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 In this paper, analytical and numerical modeling has investigated the behavior of Functionally 

Graded Carbon Nanotube-Reinforced Composite (FG-CNTRC) plates under Low-Velocity 

Impact (LVI). The mixed law is employed to obtain the mechanical properties of carbon 

nanotubes (CNT) and methyl methacrylate. Nonlinear equations of analytical modeling are 

derived based on the Third-order Shear Deformation Theory (TSDT), Hertz law (to define the 

contact force), and the energy principle. After calculating the strain and stress fields, the Ritz 

method is used to obtain motion equations. Fourth order Runge-Kutta method is applied for 

solving equations of motion. In the following, LVI on FG-CNTRC plates is simulated using the 

FE code, ABAQUS software. The results of the analytical and numerical model are compared 

with the other results of LVI on FG-CNTRC, and there is good agreement between them. In 

addition, the effects of CNTs graded profile, volume fraction, impactor velocity, impactor 

radius, and geometrical parameters are investigated. 
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1. Introduction 

Functionally graded carbon nanotubes 
reinforced composite (FG-CNTRC) structures 
have widely been used in industrial, aerospace, 
and ... applications. FG-CNTRCs have good 
mechanical, thermal, and vibration 
characteristics properties. 

In recent decades, many types of research 
have been carried out about the behavior of the 
materials under different loadings, such as 
impact problems including Low-Velocity Impact 
(LVI) [1], High-Velocity Impact (HVI)[2, 3], high 
strain rate loadings[4,5], etc. The projectile 
velocity is very low so that the strain rate value is 
less than one so that the behavior of the materials 
under LVI is nearly similar to the material's 

response under quasi-static loading. Abrate [4] 
has studied various models of LVI of the 
composite and sandwich panel structures which 
are used in the Hertz contact law. The effect of 
boundary conditions on LVI on Fiber Metal 
Laminates (FMLs) is investigated by Zarei et al. 
[6]. They used Hamilton’s principle, Hertzian 
contact law, and the fourth-order Rung-Kutta 
method to study and showed the contact duration 
and the number of contacts between impactor 
and FMLs will vary when the boundary 
conditions change. 

Taghipoor et al. [7] used the response surface 
methodology (RSM) to study the impact of 
graphene nano-sheet, basalt fiber, and 
polypropylene-grafted maleic anhydride 
reinforcements on the mechanical behavior of 
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polypropylene polymer nanocomposites, 
experimentally. They showed graphene nano-
sheets at 1.5 wt% improved the elastic modulus 
by about 70%. In addition, Niaraki et al. applied 
RMS to find the effects of graphene nanosheets, 
nano clay, and glass fibers on the hybrid 
polypropylene and ethylene-propylene-
monomer (EPDM). According to the results of the 
article, enhancement of the nanosheets of 
graphene has improved the elastic modulus.  

Taghipoor and  Mirzaei [8] studied the effects 
of the natural kenaf fibers, basalt fiber, and nano-
graphene on the tensile strength of the 
polypropylene-based bio-composites. They 
showed kenaf fiber has the most effect on 
improving the tensile strength, and basalt fiber 
has the most effect on the improvement of the 
elastic modulus. Sadeghian et al. [9] conducted an 
experimental study and used optimization to 
define the absorption and impact strength of 
fiber-reinforced concrete (FRC).  

Lei and Tong [10] analyzed the LVI response 
of the graphene-reinforced composite 
functionally graded (GRC-FG) cylindrical shells in 
thermal environments by using the Halpin–Tsai 
micromechanical model, Fourier series 
expansion and Laplace transforms. Fallah et al. 
[11] presented a semi-analytical model to study 
the LVI impact response of temperature-
dependent CNTRC plates by using the free-mesh 
Ritz method. They showed the distribution 
profile of the type X pattern results in lower 
maximum deflection and higher maximum 
contact force. 

Feli et al. [12] suggested a new analytical 
model based on the first-order shear deformation 
theory (FSDT) and spring-mass model for the 
behavior of CNTRC under LVI. According to the 
analytical model, by increasing the CNTs volume 
fraction, enhancement of the axial stress and 
reduction of the axial strain has occurred. 

Yang and Ma [13] analyzed the LVI response 
of an FG-CNTRC plate with negative Poisson 
ratios. They combined Reddy's higher-order 
shear deformation theory, the rule of a mixture 
model, and the Hertz contact law to derive the 
equations of motion, material properties, and 
contact force, respectively. They showed that 
temperature, initial impact velocity, and contact 
force increase are effective parameters for FG-
CNTRC behavior. 

In this paper, the LVI nonlinear response of an 
FG-CNTRC plate is calculated by analytical and 
numerical methods. Four different kinds of 
nanotube distribution layers (i.e., UD, FGV, FGX, 
and FGO) are studied in the analysis. The 
mechanical properties of the plate are estimated 
by using the mixed law. Third-order Shear 
Deformation Theory (TSDT), Hertz law, and the 
energy principle are used in the equations of 

motion. Finally, the fourth-order Runge-Kutta 
method is used to solve equations of motion. In 
addition, the numerical method is employed to 
investigate the behavior of the FG-CNTRC plate 
under LVI. The results of the analytical and 
numerical methods are compared with the other 
well-known models and there is good agreement 
between them. The effects of CNRTC types, 
volume fraction, initial velocity, and radius 
impactor are investigated. 

2. Analytical Model 

The schematic view of LVI on a rectangular 
FG-CNTRC plate is shown in Figure 1. The length, 
width, and thickness of the plate are defined as 

a , b  and h , respectively. In addition, the radius 
and initial velocity of the spherical rigid impactor 
are designated as R  and 0V  , respectively. 

 
Fig. 1. Configuration of an FG-CNTRC plate subjected to LVI. 

The principal energy method was employed 
to derive equations of motion. By considering the 
plate and impactor as a system, the total potential 
energy ( P ) and kinematic energy (T )  of the 
system can be expressed as: 

𝑃 =
1

2
∫ (𝜎𝑥𝑥𝜀𝑥𝑥 + 𝜎𝑦𝑦𝜀𝑦𝑦 + 𝜎𝑥𝑦𝛾𝑥𝑦
𝑉

+ 𝜎𝑦𝑧𝛾𝑦𝑧 + 𝜎𝑥𝑧𝛾𝑥𝑧)𝑑𝑉 

                    +
2

5
𝐾𝑖𝑚𝑝 (𝑦 − 𝑤0 (

𝑎

2
,
𝑏

2
‚𝑡))

5
2

 

(1) 

𝑇 =
1

2
∫ 𝜌(𝑢̇2 + 𝑣̇2 + 𝑤̇2)𝑑𝑉
𝑉

 

                   +
1

2
𝑀𝑖𝑚𝑝𝑦̇

2 

(2) 

where xx  and yy  are components of axial 

plane stress in the x and y direction, respectively. 

In addition, yz and xz  are transverse 

components of the stress field. xx and yy are 

components of axial strain and xy , yz and xz

are components of the shear strain field. It is 

worth mentioning, in the above equation ,
2 2

a b 
 
 

 



Feli et al. / Mechanics of Advanced Composite Structures 11 (2024) 281 - 294 

283 

is the position in which impact takes place, y  the 

displacement of the impactor, 
0w  is transverse 

displacement of the mid-plane, and impK  the 

contact stiffness which is evaluated by [14]: 

𝐾𝑖𝑚𝑝 =
4

3
√𝑅(

1

𝐸33‚𝑖𝑚𝑝
+
1 − 𝜈𝑠

2

𝐸𝑠
)−1 (3) 

in the above equation, R , 33,impE , s  and sE  are 

impactor radius, the transverse elasticity 
modulus in the surface of FG-CNTRC plate, 
Poisson ratio, and Young modulus of the 
impactor, respectively. It should be noted that the 
first and second parts in Eq.(1) demonstrate the 
potential energy of the plate and potential energy 
due to contact between the impactor and the 
plate.  

In Eq.(2), u  , v  , w are components of plate 

velocity in x, y, and z directions, respectively. In 
addition,   is plate density and impactor 

velocity. The first part of Eq.(2) represented the 
kinetic energy of the plate and the second part 
showed the kinematic energy of the impactor. 

To calculate the potential and kinetic energy, 
the stress and strain field and velocity component 
(due to displacement) must be defined. High-
order Shear Deformation Theory (HSDT) is 
employed to determine the total displacements 
( u , v , w ) along the three coordinate axes  

( x , y , z ) [15]: 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥‚𝑦‚𝑡) − 𝑧
𝜕𝑤

𝜕𝑥
 

                            +𝑓(𝑧)𝜃1(𝑥‚𝑦‚𝑡) 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥‚𝑦‚𝑡) − 𝑧
𝜕𝑤

𝜕𝑦
 

                           +𝑓(𝑧)𝜃2(𝑥‚𝑦‚𝑡) 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥‚𝑦‚𝑡) 

(4) 

in which (
0u ,

0v , 0w ) are the displacement 

components along the ( x , y , z ) direction, of a 

point on the midplane, respectively. 
1  and 

2  

represent rotations of a point on the midplane of 

the plate, while 𝑓(𝑧) = 𝑧 (1 −
4

3
(
𝑧

ℎ
)
2

) represents 

the transverse shear strain distribution along the 
thickness.  

The strain-displacement relation of any point 
of the plate and the stress-strain relation is 
present may be written as [16]: 

{

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦

} =

{
  
 

  
 

𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑦

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥 }
  
 

  
 

− 𝑧

{
  
 

  
 
𝜕2𝑤0
𝜕𝑥2

𝜕2𝑤0
𝜕𝑦2

2
𝜕2𝑤0
𝜕𝑥𝑦 }

  
 

  
 

+ 𝑓(𝑧)

{
  
 

  
 

𝜕𝜃1
𝜕𝑥
𝜕𝜃2
𝜕𝑦

𝜕𝜃1
𝜕𝑦

+
𝜕𝜃2
𝜕𝑥 }
  
 

  
 

 

(5) 

{
𝛾𝑦𝑧
𝛾𝑥𝑧
} = 𝑓′(𝑧) {

𝜃2
𝜃1
} (6) 

{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

} = [

𝑄̅11 𝑄̅12 𝑄̅16
𝑄̅12 𝑄̅22 𝑄̅26
𝑄̅16 𝑄̅26 𝑄̅66

] {

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦

} (7) 

{
𝜎𝑦𝑧
𝜎𝑥𝑧

} = [
𝑄̅44 𝑄̅45
𝑄̅45 𝑄̅55

] {
𝛾𝑦𝑧
𝛾𝑥𝑧
} (8) 

in which    and    represent the stress and 

strain components. Besides, the reduced stiffness 
matrix for the plate and defined below: 

𝑄̅11 =
𝐸11

1 − 𝜈12𝜈21
 

𝑄̅22 =
𝐸22

1 − 𝜈12𝜈21
 

𝑄̅12 =
𝜈21𝐸11

1 − 𝜈12𝜈21
 

𝑄̅16 = 𝑄̅26 = 𝑄̅45 = 0 

𝑄̅66 = 𝐺12 

𝑄̅44 = 𝐺23 

𝑄̅55 = 𝐺13 

(9) 

where ( 1,2)iiE i = , ( , 1, 2)ij i j =  and 

( , 1, 2,3)ijG i j =  are Young’s modulus, Poisson’s 

ratio, and shear modulus of the FG-CNTRC plate 
by combining the properties of the matrix (shown 
by m superscript) and carbon nanotubes (shown 
by CN superscript). These parameters are 
determined by the following relations[15]: 

𝐸11 = 𝜂1𝑉𝐶𝑁𝐸11
𝐶𝑁 + 𝑉𝑚𝐸

𝑚 

𝜂2
𝐸22

=
𝑉𝐶𝑁

𝐸22
𝐶𝑁 +

𝑉𝑚
𝐸𝑚

 

𝜂3
𝐺12

=
𝑉𝐶𝑁

𝐺12
𝐶𝑁 +

𝑉𝑚
𝐺𝑚

 

𝜈12 = 𝑉𝐶𝑁𝜐12
𝐶𝑁 + 𝑉𝑚𝜐

𝑚 

𝜌 = 𝑉𝐶𝑁𝜌
𝐶𝑁 + 𝑉𝑚𝜌

𝑚 

(10) 
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The coefficients ( 1,2,3)i i =  are introduced 

to account for the scale-dependent material 
properties. Furthermore, 

CNV  and 
mV  are the 

volume fractions of CNTs and matrix phase, 
respectively, and must satisfy the bellow 
condition: 

𝑉𝐶𝑁 + 𝑉𝑚 = 1 (11) 

By considering Eqs. (1-9), the potential and 
kinetic energy can be expressed as below: 

𝑃 =
1

2
∫ (𝑄̅11 [

𝜕𝑢0
𝜕𝑥

− 𝑧
𝜕2𝑤0
𝜕𝑥2

+ 𝑓(𝑧)
𝜕𝜃1
𝜕𝑥
]

2

𝑉

+ 2𝑄̅12 [
𝜕𝑢0
𝜕𝑥

− 𝑧
𝜕2𝑤0
𝜕𝑥2

+ 𝑓(𝑧)
𝜕𝜃1
𝜕𝑥
] [
𝜕𝑣0
𝜕𝑦

− 𝑧
𝜕2𝑤0
𝜕𝑦2

+ 𝑓(𝑧)
𝜕𝜃2
𝜕𝑦
]

+ 𝑄̅22 [
𝜕𝑣0
𝜕𝑦

− 𝑧
𝜕2𝑤0
𝜕𝑦2

+ 𝑓(𝑧)
𝜕𝜃2
𝜕𝑦
]

2

+ 𝑄̅66 [
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥

− 2𝑧
𝜕2𝑤0
𝜕𝑥𝑦

+ 𝑓(𝑧)
𝜕𝜃1
𝜕𝑦

+ 𝑓(𝑧)
𝜕𝜃2
𝜕𝑥
]

2

+ 𝑄̅44[𝑓
′(𝑧)𝜃2]

2

+ 𝑄̅55[𝑓
′(𝑧)𝜃1]

2)𝑑𝑉 +
2

5
𝐾𝑖𝑚𝑝(𝑦 − 𝑤0(𝑎. 𝑏‚𝑡))

5
2 

(12) 

𝑇 =
1

2
∫ 𝜌 ([𝑢0̇ − 𝑧

𝜕𝑤0̇
𝜕𝑥

+ 𝑓(𝑧)𝜃1̇]
2

+ [𝑣0̇ − 𝑧
𝜕𝑤0̇
𝜕𝑦

+ 𝑓(𝑧)𝜃2̇]
2

+ [𝑤0̇]
2)𝑑𝑉

𝑉

+
1

2
𝑀𝑖𝑚𝑝𝑦̇

2 (13) 

 

In the above equations, five parameters are 
undefined which include: 𝑢0(𝑥‚𝑦, 𝑡), 𝑣0(𝑥‚𝑦, 𝑡), 
𝑤0(𝑥‚𝑦, 𝑡), 𝜃1(𝑥‚𝑦, 𝑡) and 𝜃2(𝑥‚𝑦, 𝑡). There are 
several methods to solve partial or ordinary 
equations [16-18]. In the paper, the Ritz method 
is employed. separation of variables method is 
the first step for solving the equations: 

(14) 

𝑢0(𝑥‚𝑦. 𝑡) = ∑𝑈𝑛(𝑡)𝑁𝑛
𝑢(𝑥. 𝑦)

𝑁

𝑛=1

 

𝑣0(𝑥‚𝑦. 𝑡) = ∑𝑉𝑛(𝑡)𝑁𝑛
𝑣(𝑥. 𝑦)

𝑁

𝑛=1

 

𝑤0(𝑥‚𝑦. 𝑡) = ∑𝑊𝑛(𝑡)𝑁𝑛
𝑤(𝑥. 𝑦)

𝑁

𝑛=1

 

𝜃1(𝑥‚𝑦. 𝑡) = ∑𝑋𝑛(𝑡)𝑁𝑛
𝜃1(𝑥. 𝑦)

𝑁

𝑛=1

 

𝜃2(𝑥‚𝑦. 𝑡) = ∑𝑌𝑛(𝑡)𝑁𝑛
𝜃2(𝑥. 𝑦)

𝑁

𝑛=1

 

where, and ( )nY t  are time-dependent 

coefficients. In addition, 
u

nN  , 
v

nN , 
w

nN , 1

nN
and 

2

nN 
 are the shape functions have to be chosen 

according only to the essential boundary 
conditions. In this paper, the linear types of shape 
functions are used (Appendix A). Furthermore, 

N  the number of terms should be chosen to 

ensure the convergence of the total 
displacements. By considering Eq (12-13) and 
appendix: 
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𝑃 =
1

2
∫ (𝑄̅11 [∑𝑈𝑛(𝑡)

𝑑𝑁𝑛
𝑢(𝑥. 𝑦)

𝑑𝑥

𝑁

𝑛=1

− 𝑧∑𝑊𝑛(𝑡)
𝑑2𝑁𝑛

𝑤(𝑥. 𝑦)

𝑑𝑥2

𝑁

𝑛=1

+ 𝑓(𝑧)∑𝑋𝑛(𝑡)

𝑁

𝑛=1

𝑑𝑁𝑛
𝜃1(𝑥. 𝑦)

𝑑𝑥
]

2

𝑉

+ 2𝑄̅12 [∑𝑈𝑛(𝑡)
𝑑𝑁𝑛

𝑢(𝑥. 𝑦)

𝑑𝑥

𝑁

𝑛=1

− 𝑧∑𝑊𝑛(𝑡)
𝑑2𝑁𝑛

𝑤(𝑥. 𝑦)

𝑑𝑥2

𝑁

𝑛=1

+ 𝑓(𝑧)
𝜕𝜃1
𝜕𝑥
] [∑𝑉𝑛(𝑡)

𝑑𝑁𝑛
𝑣(𝑥. 𝑦)

𝑑𝑦

𝑁

𝑛=1

− 𝑧∑𝑊𝑛(𝑡)
𝑑2𝑁𝑛

𝑤(𝑥. 𝑦)

𝑑𝑦2

𝑁

𝑛=1

+ 𝑓(𝑧)∑𝑌𝑛(𝑡)
𝑑𝑁𝑛

𝜃2(𝑥. 𝑦)

𝑑𝑦

𝑁

𝑛=1

]

+ 𝑄̅22 [∑𝑉𝑛(𝑡)
𝑑𝑁𝑛

𝑣(𝑥. 𝑦)

𝑑𝑦

𝑁

𝑛=1

− 𝑧∑𝑊𝑛(𝑡)
𝑑2𝑁𝑛

𝑤(𝑥. 𝑦)

𝑑𝑥2

𝑁

𝑛=1

+ 𝑓(𝑧)∑𝑌𝑛(𝑡)
𝑑𝑁𝑛

𝜃2(𝑥. 𝑦)

𝑑𝑦

𝑁

𝑛=1

]

2

+ 𝑄̅66 [∑𝑈𝑛(𝑡)
𝑑𝑁𝑛

𝑢(𝑥. 𝑦)

𝑑𝑦

𝑁

𝑛=1

+∑𝑉𝑛(𝑡)
𝑑𝑁𝑛

𝑣(𝑥. 𝑦)

𝑑𝑥

𝑁

𝑛=1

− 2𝑧∑𝑊𝑛(𝑡)
𝑑2𝑁𝑛

𝑤(𝑥. 𝑦)

𝑑𝑥𝑦

𝑁

𝑛=1

+ 𝑓(𝑧)∑𝑋𝑛(𝑡)

𝑁

𝑛=1

𝑑𝑁𝑛
𝜃1(𝑥. 𝑦)

𝑑𝑦
+ 𝑓(𝑧)∑𝑌𝑛(𝑡)

𝑑𝑁𝑛
𝜃2(𝑥. 𝑦)

𝑑𝑥

𝑁

𝑛=1

]

2

+ 𝑄̅44 [𝑓
′(𝑧)∑𝑌𝑛(𝑡)𝑁𝑛

𝜃2(𝑥. 𝑦)

𝑁

𝑛=1

]

2

+ 𝑄̅55 [𝑓
′(𝑧)∑𝑋𝑛(𝑡)𝑁𝑛

𝜃1(𝑥. 𝑦)

𝑁

𝑛=1

]

2

)𝑑𝑉

+
2

5
𝐾𝑖𝑚𝑝(𝑦 − 𝑤0(𝑎. 𝑏‚𝑡))

5
2 

(15) 

𝑇 =
1

2
∫ 𝜌([∑

𝑑𝑈𝑛(𝑡)

𝑑𝑡
𝑁𝑛
𝑢(𝑥. 𝑦)

𝑁

𝑛=1

− 𝑧∑
𝑑𝑊𝑛(𝑡)

𝑑𝑡

𝑑𝑁𝑛
𝑤(𝑥. 𝑦)

𝑑𝑥

𝑁

𝑛=1

+ 𝑓(𝑧)∑
𝑑𝑋𝑛(𝑡)

𝑑𝑡
𝑁𝑛
𝜃1(𝑥. 𝑦)

𝑁

𝑛=1

]

2

𝑉

+ [∑
𝑑𝑉𝑛(𝑡)

𝑑𝑡
𝑁𝑛
𝑣(𝑥. 𝑦)

𝑁

𝑛=1

− 𝑧∑
𝑑𝑊𝑛(𝑡)

𝑑𝑡

𝑑𝑁𝑛
𝑤(𝑥. 𝑦)

𝑑𝑦

𝑁

𝑛=1

+ 𝑓(𝑧)∑
𝑑𝑌𝑛(𝑡)

𝑑𝑡
𝑁𝑛
𝜃2(𝑥. 𝑦)

𝑁

𝑛=1

]

2

+ [∑
𝑑𝑊𝑛(𝑡)

𝑑𝑡
𝑁𝑛
𝑤(𝑥. 𝑦)

𝑁

𝑛=1

]

2

)𝑑𝑉 +
1

2
𝑀𝑖𝑚𝑝𝑦̇

2 

(16) 

Motion equations can be determined based on the generalized Lagrange equations: 

(17)

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑈̇𝑛
) −

𝜕𝑇

𝜕𝑈𝑛
+
𝜕𝑃

𝜕𝑈𝑛
= 0‚        𝑛 = 1‚2‚ … ‚ 𝑁

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑉̇𝑛
) −

𝜕𝑇

𝜕𝑉𝑛
+
𝜕𝑃

𝜕𝑉𝑛
= 0‚           𝑛 = 1‚2‚ … ‚ 𝑁

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑊̇𝑛
) −

𝜕𝑇

𝜕𝑊𝑛
+
𝜕𝑃

𝜕𝑊𝑛
= 0‚      𝑛 = 1‚2‚ … ‚ 𝑁

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑋𝑛̇
) −

𝜕𝑇

𝜕𝑋𝑛
+
𝜕𝑃

𝜕𝑋𝑛
= 0‚        𝑛 = 1‚2‚ … ‚ 𝑁

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑌𝑛̇
) −

𝜕𝑇

𝜕𝑌𝑛
+
𝜕𝑃

𝜕𝑌𝑛
= 0‚         𝑛 = 1‚2‚ … ‚ 𝑁

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑦̇
) −

𝜕𝑇

𝜕𝑦
+
𝜕𝑃

𝜕𝑦
= 0 

By substituting the eq. (15) and eq. (16) to eq. (17): 
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(18)

[𝑀uu]{𝑈̈𝑛} + [𝑀uv]{𝑉̈𝑛} + [𝑀uw]{𝑊̈𝑛} + [𝑀𝑢𝜃1
]{𝑋𝑛̈} + [𝑀𝑢𝜃2

]{𝑌𝑛̈} + [𝐾uu]{𝑈𝑛} + [𝐾uv]{𝑉𝑛}

+ [𝐾uw]{𝑊𝑛} + [𝐾𝑢𝜃1]{𝑋𝑛} + [𝐾𝑢𝜃2]{𝑌𝑛} = 0

[𝑀vu]{𝑈̈𝑛} + [𝑀vv]{𝑉̈𝑛} + [𝑀vw]{𝑊̈𝑛} + [𝑀𝑣𝜃1]{𝑋𝑛̈} + [𝑀𝑣𝜃2]{𝑌𝑛̈} + [𝐾vu]{𝑈𝑛} + [𝐾vv]{𝑉𝑛}

+ [𝐾vw]{𝑊𝑛} + [𝐾𝑣𝜃1]{𝑋𝑛} + [𝐾𝑣𝜃2]{𝑌𝑛} = 0 

[𝑀wu]{𝑈̈𝑛} + [𝑀wv]{𝑉̈𝑛} + [𝑀ww]{𝑊̈𝑛} + [𝑀𝑤𝜃1]{𝑋𝑛̈} + [𝑀𝑤𝜃2]{𝑌𝑛̈} + [𝐾wu]{𝑈𝑛} + [𝐾wv]{𝑉𝑛}

+ [𝐾ww]{𝑊𝑛} + [𝐾𝑤𝜃1]{𝑋𝑛̈} + [𝐾𝑤𝜃2]{𝑌𝑛} = 0 

[𝑀𝜃1u
]{𝑈̈𝑛} + [𝑀𝜃1v

]{𝑉̈𝑛} + [𝑀𝜃1w
]{𝑊̈𝑛} + [𝑀𝜃1𝜃1

]{𝑋𝑛̈} + [𝑀𝜃1𝜃2
]{𝑌𝑛̈} + [𝐾𝜃1u]{𝑈𝑛} + [𝐾𝜃1v]{𝑉𝑛}

+ [𝐾𝜃1w]{𝑊𝑛} + [𝐾𝜃1𝜃1]{𝑋𝑛} + [𝐾𝜃1𝜃2]{𝑌𝑛̈} = 0 

[𝑀𝜃2u]{𝑈̈𝑛} + [𝑀𝜃2v]{𝑉̈𝑛} + [𝑀𝜃2w]{𝑊̈𝑛} + [𝑀𝜃2𝜃1]{𝑋𝑛̈} + [𝑀𝜃2𝜃2]{𝑌𝑛̈} + [𝐾𝜃2u]{𝑈𝑛} + [𝐾𝜃2v]{𝑉𝑛}

+ [𝐾𝜃2w]{𝑊𝑛} + [𝐾𝜃2𝜃1]{𝑋𝑛} + [𝐾𝜃2𝜃2]{𝑌𝑛} = 0 

In addition, by applying Newton’s second law for contact force and considering Hertz’s contact law, the 
Equilibrium equation can be expressed as 

𝑦̈ = −𝐹𝑖𝑚𝑝 → 𝑚𝑦̈ = −𝐾𝑖𝑚𝑝𝛼
3/2 = −𝐾𝑖𝑚𝑝 (𝑦 −∑𝑊𝑛(𝑡)𝑁𝑛

𝑤(𝑎. 𝑏)

𝑁

𝑛=1

) (19) 

Finally, nonlinear coupled time-dependent equations can be written as 

[
 
 
 
 
 
 
 [𝑀uu]  [𝑀uv]  [𝑀uw]  [𝑀𝑢𝜃1]   [𝑀𝑢𝜃2]

[𝑀vu]   [𝑀vv] [𝑀vw] [𝑀𝑣𝜃1]    [𝑀𝑣𝜃2]

[𝑀wu] [𝑀wv]  [𝑀ww]  [𝑀𝑤𝜃1]  [𝑀𝑤𝜃2]

[𝑀𝜃1u] [𝑀𝜃1v] [𝑀𝜃1w] [𝑀𝜃1𝜃1] [𝑀𝜃1𝜃2]

[𝑀𝜃2u] [𝑀𝜃2v] [𝑀𝜃2w] [𝑀𝜃2𝜃1] [𝑀𝜃2𝜃2]]
 
 
 
 
 
 

{
  
 

  
 
{𝑈̈𝑛}

{𝑉̈𝑛}

{𝑊̈𝑛}

{𝑋̈𝑛}

{𝑌̈𝑛}}
  
 

  
 

+

[
 
 
 
 
 
 
 [𝐾uu]  [𝐾uv]  [𝐾uw]  [𝐾𝑢𝜃1]   [𝐾𝑢𝜃2]

[𝐾vu]   [𝐾vv] [𝐾vw] [𝐾𝑣𝜃1]    [𝐾𝑣𝜃2]

[𝐾wu] [𝐾wv]  [𝐾ww]  [𝐾𝑤𝜃1]  [𝐾𝑤𝜃2]

[𝐾𝜃1u] [𝐾𝜃1v] [𝐾𝜃1w] [𝐾𝜃1𝜃1] [𝐾𝜃1𝜃2]

[𝐾𝜃2u] [𝐾𝜃2v] [𝐾𝜃2w] [𝐾𝜃2𝜃1] [𝐾𝜃2𝜃2]]
 
 
 
 
 
 

{
 
 

 
 
{𝑈𝑛}

{𝑉𝑛}

{𝑊𝑛}

{𝑋𝑛}

{𝑌𝑛}}
 
 

 
 

=

{
 
 

 
 
0
0
𝐹𝑖𝑚𝑝
0
 0

𝑁𝑛
𝑤(𝑎. 𝑏)

}
 
 

 
 

 

(20) 

The relation between the mass and stiffness components is mentioned in Appendix (A). Eq. (20) can be 
solved by as fourth-order Runge–Kutta numerical method. The initial conditions are 

𝑈𝑛(0) = 0,   𝑉𝑛(0) = 0,    𝑊𝑛(0) = 0,    𝑋𝑛(0) = 0,         𝑌𝑛(0) = 0 

𝑈̇𝑛(0) = 0,   𝑉̇𝑛(0) = 0,    𝑊̇𝑛(0) = 0,    𝑋̇𝑛(0) = 0, 𝑌̇𝑛(0) = 0 

𝑦(0) = 0, 𝑦(0)̇ = 𝑉0 

(21) 
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3. Result and Discussion 

To investigate the model, the FEM simulation 
is applied in the ABAQUS. The 937500 C3D8R 
element is used in the FEM model (Figure 2). 
Surface to Surface-to-surface contact is 
considered between the impactor and plate.  

 

Fig. 2. FEM model of the LVI on the FG-CNTRC. 

For validating the accuracy of the analytical 

model and FEM simulation, contact force and 

central deflection history computed by the 

analytical model and simulation are compared 

with Wang et al. model [19] as shown in Figure 3.  

Table 1 shows the material and geometrical 

properties of the composite plate and the 

impactor used in Refs [15]. Figures 3(a) and 3(b) 

show a good agreement in the results.  

Considering that the FEM simulation is based 

on solving the governing constitutive equations 

with the numerical method, but the analytical 

model presented in this paper is based on the 

third-order shear deformation Theory, Hertz 

contact law, and the energy principle, the 

difference between the results of the analytical 

model and the numerical method is greater than 

the difference between the results of the 

analytical model and Wang et al. model [19]. 

 

(a) 

 

(b) 

 
Fig. 3. Comparisons between the present model and FEM 
with Wang et al.model [20] for impact response of FG-X  

type of FG-CNTRC square plate: (a) contact force and 
(b) central deflection. 

Table 1. Geometrical and material properties of  
FG-CNRTC Plate and impactor [15]. 

Geometrical properties of the plate 

Simply supported boundary condition 

Size: 200.0×200.0×20 mm 

Mechanical properties of Poly (methyl methacrylate) 

2.5mE GPa= ;    0.34m = ;    
3

1190m kg

m
 =   

Mechanical properties of single-walled CNT (SWCNT) 

11 5.6466CNE TPa=  ;    22 7.0800CNE TPa= ;  

12 1.9445CNG TPa=  ;    12 0.175CN =  ;  

3
1400CN kg

m
 =   

properties of steel sphere impactor 

207iE GPa=  ;    0.3i =  ;    
3

7960i kg

m
 =   

Diameter= 12.7 mm 

Velocity= 3 m/s 
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3.1. Types of CNTRC Effects 

In this section, the results of FG-CNTRC types 
(including UD, FG-V, FG-X, and FG-O) effects on 
the single-layer FG-CNTRC plate’s contact force 
and central deflection are discussed. As shown in 
figure 4 (a), The volume fraction of CNT is equal 

to 0.28 ( * 0.28CNV = ). It is obvious from the figure, 

that the history of contact force of type X and V is 
similar together while the value of the maximum 
values of the contact force are equal to 925 and 
926 N for the FG-CNTRC plate of type V and X, 
respectively. The behavior is due to enhancement 

of the volume fraction and impK  (Eq. (3)). 

Besides, the lowest contact time belongs to X and 
V types. FGO type has the maximum contact time 
and lowest contact force among other types of 
CNTs.  From Figure 4 (b), It can be seen the FG-
CNTRC plate of type X has the lowest deflection 
and shortest contact time duration. 

(a) 

 

(b) 

 

Fig. 4. Comparisons of impact response of four types  
of FG-CNTRC square plate: (a) contact force and 

 (b) central deflection. 

3.2. Volume Fraction of CNT Effects 

The volume fraction of CNT is one of the 
effective parameters on the FG-CNTRC plate 
behavior under LVI.  

In the section, the X type of FG-CNTRC plate is 
considered with different volume fractions 
( 0.12,0.17,0.28CNV = ). The effect on the contact 

force and central deflection are shown in Figure 
5(a) and 5(b), respectively. According to the 
figure, by increasing the volume fraction the 
maximum value of the contact force is increased 
while contact time duration and central 
deflection are decreased. This response is due to 
the relation between E22 and 

CNV  (Eq. (10) so that 

enhancement of the 
CNV  cause increasing of the 

E22 and impK .  

(a) 

 

(b) 

 

Fig. 5. Comparisons of impact response of volume fraction 
of X type of FG-CNTRC square plate: (a) contact force  

and (b) central deflection. 

3.3. Effects of Initial Velocity 

As illustrated in Eq.(2), the initial velocity of 
the impactor is an effective parameter of the 
kinetic energy of the system. The efficacy of initial 
velocity in the contact force and central 
deflection is shown in Figure 6. As seen from this 
figure (for three values of initial velocity 1,2 and 
3 m/s), an increase in the initial velocity of the 
impactor, maximum value of contact force, and 
lower contact time duration are concluded. 
Besides, the central deflection of the plate 
increases as the initial velocity of the impactor 
increases. 
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(a) 

 

(b) 

 

Fig. 6. Comparisons of impact response of volume fraction 
of X type of FG-CNTRC square plate with different initial 

velocities: (a) contact force and (b) central deflection. 

3.4. Effects of Radius Impactor 

For the X type of FG-CNRTC,  𝑉0 = 3 and 
different values of radius impactor (𝑅 =
6.35, 9 𝑎𝑛𝑑 12 𝑚𝑚), the response of the plate 
under LVI is shown in Figure 7. It can be seen 
from the figure by increasing the radius impactor, 
the maximum value of the contact force and 
contact time duration increased. The central 
deflection of the plate is also increased by 
increasing the radius impactor. Enhancement of 
the impactor mass, which is due to increasing the 
radius, is the main reason for the plate response. 

(a) 

 

(b) 

 

Fig. 7. Comparisons of impact response of volume fraction 
of X type of FG-CNTRC square plate with different radius 

impactors: (a) contact force and (b) central deflection. 

4. Conclusions 

In the paper, the behavior of an FG-CNTRC 
plate under Low-velocity impact (LVI) is 
investigated analytically and numerically. 
Properties of the plate are obtained by applying a 
rule of mixture. Hertz law and the energy 
principle are used to derive the governing 
equations of Third-order Shear Deformation 
Theory (TSDT). The Ritz method based on the 
linear functions is used to discrete the system's 
space domain equations of motion, which is 
solved by the fourth-order Runge-Kutta method. 
It is concluded that: 

• Among the UD, FG-V, FG-X, and FG-O cases of 
CNT distribution, the FG-X, and FG-V types 
have the most contact force. Moreover, the 
FG-O type has the maximum contact time and 
lowest contact force among other types of 
CNTs. 

• FG-X has the lowest deflection and shortest 
contact time duration. 

• By increasing the volume fraction, the 
maximum value of the contact force is 
increased while contact time duration and 
central deflection are decreased. 

• An increase in the initial velocity of the 
impactor, maximum value of contact force, 
and lower contact time duration are 
concluded 

• The maximum value of the contact force and 
contact time duration increased by 
increasing the radius impactor. 
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Appendix  

The linear shape functions which are 
presented in Eq(14) are: 

A(1) 

𝑁𝑛
𝑢(𝑥. 𝑦) = 𝑥𝑛−1𝑦𝑛−1𝐿𝑢𝑅𝑢 

𝑁𝑛
𝑣(𝑥. 𝑦) = 𝑥𝑛−1𝑦𝑛−1𝐿𝑣𝑅𝑣 

𝑁𝑛
𝑤(𝑥. 𝑦) = 𝑥𝑛−1𝑦𝑛−1𝐿𝑤𝑅𝑤 

𝑁𝑛
𝜃1(𝑥. 𝑦) = 𝑥𝑛−1𝑦𝑛−1𝐿𝜃1𝑅𝜃1 

𝑁𝑛
𝜃2(𝑥. 𝑦) = 𝑥𝑛−1𝑦𝑛−1𝐿𝜃2𝑅𝜃2 

where L  and R  are dependent boundary 
conditions. For simple support: 

A(2) 
@ 𝑥 = 0, 𝑎 → 𝑣0 = 𝑤0 = 𝜃2 = 0 

@ 𝑦 = 0, 𝑏 → 𝑢0 = 𝑤0 = 𝜃1 = 0  

In the study, L  and R are defined as below: 

A(3) 

𝐿𝑢 = 𝑦,      𝑅𝑢 = 𝑏 − 𝑦 

𝐿𝑣 = 𝑥,      𝑅𝑣 = 𝑎 − 𝑥 

𝐿𝑤 = 𝑥𝑦,   𝑅𝑤 = (𝑎 − 𝑥)(𝑏 − 𝑦) 

𝐿𝜃1 = 𝑦,    𝑅𝜃1 = 𝑏 − 𝑦 

𝐿𝜃2 = 𝑥,    𝑅𝜃2 = 𝑎 − 𝑥 

The components of the mass and stiffness 
matrix can be calculated by the following 
equations: 

 𝑀𝑚𝑛
𝑢𝑢 = ∫ 𝐼0𝑁𝑛

𝑢

Ω

𝑁𝑚
𝑢𝑑𝑥𝑑𝑦 

 𝑀𝑚𝑛
𝑢𝑣 = 0 

 𝑀𝑚𝑛
𝑢𝑤 = −∫ 𝐼1𝑁𝑛.𝑥

𝑤

Ω

𝑁𝑚
𝑢𝑑𝑥𝑑𝑦 

 𝑀𝑚𝑛
𝑢𝜃1 = ∫ 𝐼𝑓0𝑁𝑛

𝜃1

Ω

𝑁𝑚
𝑢𝑑𝑥𝑑𝑦 

 𝑀𝑚𝑛
𝑢𝜃2 = 0 

 𝑀𝑚𝑛
𝑣𝑢 = 0 

 𝑀𝑚𝑛
𝑣𝑣 = ∫ 𝐼0𝑁𝑛

𝑣

Ω

𝑁𝑚
𝑣𝑑𝑥𝑑𝑦 

 𝑀𝑚𝑛
𝑣𝑤 = −∫ 𝐼1𝑁𝑛.𝑦

𝑣

Ω

𝑁𝑚
𝑣𝑑𝑥𝑑𝑦 

 𝑀𝑚𝑛
𝑣𝜃1 = 0 

 𝑀𝑚𝑛
𝑣𝜃2 = ∫ 𝐼𝑓0𝑁𝑛

𝜃2

Ω

𝑁𝑚
𝑣𝑑𝑥𝑑𝑦 

 𝑀𝑚𝑛
𝑤𝑢 = −∫ 𝐼1𝑁𝑛

𝑣

Ω

𝑁𝑚.𝑥
𝑤 𝑑𝑥𝑑𝑦 

 𝑀𝑚𝑛
𝑤𝑣 = −∫ 𝐼1𝑁𝑛

𝑣

Ω

𝑁𝑚.𝑦
𝑤 𝑑𝑥𝑑𝑦 

𝑀𝑚𝑛
𝑤𝑤 = ∫(𝐼0𝑁𝑛

𝑤𝑁𝑚
𝑤 + 𝐼2𝑁𝑛.𝑥

𝑤 𝑁𝑚.𝑥
𝑤

Ω

+ 𝐼2𝑁𝑛.𝑦
𝑤 𝑁𝑚.𝑦

𝑤 )𝑑𝑥𝑑𝑦 

 𝑀𝑚𝑛
𝑤𝜃1 = −∫ 𝐼𝑓1𝑁𝑛

𝜃1

Ω

𝑁𝑚.𝑥
𝑤 𝑑𝑥𝑑𝑦 

 𝑀𝑚𝑛
𝑤𝜃2 = −∫ 𝐼𝑓1𝑁𝑛

𝜃2

Ω

𝑁𝑚.𝑦
𝑤 𝑑𝑥𝑑𝑦 

 𝑀𝑚𝑛
𝜃1𝑢 = ∫ 𝐼𝑓0𝑁𝑛

𝑢

Ω

𝑁𝑚
𝜃1𝑑𝑥𝑑𝑦 

 𝑀𝑚𝑛
𝜃1𝑣 = 0 

 𝑀𝑚𝑛
𝜃1𝑢 = −∫ 𝐼𝑓1𝑁𝑛.𝑥

𝑤

Ω

𝑁𝑚
𝜃1𝑑𝑥𝑑𝑦 

 𝑀𝑚𝑛
𝜃1𝜃1 = ∫ 𝐼𝑓𝑓𝑁𝑛

𝜃1

Ω

𝑁𝑚
𝜃1𝑑𝑥𝑑𝑦 

 𝑀𝑚𝑛
𝜃1𝜃2 = ∫ 𝐼𝑓0𝑁𝑛

𝑢

Ω

𝑁𝑚
𝜃1𝑑𝑥𝑑𝑦 

 𝑀𝑚𝑛
𝜃2𝑢 = 0 
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 𝑀𝑚𝑛
𝜃2𝑣 = ∫ 𝐼𝑓0𝑁𝑛

𝑣

Ω

𝑁𝑚
𝜃2𝑑𝑥𝑑𝑦 

 𝑀𝑚𝑛
𝜃2𝑤 = −∫ 𝐼𝑓1𝑁𝑛.𝑦

𝑤

Ω

𝑁𝑚
𝜃2𝑑𝑥𝑑𝑦 

 𝑀𝑚𝑛
𝜃2𝜃1 = 0 

A(4) 𝑀𝑚𝑛
𝜃2𝜃2 = ∫ 𝐼𝑓𝑓𝑁𝑛

𝜃2

Ω

𝑁𝑚
𝜃2𝑑𝑥𝑑𝑦 

 

{
 
 

 
 
𝐼0
𝐼1
𝐼2
𝐼𝑓0
𝐼𝑓1
𝐼𝑓𝑓}
 
 

 
 

= ∫𝜌0

{
  
 

  
 

1
𝑧
𝑧2

𝑓(𝑧)

𝑧𝑓(𝑧)

(𝑓(𝑧))
2
}
  
 

  
 ℎ

2

−
ℎ
2

𝑑𝑧 

𝐾𝑚𝑛
𝑢𝑢 = ∫(𝐴11𝑁𝑛.𝑥

𝑢 𝑁𝑚.𝑥
𝑢 + 𝐴16𝑁𝑛.𝑦

𝑢 𝑁𝑚.𝑥
𝑢

Ω

+ 𝐴16𝑁𝑛.𝑥
𝑢 𝑁𝑚.𝑦

𝑢

+ 𝐴66𝑁𝑛.𝑦
𝑢 𝑁𝑚.𝑦

𝑢 )𝑑𝑥𝑑𝑦 

𝐾𝑚𝑛
𝑢𝑣 = ∫(𝐴12𝑁𝑛.𝑦

𝑣 𝑁𝑚.𝑥
𝑢 + 𝐴16𝑁𝑛.𝑥

𝑣 𝑁𝑚.𝑥
𝑢

Ω

+ 𝐴26𝑁𝑛.𝑦
𝑣 𝑁𝑚.𝑦

𝑢

+ 𝐴66𝑁𝑛.𝑥
𝑣 𝑁𝑚.𝑦

𝑢 )𝑑𝑥𝑑𝑦 

𝐾𝑚𝑛
𝑢𝑤 = −∫(𝐵11𝑁𝑛.𝑥𝑥

𝑤 𝑁𝑚.𝑥
𝑢 + 𝐵12𝑁𝑛.𝑦𝑦

𝑤 𝑁𝑚.𝑥
𝑢

Ω

+ 2𝐵16𝑁𝑛.𝑥𝑦
𝑤 𝑁𝑚.𝑥

𝑢

+ 𝐵16𝑁𝑛.𝑥𝑥
𝑤 𝑁𝑚.𝑦

𝑢

+ 𝐵26𝑁𝑛.𝑦𝑦
𝑤 𝑁𝑚.𝑦

𝑢

+ 2𝐵66𝑁𝑛.𝑥𝑦
𝑤 𝑁𝑚.𝑦

𝑢 )𝑑𝑥𝑑𝑦 

𝐾𝑚𝑛
𝑢𝜃1 = ∫(𝐸11𝑁𝑛.𝑥

𝜃1𝑁𝑚.𝑥
𝑢 + 𝐸16𝑁𝑛.𝑦

𝜃1𝑁𝑚.𝑥
𝑢

Ω

+ 𝐸66𝑁𝑛.𝑦
𝜃1𝑁𝑚.𝑦

𝑢

+ 𝐸16𝑁𝑛.𝑥
𝜃1𝑁𝑚.𝑦

𝑢 )𝑑𝑥𝑑𝑦 

𝐾𝑚𝑛
𝑢𝜃2 = ∫(𝐸12𝑁𝑛.𝑦

𝜃2𝑁𝑚.𝑥
𝑢 + 𝐸16𝑁𝑛.𝑥

𝜃2𝑁𝑚.𝑥
𝑢

Ω

+ 𝐸26𝑁𝑛.𝑦
𝜃2𝑁𝑚.𝑦

𝑢

+ 𝐸66𝑁𝑛.𝑥
𝜃2𝑁𝑚.𝑦

𝑢 )𝑑𝑥𝑑𝑦 

𝐾𝑚𝑛
𝑣𝑢 = ∫(𝐴12𝑁𝑛.𝑥

𝑢 𝑁𝑚.𝑦
𝑣 + 𝐴26𝑁𝑛.𝑦

𝑢 𝑁𝑚.𝑦
𝑣

Ω

+ 𝐴16𝑁𝑛.𝑥
𝑢 𝑁𝑚.𝑥

𝑣

+ 𝐴66𝑁𝑛.𝑦
𝑢 𝑁𝑚.𝑥

𝑣 )𝑑𝑥𝑑𝑦 

𝐾𝑚𝑛
𝑣𝑣 = ∫(𝐴22𝑁𝑛.𝑦

𝑣 𝑁𝑚.𝑦
𝑣 + 𝐴26𝑁𝑛.𝑥

𝑣 𝑁𝑚.𝑦
𝑣

Ω

+ 𝐴26𝑁𝑛.𝑦
𝑣 𝑁𝑚.𝑥

𝑣

+ 𝐴66𝑁𝑛.𝑥
𝑣 𝑁𝑚.𝑥

𝑣 )𝑑𝑥𝑑𝑦 

𝐾𝑚𝑛
𝑣𝑤 = −∫(𝐵12𝑁𝑛.𝑥𝑥

𝑤 𝑁𝑚.𝑦
𝑣 + 𝐵22𝑁𝑛.𝑦𝑦

𝑤 𝑁𝑚.𝑦
𝑣

Ω

+ 2𝐵26𝑁𝑛.𝑥𝑦
𝑤 𝑁𝑚.𝑦

𝑣

+ 𝐵16𝑁𝑛.𝑥𝑥
𝑤 𝑁𝑚.𝑥

𝑣

+ 𝐵26𝑁𝑛.𝑦𝑦
𝑤 𝑁𝑚.𝑥

𝑣

+ 2𝐵66𝑁𝑛.𝑥𝑦
𝑤 𝑁𝑚.𝑥

𝑣 )𝑑𝑥𝑑𝑦 

𝐾𝑚𝑛
𝑣𝜃1 = ∫(𝐸12𝑁𝑛.𝑥

𝜃1𝑁𝑚.𝑦
𝑣 + 𝐸26𝑁𝑛.𝑦

𝜃1𝑁𝑚.𝑦
𝑣

Ω

+ 𝐸66𝑁𝑛.𝑦
𝜃1𝑁𝑚.𝑦

𝑢

+ 𝐸16𝑁𝑛.𝑥
𝜃1𝑁𝑚.𝑦

𝑢 )𝑑𝑥𝑑𝑦 

𝐾𝑚𝑛
𝑣𝜃2 = ∫(𝐸22𝑁𝑛.𝑦

𝜃2𝑁𝑚.𝑥
𝑣 + 𝐸26𝑁𝑛.𝑥

𝜃2𝑁𝑚.𝑦
𝑣

Ω

+ 𝐸26𝑁𝑛.𝑦
𝜃2𝑁𝑚.𝑥

𝑣

+ 𝐸66𝑁𝑛.𝑥
𝜃2𝑁𝑚.𝑥

𝑣 )𝑑𝑥𝑑𝑦 

𝐾𝑚𝑛
𝑤𝑢 = −∫(𝐵11𝑁𝑛.𝑥

𝑢 𝑁𝑚.𝑥𝑥
𝑤 + 𝐵12𝑁𝑛.𝑥

𝑢 𝑁𝑚.𝑦𝑦
𝑤

Ω

+ 𝐵16𝑁𝑛.𝑦
𝑢 𝑁𝑚.𝑥𝑥

𝑤

+ 2𝐵16𝑁𝑛.𝑥
𝑢 𝑁𝑚.𝑥𝑦

𝑤

+ 𝐵26𝑁𝑛.𝑦
𝑢 𝑁𝑚.𝑦𝑦

𝑤

+ 2𝐵66𝑁𝑛.𝑦
𝑢 𝑁𝑚.𝑥𝑦

𝑤 )𝑑𝑥𝑑𝑦 

 

𝐾𝑚𝑛
𝑤𝑣 = −∫(𝐵12𝑁𝑛.𝑦

𝑣 𝑁𝑚.𝑥𝑥
𝑤 + 𝐵16𝑁𝑛.𝑥

𝑣 𝑁𝑚.𝑥𝑥
𝑤

Ω

+ 𝐵22𝑁𝑛.𝑦
𝑣 𝑁𝑚.𝑦𝑦

𝑤

+ 𝐵26𝑁𝑛.𝑥
𝑣 𝑁𝑚.𝑦𝑦

𝑤

+ 2𝐵26𝑁𝑛.𝑦
𝑣 𝑁𝑚.𝑥𝑦

𝑤

+ 2𝐵66𝑁𝑛.𝑥
𝑣 𝑁𝑚.𝑥𝑦

𝑤 )𝑑𝑥𝑑𝑦 
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𝐾𝑚𝑛
𝑤𝑤 = −∫(𝐷11𝑁𝑛.𝑥𝑥

𝑤 𝑁𝑚.𝑥𝑥
𝑤 + 𝐷12𝑁𝑛.𝑦𝑦

𝑤 𝑁𝑚.𝑥𝑥
𝑤

Ω

+ 2𝐷16𝑁𝑛.𝑥𝑦
𝑤 𝑁𝑚.𝑥𝑥

𝑤

+ 𝐷12𝑁𝑛.𝑥𝑥
𝑤 𝑁𝑚.𝑦𝑦

𝑤

+ 𝐷22𝑁𝑛.𝑦𝑦
𝑤 𝑁𝑚.𝑦𝑦

𝑤

+ 2𝐷26𝑁𝑛.𝑥𝑦
𝑤 𝑁𝑚.𝑦𝑦

𝑤

+ 2𝐷16𝑁𝑛.𝑥𝑥
𝑤 𝑁𝑚.𝑥𝑦

𝑤

+ 2𝐷26𝑁𝑛.𝑦𝑦
𝑤 𝑁𝑚.𝑥𝑦

𝑤

+ 4𝐷66𝑁𝑛.𝑥𝑦
𝑤 𝑁𝑚.𝑥𝑦

𝑤 )𝑑𝑥𝑑𝑦 

𝐾𝑚𝑛
𝑤𝜃1 = −∫(𝐹11𝑁𝑛.𝑥

𝜃1𝑁𝑚.𝑥𝑥
𝑤 + 𝐹16𝑁𝑛.𝑦

𝜃1𝑁𝑚.𝑥𝑥
𝑤

Ω

+ 𝐹12𝑁𝑛.𝑥
𝜃1𝑁𝑚.𝑦𝑦

𝑤 + 𝐹26𝑁𝑛.𝑦
𝜃1𝑁𝑚.𝑦𝑦

𝑤

+ 2𝐹16𝑁𝑛.𝑥
𝜃1𝑁𝑚.𝑥𝑦

𝑤

+ 2𝐹66𝑁𝑛.𝑦
𝜃1𝑁𝑚.𝑥𝑦

𝑤 )𝑑𝑥𝑑𝑦 

𝐾𝑚𝑛
𝑤𝜃2 = −∫(𝐹12𝑁𝑛.𝑦

𝜃2𝑁𝑚.𝑥𝑥
𝑤 + 𝐹16𝑁𝑛.𝑥

𝜃2𝑁𝑚.𝑥𝑥
𝑤

Ω

+ 𝐹22𝑁𝑛.𝑦
𝜃2𝑁𝑚.𝑦𝑦

𝑤 + 𝐹26𝑁𝑛.𝑥
𝜃2𝑁𝑚.𝑦𝑦

𝑤

+ 2𝐹26𝑁𝑛.𝑦
𝜃2𝑁𝑚.𝑥𝑦

𝑤

+ 2𝐹66𝑁𝑛.𝑥
𝜃2𝑁𝑚.𝑥𝑦

𝑤 )𝑑𝑥𝑑𝑦 

𝐾𝑚𝑛
𝜃1𝑢 = ∫(𝐸11𝑁𝑛.𝑥

𝑢 𝑁𝑚.𝑥
𝜃1 + 𝐸16𝑁𝑛.𝑦

𝑢 𝑁𝑚.𝑥
𝜃1

Ω

+ 𝐸16𝑁𝑛.𝑥
𝑢 𝑁𝑚.𝑦

𝜃1

+ 𝐸66𝑁𝑛.𝑦
𝑢 𝑁𝑚.𝑦

𝜃1 )𝑑𝑥𝑑𝑦 

𝐾𝑚𝑛
𝜃1𝑣 = ∫(𝐸12𝑁𝑛.𝑦

𝑣 𝑁𝑚.𝑥
𝜃1 + 𝐸16𝑁𝑛.𝑥

𝑣 𝑁𝑚.𝑥
𝜃1

Ω

+ 𝐸26𝑁𝑛.𝑦
𝑣 𝑁𝑚.𝑦

𝜃1

+ 𝐸66𝑁𝑛.𝑥
𝑣 𝑁𝑚.𝑦

𝜃1 )𝑑𝑥𝑑𝑦 

𝐾𝑚𝑛
𝜃1𝑤 = −∫(𝐹11𝑁𝑛.𝑥𝑥

𝑤 𝑁𝑚.𝑥
𝜃1 + 𝐹12𝑁𝑛.𝑦𝑦

𝑤 𝑁𝑚.𝑥
𝜃1

Ω

+ 2𝐹16𝑁𝑛.𝑥𝑦
𝑤 𝑁𝑚.𝑥

𝜃1

+ 𝐹16𝑁𝑛.𝑥𝑥
𝑤 𝑁𝑚.𝑦

𝜃1 + 𝐹26𝑁𝑛.𝑦𝑦
𝑤 𝑁𝑚.𝑦

𝜃1

+ 2𝐹66𝑁𝑛.𝑥𝑦
𝑤 𝑁𝑚.𝑦

𝜃1 )𝑑𝑥𝑑𝑦 

𝐾𝑚𝑛
𝜃1𝜃1 = ∫(𝐻11𝑁𝑛.𝑥

𝜃1𝑁𝑚.𝑥
𝜃1 +𝐻16𝑁𝑛.𝑦

𝜃1𝑁𝑚.𝑥
𝜃1

Ω

+ 𝐻16𝑁𝑛.𝑦
𝜃1𝑁𝑚.𝑦

𝜃1 + 𝐻66𝑁𝑛.𝑦
𝜃1𝑁𝑚.𝑦

𝜃1

+ 𝐽55𝑁𝑛
𝜃1𝑁𝑚

𝜃1)𝑑𝑥𝑑𝑦 

𝐾𝑚𝑛
𝜃1𝜃2 = ∫(𝐻12𝑁𝑛.𝑦

𝜃2𝑁𝑚.𝑥
𝜃1 + 𝐻16𝑁𝑛.𝑥

𝜃2𝑁𝑚.𝑥
𝜃1

Ω

+ 𝐻26𝑁𝑛.𝑦
𝜃2𝑁𝑚.𝑦

𝜃1

+ 𝐻66𝑁𝑛.𝑥
𝜃2𝑁𝑚.𝑦

𝜃1 )𝑑𝑥𝑑𝑦 

𝐾𝑚𝑛
𝜃2𝑢 = ∫(𝐸12𝑁𝑛.𝑥

𝑢 𝑁𝑚.𝑥
𝜃2 + 𝐸26𝑁𝑛.𝑦

𝑢 𝑁𝑚.𝑦
𝜃2

Ω

+ 𝐸16𝑁𝑛.𝑥
𝑢 𝑁𝑚.𝑥

𝜃2

+ 𝐸66𝑁𝑛.𝑦
𝑢 𝑁𝑚.𝑥

𝜃2 )𝑑𝑥𝑑𝑦 

𝐾𝑚𝑛
𝜃2𝑣 = ∫(𝐸22𝑁𝑛.𝑦

𝑣 𝑁𝑚.𝑥
𝜃2 + 𝐸26𝑁𝑛.𝑥

𝑣 𝑁𝑚.𝑦
𝜃2

Ω

+ 𝐸26𝑁𝑛.𝑦
𝑣 𝑁𝑚.𝑥

𝜃2

+ 𝐸66𝑁𝑛.𝑥
𝑣 𝑁𝑚.𝑥

𝜃2 )𝑑𝑥𝑑𝑦 

𝐾𝑚𝑛
𝜃2𝑤 = −∫(𝐹12𝑁𝑛.𝑥𝑥

𝑤 𝑁𝑚.𝑦
𝜃2 + 𝐹22𝑁𝑛.𝑦𝑦

𝑤 𝑁𝑚.𝑦
𝜃2

Ω

+ 2𝐹26𝑁𝑛.𝑥𝑦
𝑤 𝑁𝑚.𝑦

𝜃2

+ 𝐹16𝑁𝑛.𝑥𝑥
𝑤 𝑁𝑚.𝑥

𝜃2 + 𝐹26𝑁𝑛.𝑦𝑦
𝑤 𝑁𝑚.𝑥

𝜃2

+ 2𝐹66𝑁𝑛.𝑥𝑦
𝑤 𝑁𝑚.𝑥

𝜃2 )𝑑𝑥𝑑𝑦 

𝐾𝑚𝑛
𝜃2𝜃1 = ∫(𝐻12𝑁𝑛.𝑥

𝜃1𝑁𝑚.𝑦
𝜃2 + 𝐻26𝑁𝑛.𝑦

𝜃1𝑁𝑚.𝑦
𝜃2

Ω

+ 𝐻16𝑁𝑛.𝑥
𝜃1𝑁𝑚.𝑥

𝜃2

+ 𝐻66𝑁𝑛.𝑦
𝜃1𝑁𝑚.𝑥

𝜃2 )𝑑𝑥𝑑𝑦 

A(5) 

𝐾𝑚𝑛
𝜃2𝜃2 = ∫(𝐻22𝑁𝑛.𝑦

𝜃2𝑁𝑚.𝑦
𝜃2 + 𝐻26𝑁𝑛.𝑦

𝜃2𝑁𝑚.𝑥
𝜃2

Ω

+ 𝐻26𝑁𝑛.𝑥
𝜃2𝑁𝑚.𝑦

𝜃2

+ 𝐻66𝑁𝑛.𝑥
𝜃2𝑁𝑚.𝑥

𝜃2

+ +𝐽44𝑁𝑛
𝜃2𝑁𝑚

𝜃2)𝑑𝑥𝑑𝑦 

{
  
 

  
 
𝐴𝑖𝑗
𝐵𝑖𝑗
𝐷𝑖𝑗
𝐸𝑖𝑗
𝐹𝑖𝑗
𝐻𝑖𝑗}
  
 

  
 

=∑ ∫ 𝑄̅𝑖𝑗
𝑘

{
  
 

  
 

1
𝑧
𝑧2

𝑓(𝑧)

𝑧𝑓(𝑧)

(𝑓(𝑧))
2
}
  
 

  
 

𝑑𝑧   𝑖. 𝑗 = 1.2.6

𝑧𝑘+1

𝑧𝑘

𝑛

𝑘=1

 

𝐽𝑖𝑗 =∑ ∫ 𝑄̅𝑖𝑗
𝑘 (𝑓′(𝑧))

2
𝑑𝑧              𝑖. 𝑗 = 4.5

𝑧𝑘+1

𝑧𝑘

𝑛

𝑘=1
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