0.51598643 0.58640473 -0.14005192 -0.12248806

1 0.51858493 0.60947878 0.08838574 0

Table 15: Comparaison between open loop and feedback strategies for Example 4.

m = 3 m = 5

t State Error Control Error State Error Control Error

0 1.86e−2 1.07e−1 9.27e−2 7.48e−2

0.1 7.01e−3 8.35e−3 7.79e−2 2.34e−2

0.2 1.24e−3 3.99e−2 3.18e−2 1.02e−2

0.3 6.44e−3 4.95e−2 2.10e−2 4.66e−2

0.4 8.87e−3 3.28e−2 6.20e−2 3.93e−2

0.5 8.80e−3 2.78e−3 7.94e−2 3.20e−3

0.6 6.52e−3 2.75e−2 6.84e−2 4.51e−2

0.7 2.31e−3 4.50e−2 3.16e−2 5.10e−2

0.8 3.54e−3 3.73e−2 2.07e−2 1.39e−2

0.9 1.07e−2 6.90e−3 7.04e−2 1.75e−2

1 1.91e−2 9.79e−2 9.08e−2 8.83e−2
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Table 16: Absolute error when m=3 for Example 4.

Open loop Feedback

t |Xop −Xexa| |Uop − Uexa| |Xfb −Xexa| |Ufb − Uexa|
0 1.19e−2 9.59e−2 6.69e−3 1.15e−2

0.1 4.85e−3 4.80e−3 2.16e−3 3.35e−3

0.2 6.94e−4 3.70e−2 1.19e−3 2.97e−3

0.3 1.71e−3 4.28e−2 4.73e−3 6.67e−3

0.4 3.09e−3 2.56e−2 5.77e−3 7.24e−3

0.5 3.83e−3 2.56e−3 4.97e−3 5.34e−3

0.6 3.95e−3 2.97e−2 2.57e−3 2.24e−3

0.7 3.16e−3 4.44e−2 8.51e−4 5.57e−4

0.8 9.01e−4 3.54e−2 4.44e−3 1.91e−3

0.9 3.72e−3 8.37e−3 7.05e−3 1.47e−3

1 1.18e−2 9.79e−2 7.21e−3 3.69e−18

Table 17: Absolute error when m=5 for Example 4.

Open loop Feedback

t |Xop −Xexa| |Uop − Uexa| |Xfb −Xexa| |Ufb − Uexa|
0 9.21e−2 7.59e−2 6.48e−4 1.12e−3

0.1 7.87e−2 2.47e−2 7.40e−4 1.21e−3

0.2 3.34e−2 7.68e−3 1.65e−3 2.25e−3

0.3 1.91e−2 4.39e−2 1.90e−3 2.68e−3

0.4 6.04e−2 3.74e−2 1.52e−3 1.91e−3

0.5 7.87e−2 3.98e−3 7.32e−4 7.87e−4

0.6 6.86e−2 4.49e−2 2.09e−4 1.82e−4

0.7 3.26e−2 5.03e−2 1.00e−3 6.60e−4

0.8 1.92e−2 1.33e−2 1.42e−3 6.14e−4

0.9 6.90e−2 1.78e−2 1.32e−3 2.76e−4

1 9.01e−2 8.83e−2 7.06e−4 3.69e−18
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Figure 8: The approximate solutions compared with exact solution when m=3 for Example 4.
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Figure 9: The approximate solutions compared with exact solution when m=5 for Example 4.
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� The proposed method is a new technique for solving nonlinear optimal control problem and there is a few
methods in the literature for solving this type of problem.

� The proposed method has high accuracy and little computational complexity for solving the considered problem.

� The effort required to implement the method is very low.

� It is also implementable and can be extended to higher dimensional control systems.

In the end, we note that the method can be easily extended and applied to stochastic optimal control problems
governed by fractional Brownian motion. We also believe that it shall not be difficult to extend this approach to
controlled stochastic delay equations of general form, which will be the subject of future research.
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