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 An analysis has been performed to study the problem of the thermal performance of a 

continuously moving convective-radiative rod with variable thermal conductivity. Highly 

accurate semi-analytical methods called the least Square method (LSM) and the Galerkin 

method (GM) are introduced and then used to obtain a nonlinear temperature distribution 

equation in a fin that allows for more accurate measurements that could make the 

investigation stand out. This research investigated the influence of various parameters on 

heat transfer in a continuously moving convective-radiative rod. The parameters examined 

include the convective-conductive factor (Ncc), dimensionless thermal conductivity 

coefficients (a), radiative-conductive parameter (Nrc), Peclet number (Pe), dimensionless 

convective (θc), and radiative sink temperatures (θr). An increase in the dimensionless 

thermal conductivity coefficient (a) led to higher dimensionless temperatures within the rod, 

indicating an amplification of conductive heat transfer. The convective-conductive parameter 

(Ncc) demonstrated a direct relationship with heat loss. In contrast, the radiative-conductive 

parameter (Nrc) exhibited an inverse relationship between radiative heat transfer and local 

temperature within the fin. A rise in the Peclet number was associated with higher 

dimensionless temperatures, indicating a faster-moving rod. Additionally, variations in 

dimensionless convective and radiative sink temperatures affected temperature profiles, 

with higher sink temperatures resulting in increased dimensionless temperatures. Notably, 

the dimensionless radiative sink temperature was found to have a more significant impact on 

overall dimensionless temperature than the convective sink temperature. These findings 

underscore the intricate interplay of factors governing heat transfer and temperature 

distribution in the moving rod system. The importance of this work lies in its comprehensive 

analysis of the intricate interplay of parameters affecting heat transfer and temperature 

distribution in continuously moving convective-radiative rods, providing valuable insights 

for optimizing industrial processes and engineering applications. 
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1. Introduction 

Fins are frequently used in many heat transfer 
applications to improve performance. On the 
other hand, for many years, a high heat transfer 
rate with reduced size and cost of fins have been 

primary targets for several engineering 
applications such as heat exchangers, 
economizers, superheaters, conventional 
furnaces, gas turbines, etc. [1,2]. Some 
engineering applications , such as airplanes and 
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motorcycles, also require lighter fins with higher 
rates of heat transfer. Increasing the heat transfer 
depends on the heat transfer coefficient (h), the 
surface area available, and the temperature 
difference between the surface and the 
surrounding fluid. Nonlinear problems and 
phenomena play an important role in applied 
mathematics, physics, engineering, and other 
branches of science, especially some heat transfer 
equations. Except for a limited number of these 
problems, most of them do not have precise 
analytical solutions. Therefore, these nonlinear 
equations should be solved using approximation 
methods. Perturbation techniques are too 
strongly dependent upon the so-called ‘‘small 
parameters’’ [3]. Other different methods have 
been introduced to solve a nonlinear equation 
such as the δ-expansion method [4], Adomian’s 
decomposition method [5], Homotopy 
Perturbation Method (HPM) [6–8], and 
Variational Iteration Method (VIM) [9–11], 
Homotopy analysis method [12-14] and Galerkin 
Method [15], which has been successfully applied 
to solve many types of the nonlinear problem. 

Various studies have been conducted on 
thermal distribution through an annular and 
longitudinal fin. Varun Kumar et al. [16] 
examined temperature distribution in a 
conductive-radiative annular fin with power law-
dependent thermal properties using the 
differential transform method (DTM)-Pade 
approximant. Results showed temperature 
distribution increases with heat generation but 
decreases with higher thermogeometric and 
radiative-conductive parameters. Hoshyar et al. 
[17] examined thermal behavior in a porous fin 
with temperature-dependent internal heat 
generation using the collocation method (CM) 
and the homotopy perturbation method (HPM). 
Varun Kumar et al. [18] investigated how heat 
spreads in a moving plate using a non-Fourier 
heat flux model. They found that higher 
convection-conduction and radiation-conduction 
parameters reduce heat dispersion, while a 
higher Peclet number increases it. Sowmya et al. 
[19] examined how a magnetic field affects the 
thermal performance of a rectangular-profiled 
longitudinal fin. The results showed that higher 
thermal conductivity improves the fin's 
temperature profile, while the Hartmann number 
and thermogeometric parameter have the 
opposite effect. Jayaprakash et al. [20] focused on 
the thermal distribution through a moving 
longitudinal trapezoidal fin with variable 
temperature-dependent thermal properties 
using the Differential Transform Method (DTM) 
and Pade approximant. It provides an analytical 
solution for the temperature distribution in the 
fin and explores the effects of variable thermal 
properties. Alhejaili et al. [21] presented an 

analytical solution for the temperature equation 
of a fin problem with variable temperature-
dependent thermal properties. It applies the 
Least Squares Method (LSM) and DTM-Pade 
approximant to obtain the solution. The study 
investigates the thermal behavior of the fin with 
varying thermal properties. Khan et al. [22] 
analyzed heat transmission in a convective, 
radiative, and moving rod with thermal 
conductivity using a meta-heuristic-driven soft 
computing technique. It focuses on optimizing 
the heat transfer process using meta-heuristic 
algorithms and soft computing techniques. 
Sowmya et al. [23] examined the transient 
thermal distribution in a convective-radiative 
moving rod using the Two-Dimensional 
Differential Transform Method (2D DTM) with 
multivariate Pade approximant. It presents an 
analytical solution for the temperature 
distribution in the rod, considering both 
convective and radiative heat transfer. In 
summary, these manuscripts cover different 
aspects of thermal analysis and heat transfer 
problems. Jayaprakash et al. [20] focused on a 
trapezoidal fin, Alhejaili et al. [21] dealt with a fin 
problem, Khan et al. [22] explored heat 
transmission in a rod with meta-heuristic 
techniques, and Sowmya et al. [23] examined a 
convective-radiative moving rod. Each study 
applies different numerical methods and 
addresses specific variations and aspects of the 
thermal problems they investigate. In this 
analysis we provide some insights on what could 
potentially make this investigation on the 
thermal performance of a continuously moving 
convective-radiative rod with variable thermal 
conductivity novel, approach, scope, and results 
obtained. The analysis of the thermal 
performance of a continuously moving 
convective-radiative rod with variable thermal 
conductivity has significant application potential 
in various domains. Here are additional aspects of 
its applicability. The investigation of thermal 
performance in moving rods with temperature-
dependent thermal conductivity is relevant in 
industrial processes such as continuous casting 
and rolling in the metal industry. Precise control 
of temperature distribution is crucial for 
ensuring product quality and optimizing 
production efficiency. In metallurgy and steel 
production, understanding how thermal 
conductivity varies with temperature in metal 
rods can enhance the quality and efficiency of 
steel products during continuous casting and 
rolling processes. Additionally, this research can 
be applied to the design and optimization of heat 
exchangers and thermal systems, leading to 
energy savings and improved performance. It can 
also find utility in materials processing, aiding in 
better temperature control within materials 



Hoshyar et al. / Journal of Heat and Mass Transfer Research 10 (2023) 329 - 340 

331 

during manufacturing processes. In aerospace 
and automotive industries, where materials 
experience extreme temperature variations, 
insights into variable thermal conductivity can 
improve the design and performance of 
components like engine parts and heat shields. 
Moreover, the research can contribute to energy-
efficient building materials and insulation 
systems, regulating indoor temperatures more 
effectively and reducing energy consumption for 
heating and cooling. Furthermore, the analysis of 
the thermal behavior of moving rods with 
variable thermal conductivity contributes to the 
optimization of heat transfer processes. By 
accurately modeling and understanding 
temperature distribution, engineers and 
researchers can identify areas for improvement, 
such as optimizing cooling systems, reducing 
energy consumption, and enhancing overall 
thermal efficiency. Additionally, the problem of 
thermal performance in moving rods with 
temperature-dependent thermal conductivity 
finds application in material processing 
techniques. It can assist in the design and 
improvement of heat treatment processes like 
annealing or quenching, where precise 
temperature control is necessary to achieve 
desired material properties. Moreover, the study 
of convective-radiative heat transfer in moving 
rods has implications for energy systems. 
Understanding thermal behavior and optimizing 
heat transfer in systems involving moving 
components can contribute to more efficient and 
sustainable energy conversion and 
transportation processes. The use of advanced 
analytical methods such as the Least Square 
method (LSM) and the Galerkin method (GM) to 
solve the nonlinear temperature distribution 
equation in moving rods also holds broader 
implications. These methods can be applied to 
various engineering problems involving partial 
differential equations and complex systems, 
providing accurate solutions and improving 
computational efficiency. In summary, the 
analysis of the thermal performance in 
continuously moving convective-radiative rods 
with variable thermal conductivity has wide-
ranging applicability in industrial processes, heat 
transfer optimization, material processing, 
energy systems, and the advancement of 
advanced numerical methods. By addressing the 
challenges associated with temperature-
dependent thermal conductivity in moving rods, 
this research offers valuable insights and 
solutions that can be applied across diverse 
fields, ultimately leading to enhanced 
performance, energy efficiency, and process 
optimization. 

This investigation could be novel in terms of 
the scope of the problem addressed. The previous 

investigations focused on a particular aspect of 
the problem, such as the convective and radiation 
heat transfer, while the current study considers 
convective and radiative heat transfer on the 
longitudinal moving with variable thermal 
conductivity; this would be considered a novel 
contribution. This is because the metal is 
generally moving in the thermal processing of 
continuous casting and rolling. When doing a 
thermal performance analysis, the constant 
thermo-physical properties assumptions, such as 
thermal conductivity, cannot be appropriate if a 
significant temperature difference between the 
fin-tip and fin-base exists; variation of the 
thermal conductivity is very substantial and 
should be considered temperature-dependent. 
Besides, the cross-sections of the moving metal 
can be another topic of investigation rod, sheet, 
or other structural ones. Therefore, the 
abovementioned study considers the physical 
parameter for its specified conditions. This 
investigation addresses the thermal distribution 
through a continuously convective-radiative 
longitudinal moving fin with variable thermal 
conductivity. The investigation could be essential 
in terms of the results obtained. It reveals 
insights into the underlying physics of the 
problem, which significantly contributes to the 
field. The effects of six dimensionless parameters, 
including the dimensionless thermal conductivity 
coefficient, the convective-conductive parameter, 
the radiative-conductive parameter, the Peclet 
number, the dimensionless convective sink 
temperature, and the dimensionless radiative 
sink temperature on the temperature 
distribution are analyzed. Finally, the 
investigation is also important in terms of the 
approach used to study the problem with the 
mathematical complexity of the energy equation. 
The use of a powerful analytical and numerical 
method that allows for more accurate 
measurements could make the investigation 
stand out. In summary, the novelty of this 
investigation depends on various factors, 
including the approach, scope, and results 
obtained. 

In this study, we have applied GM and LSM to 
find the approximate solutions of nonlinear 
differential equations governing the convective-
radiative heat transfer of a continuously moving 
rod with temperature-dependent thermal 
conductivity. In addition, the effects of key 
parameters, including the dimensionless thermal 
conductivity coefficient (𝑎) , the convective-
conductive parameter (𝑁𝑐𝑐) , the radiative-
conductive parameter (𝑁𝑟𝑐) , the Peclet number 
(𝑃𝑒) , the dimensionless convective sink 
temperature (𝜃𝑐)  and the dimensionless 
radiative sink temperature (𝜃𝑟) , on the 
dimensionless temperature distribution are 
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analyzed. Meanwhile, the results demonstrate 
that the proposed methods are simple and 
accurate compared with the numerical method. It 
is found that these methods are powerful 
mathematical tools and that they can be applied 
to a large class of linear and nonlinear problems 
arising in different fields of science and 
engineering 

2. Analysis 

As shown in Fig. 1, the thermal processing of a 
moving rod with a temperature-dependent 
thermal conductivity fin profile is considered. 
The dimensions of the fin are length 𝐿, width 𝑊 
and thickness 𝑡. The cross-section area A of the 
fin is constant. For the sake of simplify of the 
solution, the following assumptions are made to 
solve this problem. The velocity of the moving 
rod is 𝑣 . The hot rod emerges from a hotter 
environment at a constant temperature 𝑇𝑏  to a 
colder temperature and releases heat in the 
surrounding medium, which is considered by 
convection and radiation. 

 
Fig. 1. Schematic diagram for the problem 

under consideration 

The convection and radiation sink 
temperatures are taken to be different, and one 
can be varied independently of the other. The 
surface of moving material is assumed to be gray 
with a constant emissivity. Hence, we use the 
radiation formula for the gray body. The 
convective heat transfer coefficient h over the 
entire surface of the moving material is 
considered constant. Now, applying the energy 
balance equation at steady state energy equation 
of the moving rod with a constant speed and heat 
loss through natural convection and radiation 
condition [24] to the slice segment of the fin of 
thickness ΔX 

𝑑

𝑑𝑥
[𝑘

𝑑𝑇

𝑑𝑥
] −

ℎ𝑝

𝐴
[𝑇(𝑥) − 𝑇𝑐]2 + 

                     
𝜀𝜎𝑝

𝐴
(𝑇4 − 𝑇𝑟

4) + 𝜌𝑐𝑝𝜗
𝑑𝑇

𝑑𝑥
= 0 

(1) 

where 𝑘  is the thermal conductivity of the 
moving rod may vary with temperature, 𝜌 is the 
density, and 𝑐𝑝  is the specific heat. The axial 

coordinate 𝑥  is measured from the tip of the 
moving fin. There are Dirichlet and Neumann 
boundary conditions for the moving rod. 
Boundary conditions are 

𝑥 = 0    →     𝑇(𝑥) = 0 (2) 

𝑥 = 𝐿    →     
𝑑𝑇(𝑥)

𝑑𝑥
= 0 (3) 

Taking into account that the thermal 
conductivity of the fin k is assumed to vary with 
temperature: 

𝑘(𝑇) = 𝜆𝑐𝑓(𝑇) ,     𝑓(𝑇) = 1 + β(T − 𝑇𝑐) (4) 

Introducing dimensionless variables and 
similarity criteria 

𝑋 =
𝑥𝐿∗

𝐿
   ,   𝐿∗ =

𝑃𝐿

𝐴
   ,   𝜃 =

𝑇

𝑇𝑏

   ,    

𝜃𝑐 =
𝑇𝑐

𝑇𝑏

    , 𝜃𝑟 =
𝑇𝑟

𝑇𝑏

   ,   𝑁𝑐𝑐 =
ℎ𝐴

𝜆𝑐𝑝
    ,  

  𝑁𝑟𝑐 =
𝜎𝜀𝑇𝑏

3𝐴

𝜆𝑐𝑝
     ,   𝑃𝑒 =

𝜌𝑐𝑝𝜐𝐴

𝜆𝑐𝑝
 

(5) 

For the sake of simplicity, the dimensionless 
characteristic length is assumed as L*=1 in the 
following discussions. By substituting them into 
Eq. (9) and using Eq. (11), the problem 
formulation takes the following form: 

[1 + 𝑎(𝜃 − 𝜃𝑐)]
𝑑2𝜃

𝑑𝑋
+ 𝑎 (

𝑑𝜃

𝑑𝑋
)

2

− 

𝑁𝑐𝑐(𝜃 − 𝜃𝑐) − 𝑁𝑟𝑐(𝜃4 − 𝜃𝑟
4) + 𝑃𝑒

𝑑𝜃

𝑑𝑋
= 0 

(6) 

where 𝑎  denotes the dimensionless thermal 
conductivity coefficient, Ncc is the convective-
conductive parameter, Nrc is the radiative-
conductive parameter, 𝑃𝑒 the Peclet number, the 
𝜃𝑐  and 𝜃𝑟  are the dimensionless convective sink 
temperature and the dimensionless radiative 
sink temperature, respectively. The above 
equation is a second-order nonlinear ordinary 
differential equation which is subject to the 
boundary conditions: 

𝜃(1) = 1     ,     𝜃′(0) = 0 (7) 

3. Weighted Residual Methods 
(WRM) 

There existed an approximation technique for 
solving differential equation called the weighted 
residual methods (WRMs). Suppose a differential 
operator 𝐷 is acted on a function 𝑢 to produce a 
function 𝑝[25, 26]: 

𝐷(𝑢(𝑥)) = 𝑝(𝑥) (8) 

It is considered that 𝑢  is approximated by a 
function �̃�, which is a linear combination of basic 
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functions chosen from a linearly independent set. 
That is, 

𝑢 ≅ �̃� =  ∑ 𝑐𝑖𝜑𝑖

𝑛

𝑖=1

 (9) 

Now, when substituted into the differential 
operator, 𝐷, the result of the operations generally 
isn’t 𝑝(𝑥). Hence an error or residual will exist: 

𝐸(𝑥) = 𝑅(𝑥) = 𝐷(�̃�(𝑥)) − 𝑝(𝑥) ≠ 0 (10) 

The notion in WRMs is to force the residual to 
zero in some average sense over the domain. That 
is: 

∫ 𝑅(𝑥)𝑊𝑖(𝑥) = 0     ,

 

𝑋

    𝑖 = 1,2, … , 𝑛 (11) 

where the number of weight functions 𝑊𝑖  is 
exactly equal the number of unknown constants 
𝐶𝑖  in �̃�. The result is a set of 𝑛 algebraic equations 
for the unknown constants 𝐶𝑖 . Two methods of 
WRMs are explained in the following subsections. 

3.1. Shortcomings and Advantages of the 
Methodology 

The Galerkin Method is a powerful numerical 
technique that offers flexibility, accuracy, and 
conservation properties. It can be applied to 
various problems, including complex systems 
and partial differential equations (PDEs). By 
approximating the solution using a series of basis 
functions, the Galerkin Method can provide 
accurate results, with improved accuracy as the 
number of basis functions increases. 
Additionally, it has the ability to preserve certain 
properties of the original problem, such as mass 
conservation or energy conservation, depending 
on the chosen formulation. However, the Galerkin 
Method has its shortcomings. One major 
challenge is its computational complexity, 
especially when dealing with problems that have 
high-dimensional domains or complex 
geometries. Solving large systems of equations 
can lead to significant computational costs and 
limitations on the size of the problem that can be 
effectively solved. Furthermore, the convergence 
of the Galerkin Method depends on various 
factors, including the choice of basis functions, 
the regularity of the solution, and the problem's 
characteristics. In some cases, achieving 
convergence may be slow or even fail to reach the 
desired level of accuracy. Additionally, the 
Galerkin Method may encounter difficulties when 
dealing with nonlinear problems, as the 
approximation of the solution may not be 
accurate enough to capture nonlinear effects. In 
contrast, the Least Squares Method (LSM) is a 
versatile numerical method that is often 
preferred for its robustness and ease of 

implementation. It can handle a wide range of 
problems, including linear and nonlinear 
systems, as well as situations involving noisy or 
incomplete data. The simplicity of implementing 
the LSM makes it particularly suitable for 
problems with a small number of unknowns or a 
low-dimensional domain. Additionally, the LSM 
provides estimates of the error between the 
approximate solution and the true solution, 
allowing for an assessment of the solution's 
accuracy. However, the LSM also has its 
limitations. It is sensitive to outliers in the data 
because it aims to minimize the sum of squared 
errors. Outliers can significantly impact the 
solution, leading to inaccuracies. Another 
drawback is the lack of inherent conservation 
properties in the LSM. Unlike the Galerkin 
Method, which can preserve properties such as 
mass or energy conservation, the LSM requires 
additional techniques or constraints to enforce 
such properties. Furthermore, the LSM relies on 
assuming a functional form for the solution and 
seeks the best fit within that form. If the chosen 
form does not accurately represent the true 
solution, the LSM may introduce approximation 
bias and yield less accurate results. In summary, 
the Galerkin Method is suitable for problems 
requiring high accuracy and conservation 
properties, but it can be computationally 
demanding and may face convergence challenges 
[27, 28]. On the other hand, the LSM is robust, 
versatile, and easy to implement, but it may be 
sensitive to outliers and lacks inherent 
conservation properties [29, 30]. The choice 
between these methods depends on the specific 
problem, its complexity, and the desired trade-
offs between accuracy, computational cost, and 
robustness. 

The Least Square Method (LSM) and the 
Galerkin Method (GM) offer notable advantages 
over other numerical methods in the realm of 
mathematical and engineering problem-solving. 
LSM, by striving to minimize the error between 
approximate and actual solutions, consistently 
delivers high levels of accuracy. Its versatility 
enables it to handle a wide array of problems, 
irrespective of linearity or boundary conditions, 
while its grid-independence simplifies problem 
setup. Furthermore, LSM exhibits adaptability to 
complex geometries and robustness when 
dealing with ill-conditioned or noisy data. On the 
other hand, GM's universal applicability makes it 
a valuable choice for solving diverse differential 
equations, including partial differential equations 
(PDEs). Its systematic approach, employing basis 
functions that best represent the solution space, 
ensures accurate and stable results. GM also 
preserves essential physical quantities, like mass 
and energy, making it ideal for a wide range of 
engineering and scientific applications. Both 
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methods are relatively straightforward to 
implement, offering researchers and engineers 
accessible tools for tackling complex problems 
effectively. LSM and GM methods possess distinct 
advantages over numerical techniques for 
problem-solving in mathematics and 
engineering. These methods offer exact solutions, 
ensuring the highest level of accuracy when 
applicable. They are known for their simplicity 
and transparency, providing clear insights into 
problem behaviors. Analytical solutions are 
computationally efficient, eliminating the need 
for time-consuming iterations and simulations. 
They also facilitate easy parameter sensitivity 
analysis, enabling a comprehensive 
understanding of how input variations impact 
system responses. Moreover, analytical solutions 
often yield general insights and mathematical 
relationships that can be broadly applied, 
reducing the need for recalibration. They do not 
introduce discretization errors, ensuring greater 
accuracy. However, it's important to 
acknowledge that analytical methods are best 
suited for well-structured problems and may not 
be feasible for complex, real-world scenarios 
where numerical methods are essential. 

3.2. Application of Galerkin Method (GM) 

For GM, the derivative of the approximating 
function or trial function is used finding weighted 
function. In this method, weight functions are: 

𝑊𝑖 =
𝜕�̃�

𝜕𝑐𝑖

      ,     𝑖 = 1,2, … , 𝑛 (12) 

In the present study, the governing equations 
of the convective-radiative transfer longitudinal 
moving rod are solved by GM, LSM and NUM. For 
solving the problem using GM, because the trial 
function must satisfy the boundary conditions in 
Eq. (7), so it will be considered as, 

𝜃(𝑋) = 1 + 𝑐1 (𝑋 −
1

2
𝑋2) + 𝑐2 (𝑋 −

1

3
𝑋3) + 

𝑐3 (𝑋 −
1

4
𝑋4) + 𝑐4 (𝑋 −

1

5
𝑋5) 

(13) 

By introducing them into Eq. (6), residual 
functions, R, will be found. On the other hand, the 
residual functions must be close to zero. To reach 
this aim, by using Eq. (7), weighted functions will 
be obtained as, 

𝑊1 = 𝑋 −
1

2
𝑋2  , 𝑊2 = 𝑋 −

1

3
𝑋3 ,    

 𝑊3 = 𝑋 −
1

4
𝑋4     ,     𝑊4 = 𝑋 −

1

5
𝑋5 

(14) 

Finally, by substituting these functions into 
Eq. (6), a set of four equations and four unknown 
coefficients will be obtained. After solving these 
unknown parameters, the temperature 

distribution will be determined. Using the 
Galerkin method when physical parameters are 
assumed to be 𝑎 = 0.5, 𝑁𝑐𝑐 = 0.25, 𝑁𝑟𝑐 =
0.75, 𝑃𝑒 = 0.5 , 𝜃𝑐 = 0.4, and 𝜃𝑟 = 0.8 leads to: 

𝜃(𝑥) = 1 − 0.3118147𝑋 + 0.26749445𝑋2 − 

0.123325𝑋3 + 0.046854𝑋4 − 0.008123𝑋5 
(15) 

3.3.  Principles and Application of Least 
Square Method (LSM) 

If the continuous summation of all the 
squared residuals is minimized, the rationale 
behind the name can be seen. In other words, a 
minimum of [31, 32]: 

𝑆 = ∫ 𝑅(𝑥)𝑅(𝑥)𝑑(𝑥)

𝑋

= ∫ 𝑅2(𝑥)𝑑𝑥

𝑋

 (16) 

In order to achieve a minimum of this scalar 
function, the derivatives of 𝑆 with respect to all 
the unknown parameters must be zero. That is, 

𝜕𝑆

𝜕𝑐𝑖

= 2 ∫ 𝑅(𝑥)
𝜕𝑅

𝜕𝑐𝑖

𝑑𝑥 = 0

𝑋

 (17) 

Comparing with Eq. (17), the weight functions 
are seen to be 

𝑊𝑖 = 2
𝜕𝑅

𝜕𝑐𝑖

 (18) 

however, the ‘‘2’’ coefficient can be dropped since 
it cancels out in the equation. Therefore, the 
weight functions for the least squares method are 
just the derivatives of the residual with respect to 
the unknown constants 

𝑊𝑖 =
𝜕𝑅

𝜕𝑐𝑖

 (19) 

Consider the following trial function, 

𝜃(𝑋) = 1 + 𝑐1 (𝑋 −
1

2
𝑋2) + 𝑐2 (𝑋 −

1

3
𝑋3) + 

𝑐3 (𝑋 −
1

4
𝑋4) + 𝑐4 (𝑋 −

1

5
𝑋5) 

(20) 

The residual function is: 

𝑅(𝑋) =
1

8
[−4𝑎𝑐2

2 − 4𝑎𝑐2𝑐3 − 12𝑁𝑟𝑐𝑐1𝑐3 

−6𝑁𝑟𝑐𝑐2
2 − 12𝑁𝑟𝑐𝑐2𝑐3 − 6𝑁𝑟𝑐𝑐3

2 − 3𝑐3 

−12𝑁𝑟𝑐𝑐1𝑐2 − 4𝑎𝑐1𝑐2 − 6𝑁𝑟𝑐𝑐1
2 − 𝑃𝑒𝑐2 

−12𝑁𝑟𝑐𝑐2𝑐4 − 6𝑁𝑟𝑐𝑐4
2 +

3

2
𝑎𝑐1

2 − 12𝑁𝑟𝑐𝑐1𝑐4 

+
1

2
𝑁𝑐𝑐𝑐1 + 2𝑁𝑟𝑐𝑐1 − 12𝑁𝑟𝑐𝑐3𝑐4 

+3𝑎𝜃𝑐𝑐3 − 3𝑎𝑐3 − 4𝑎𝑐2𝑐4] 

(21) 
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× [
12

25
𝑁𝑟𝑐𝑐1𝑐2𝑐4 +

18

25
𝑁𝑟𝑐𝑐1𝑐4

2 +
12

25
𝑁𝑟𝑐𝑐1

2𝑐4 

+
4

5
𝑁𝑟𝑐𝑐2𝑐3𝑐4 +

2

5
𝑁𝑟𝑐𝑐1𝑐2𝑐3 +

1

16
𝑁𝑟𝑐𝑐3

3 

+
2

5
𝑁𝑟𝑐𝑐2

2𝑐3 +
3

20
𝑁𝑟𝑐𝑐3

2 +
12

25
𝑁𝑟𝑐𝑐1𝑐3𝑐4 

−
3

20
𝑁𝑟𝑐𝑐1

2𝑐3 −
2

15
𝑁𝑟𝑐𝑐1𝑐2

2 +
2

5
𝑁𝑟𝑐𝑐2𝑐3

2] 

× 4𝑎𝑐4𝑋3 + ⋯ +
9

5
𝑁𝑟𝑐𝑐1𝑋8𝑐2𝑐3𝑐4 

+2𝑁𝑟𝑐𝑐1𝑋7𝑐2𝑐3𝑐4 − 8𝑁𝑟𝑐𝑐1𝑋6𝑐2𝑐3𝑐4 

−
3

5
𝑁𝑟𝑐𝑐1𝑋10𝑐2𝑐3𝑐4 −

17

6
𝑁𝑟𝑐𝑐1𝑋8𝑐2

2𝑐3 = 0 

After introducing 𝑎 = 0.5,  𝑁𝑐𝑐 = 0.25, 
𝑁𝑟𝑐 = 0.75, 𝑃𝑒 = 0.5 , 𝜃𝑐 = 0.4, and 𝜃𝑟 = 0.8 
coefficients to residual function, Eq. (21), C1 till 
C4 coefficients will be calculated and 
temperature distribution will be: 

𝜃(𝑋) = 1 − 0.3119294𝑋 + 0.26832437𝑋2 

−0.125214𝑋30.048583𝑋4 − 0.0086821𝑋5 
(22) 

4. Results and Discussion 

In the present study, analytical techniques 
called the least Square method (LSM) and 
Galerkin method (GM) are applied to obtain an 
explicit solution of the moving rod fin 
temperature-dependent heat conduction. First, a 
comparison between the applied methods, 
obtained by the GM, LSM, and numerical method 
for different values of active parameters is shown 
in Figures 2 till 6. The numerical solution is 
performed using the algebra package Maple 18.0 
to solve the present case. The package uses a 
boundary value (B-V) problem procedure [33].  

 
Fig. 2. Effect dimensionless thermal conductivity  

coefficients (a) and comparison of GM, LSM  
results with the numerical solution 

The algorithm can be used to find moderate 
accuracy solutions for ODE boundary value 
problems and initial value problems, both with a 
global error bound. The method uses either 
Richardson extrapolation or deferred corrections 
with a base method of either the trapezoid or 
midpoint method. The trapezoid method is 
generally efficient for typical problems, but the 
midpoint method is so capable of handling 
harmless end-point singularities that the 
trapezoid method cannot. The midpoint method, 
also known as the fourth-order Runge–Kutta–
Fehlberg method, improves the Euler method by 
adding a midpoint in the step, increasing the 
accuracy by one order. Thus, the midpoint 
method is used as a suitable numerical technique 
[34]. The results are proven to be precise and 
accurate in solving a wide range of mathematical 
and engineering problems, especially heat 
transfer cases [35]. Comparing the analytical 
solution with the numerical results highlights 
that the suggested approaches are effective and 
robust tools for addressing heat transfer 
challenges. Furthermore, this comparison 
demonstrates that there is minimal disparity in 
the temperature profiles when comparing the 
two methods, namely LSM and GM. This research 
has been thoroughly examined, showcasing the 
impact of parameters such as the convective-
conductive factor (Ncc), dimensionless thermal 
conductivity coefficients (a), radiative-
conductive parameter (Nrc), Peclet number (Pe), 
and dimensionless convective (θc) and radiative 
sink temperatures (θr) on heat transfer.  

 
Fig. 3. Effect of convective-conductive parameter(Ncc)  

and comparison of GM, LSM results with  
the numerical solution 

Figure 2 displays the temperature 
distribution in the moving rod under different 
thermal conductivity coefficients. As depicted in 
Figure 2, an increase in the dimensionless 
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thermal conductivity coefficient (a) corresponds 
to a rise in the distribution of dimensionless 
temperature within the moving rod. This 
escalation in thermal conductivity coefficient 
amplifies the conductive heat transfer, resulting 
in a subsequent increase in temperature 
distribution. Furthermore, Figures 3 and 4 
illustrate the fluctuations in dimensionless 
temperature associated with varying values of 
the convective-conductive and radiative-
conductive parameters. The convective-
conductive parameter (Ncc) represents the ratio 
of convective heat transfer to conductive heat 
transfer within the moving rod.  

 
Fig. 4. Effect of radiative-conductive parameter (Nrc)and 

comparison of GM, LSM results with the numerical solution 

Consequently, an elevation in the convective-
conductive parameter corresponds to an 
increased magnitude of heat loss. Likewise, the 
impact of the radiative-conductive parameter 
(Nrc) on dimensionless temperature is depicted 
in Figure 4. This visual representation illustrates 
that with an increase in radiative heat transfer, 
indicated by the rise in Nrc, the local temperature 
within the fin experiences a decrease. 
Furthermore, Figure 5 illustrates the impact of 
the Peclet number (Pe) on the distributions of 
dimensionless temperature along the moving 
rod. Notably, it is observed that the 
dimensionless temperature tends to increase as 
the Peclet number rises. In the context of the 
moving rod, the Peclet number is defined as the 
ratio of the thermal advective transport rate to 
the thermal diffusive transport rate. An increase 
in the Peclet number implies that the rod is 
moving at a higher speed, consequently resulting 
in higher dimensionless temperatures. Figures 6 
and 7 provide a detailed depiction of how 
changes in dimensionless convective sink 
temperatures and dimensionless radiative sink 

temperatures influence temperature profiles. An 
increase in convective sink temperatures and 
dimensionless radiative sink temperatures 
results in higher dimensionless temperatures 
within a fin. Analyzing Figure 6 reveals a clear 
link between raising the convective sink 
temperature and a significant drop in convective 
heat loss from the moving rod. This observation 
emphasizes the direct connection between the 
convective sink temperature and the heat 
transfer mechanisms occurring within the rod. 

 
Fig. 5. Effect of Peclet number (Pe) and comparison of GM, 

LSM results with the numerical solution 

This decrease in convective heat loss can lead 
to an uptick in the dimensionless temperature 
within the moving rod. Conversely, when turning 
our focus to Figure 7, increasing the radiative 
sink temperature initiates a contrasting effect-a 
decrease in radiative heat loss and, consequently, 
an increase in the dimensionless temperature 
within the moving rod. 

 
Fig. 6. Effect of dimensionless convective sink temperatures 

(θc) and comparison of GM, LSM results with  
the numerical solution 
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It's important to emphasize that when we 
compare the impacts of these two sink 
temperatures, the dimensionless radiative sink 
temperature emerges as the more influential 
factor in determining the overall dimensionless 
temperature within the moving rod. This 
underscores the intricate interplay of factors 
governing heat transfer and temperature 
distribution in this system. 

 
Fig. 7. Effect dimensionless radiative sink temperatures 

(θr)and comparison of GM, LSM results with 
 the numerical solution 

5. Conclusions 

This study investigates rod fins' thermal 
performance with temperature-dependent 
thermal conductivity in detail via the Galerkin 
Method (GM) and Least Square Method (LSM). 
Dimensionless temperature distribution along 
the length of the fin has been determined as a 
function of convective, radiative, and Peclet 
numbers. Also, the fourth-order runge-kutta 
method is applied as a numeric scheme to tackle 
and show the high ability of proposed methods on 
nonlinear systems of the ordinary differential 
equations. 

The following important points can be 
concluded from the present study: 

The comparison of the analytical solution with 
the numerical outcomes shows that the proposed 
methods are convenient and powerful methods 
in heat transfer problems. Also, the comparison 
revealed that the difference in the temperature 
profiles is almost negligible when the two 
methods (LSM and GM) are compared. Moreover, 
increasing the thermal conductivity coefficient 
will enhance the conductive heat transfer, and 
this will lead to an increase in the distribution of 
temperature. In addition, the results indicate that 
as the buoyancy effects become stronger, i.e., Ncc 

increases, the local temperature in the fin 
decreases. Similarly, the local fin temperature 
decreases as the increases of radiative heat 
exchange between the exposed surface of the fin 
and the ambient. Moreover, the results illustrate 
that the dimensionless radiative sink 
temperature has a more significant role in the 
dimensionless temperature than the 
dimensionless convective sink temperature. A 
rise in the Peclet number, denoting the ratio of 
thermal advective transport rate to thermal 
diffusive transport rate in the context of the 
moving rod, correlates with elevated 
dimensionless temperatures, signifying that 
greater rod velocities result in higher 
temperatures. Looking ahead, there are several 
potential avenues for future research. One 
promising direction is to delve deeper into the 
analysis of entropy generation within convective-
radiative moving fins, taking into account 
variables like variable thermal conductivity and 
internal heat source. Furthermore, our research 
will explore the thermal performance of fins with 
various profiles under the influence of magnetic 
field effects. These investigations will expand our 
understanding of heat transfer in complex 
scenarios and could have practical implications 
for the design and optimization of thermal 
systems 
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