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 The present article looks over thermoelastic interactions in a homogeneous, linear, 

transversely isotropic unbounded continuum with the aid of memory-dependent derivatives in 

the presence of a line heat source. The exploration has been unifiedly carried out in the context 

of Green-Lindsay and Lord-Shulman models. A cylindrical polar coordinates system has been 

used to describe the problem and the eigenvalue technique has been adopted to solve the 

governing field equations in the transformed domain of Laplace. The solution for different 

thermophysical quantities is obtained in the real space-time domain using the Stehfest method 

for numerical Laplace inversion. The obtained numerical data for different thermophysical 

quantities are plotted in graphs to investigate the impacts of the time delay parameter, and the 

different kernel functions, and a comparison between the considered models has been 

accomplished. It is worth mentioning that the results of an analogous problem for isotropic 

material can be easily deduced from the corresponding results of this article. The adoption of 

generalized thermoelastic theory with memory-dependent derivative along with eigenvalue 

technique in analyzing the thermoelastic interactions is relatively fresh. 
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1. Introduction 

The heat conduction equation of the classical 
theory of thermoelasticity does not 
accommodate any elastic term and it is parabolic 
in nature. It denies the practical observation of 
heat generation due to elastic changes and it also 
recommends boundless speed of the thermal 
wave propagation. The generalized theory of 
thermoelasticity prevails over these major 
imperfections of the classical theory of 
thermoelasticity. Towards the formulation of 
generalized theory of thermoelasticity, many 

pioneers have their valuable contributions of 
which we mention here some of them [1-9]. Ezzat 
[10] has solved a thermoelastic problem with two 
relaxation times in cylindrical regions. Youssef 
[11] has studied a thermoelastic problem in an 
infinite medium with a cylindrical cavity 
containing a moving heat source. Lotfy et al. [12, 
13] have solved generalized thermoelastic 
problems for functionally graded and piezo-
photo-thermoelastic materials respectively. Lotfy 
and Hassan [14] have investigated the 
propagation of thermoelastic waves within the 
purview of the Lord-Shulman two-temperature 
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generalized thermoelasticity. Yasein et al. [15] 
have discussed the effect of variable temperature 
and thermal conductivity for semiconducting 
elastic medium in the context of dual-phase-lag 
and Lord-Shulman model. Mahdy et al. [16] have 
investigated the interaction impact between 
elastic waves, plasma waves, and thermal waves 
in hyperbolic generalized two-temperature 
theory. Abouelregal et al. [17–19] have solved 
various generalized thermoelastic problems 
considering Moore–Gibson–Thompson 
generalized thermoelastic theory. The 
generalized theory of thermoelasticity is widely 
implemented to tackle various problems with 
high heat flux for short time intervals which 
generally appears in nuclear reactors, energy 
channels, LASER units, etc.  

Fractional calculus is an important tool for 
solving different physical problems in the field of 
generalized thermoelasticity because of the non-
local property of the fractional operator. The 
fractional operator carries the previous state 
together with the current state of a dynamical 
system. Ezzat et al. [20] have introduced a unified 
mathematical model of heat conduction with 
three-phase lag thermoelasticity using fractional 
calculus. Abbas [21] has solved a thermoelastic 
problem for an infinite body with a spherical 
cavity in the context of fractional-order 
thermoelasticity. For an unbounded generalized 
thermoelastic media with a spherical cavity, 
Molla et al. [22] have studied the effects of 
fractional parameters on stress distributions. 
Lotfy et al. [23] have studied the effects of 
variable thermal conductivity in a 
magnetophotothermal elastic medium in the 
context of fractional calculus. Sufficient works in 
the field of generalized thermoelasticity have 
been performed by several researchers using 
fractional calculus, of which we mention [24-28] 
to name but a few. 

Wang and Li [29] have launched the notion of 
memory-dependent derivatives in place of 
fractional derivatives [30]. The memory-
dependent derivative (MDD) is defined in an 
integral form of a common derivative with a 
kernel function on a slipping interval. The 
delayed time intervals and the kernel function for 
MDD can be chosen freely whereas they are fixed 
in fractional derivatives. The order of the 
derivative in fractional calculus is necessarily a 
fraction but in MDD the order of the derivative is 
simply an integer which leads to easier numerical 
calculations. Taking all such points into 
consideration it is easy to guess that this kind of 
definition is better than a fractional one for 
reflecting the memory effect and this definition 
leads to recognizing a more intuitionistic physical 
explanation. According to them m-th order 
memory-dependent derivative of a differentiable 

function f(t) relative to the delay time ω > 0 is 
defined as follows: 

𝐷𝜔
(𝑚)𝑓(𝑡) =

1

𝜔
∫ 𝑘(𝑡
𝑡

𝑡−𝜔

, 𝜉)𝑓(𝑚)(𝜉)𝑑𝜉 (1) 

where 𝑘(𝑡, 𝜉) is the kernel function which can be 
chosen freely and the kernel 𝑘(𝑡, 𝜉) must be a 
differentiable function with respect to its 
arguments. When 𝑘(𝑡, 𝜉)=1 and 𝜔 → 0 then 

𝐷𝜔
(𝑚)𝑓(𝑡) → 𝑓(𝑚)(𝑡) i.e. m-th order common 

derivative of 𝑓(𝑡). 
Yu et al. [31] have recently formulated a new 

generalized thermoelastic model using MDD [29]. 
El-karamany and Ezzat [32] have derived the 
variational principle, reciprocity theorem, and 
uniqueness of solutions in a thermodiffusive 
medium in the context of MDD. Ezzat et al. [33] 
have established a new generalized 
thermoelasticity model based on MDD. Sur et al. 
[34] have solved a physical problem in fiber-
reinforced cylinders using MDD by finite element 
method. Sarkar et al. [35] have solved a two-
dimensional problem in the context of memory-
dependent two-temperature generalized 
thermoelastic model. Biswas et al. [36] examined 
the effect of the magnetic field in an orthotropic 
medium with a phase-lag model based on MDD. 
Abouelregal and Dargail [37] have introduced a 
new mathematical model for functionally graded 
thermoelastic nanobeams (FGNB) with MDD due 
to a periodic heat flux. Mondal and Sur [38] have 
studied the memory effects in a functionally 
graded magneto-thermoelastic rod. Mondal et al. 
[39] have studied the phase lag effect for a two-
temperature generalized piezo thermoelastic 
problem in the context of memory-dependent 
derivatives. For more works using memory-
dependent derivatives, one can go through the 
work of El-Attar et al. [40] Sarkar and Othman 
[41], Sur et al. [42], and Abouelregal et al. [43]. 

Memory-dependent generalized 
thermoelasticity which provides an alternative 
approach to describe memory-dependence that 
has been commonly depicted by fractional 
generalized thermoelasticity is comparatively 
new. To the best of our knowledge, only a few 
works have been reported in the literature to 
date that adopt generalized thermoelasticity 
theory with memory-dependent derivative and 
eigenvalue approach in solving the generalized 
thermoelastic problems. 

The intent of this article is to look over 
thermoelastic interactions in a homogeneous, 
linear, transversely isotropic unbounded 
continuum in the presence of a line heat source. 
The exploration has been unified and carried out 
in the context of Lord-Shulman [5] and Green-
Lindsay [1] models with the aid of memory-
dependent derivatives. A cylindrical polar 
coordinates system has been used to trace the 
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problem and the eigenvalue technique [44] is 
employed to solve the governing field equations 
in the transformed domain of Laplace. Using the 
Stehfest method [45] for numerical Laplace 
inversion the solution for stress, displacement, 
and temperature is brought to the real space-time 
domain. The obtained numerical data for the 
above-mentioned thermophysical quantities are 
plotted in graphs to look over the impacts of the 
time delay parameter and the different kernel 
functions and a comparison between the 
considered models has been accomplished. 
Results of analogous problems with integer order 
thermoelasticity theory realizable from [46] can 
also be achievable as a special case of our results. 
Also, results of analogous problems for isotropic 
material can be easily deduced from the 
corresponding results of this article. 

2. Basic Governing Equations 

The governing equations for generalized 
thermoelasticity with memory-dependent effect 
and relaxation times for a linear, homogeneous, 
and anisotropic medium are [33, 47] 

(a) strain-displacement relations: 

𝑒𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖),         𝑖, 𝑗 = 1,2,3, (2) 

(b) the constitutive equations: 

𝜏𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝑒𝑘𝑙 − 𝛽𝑖𝑗(1 + 𝛼1𝐷𝜔)𝜃, 

                                                       𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3, 
(3) 

(c) stress-equations of motion: 

𝜏𝑖𝑗,𝑗 + 𝜌𝐹𝑖 = 𝜌�̈�𝑖 , 𝑖, 𝑗 = 1,2,3, (4) 

(d) the heat conduction equation:  

𝐾𝑖𝑗𝜃𝑖𝑗 = (1 + 𝛼0𝐷𝜔)𝜌𝑐𝐸�̇� 

+(1 + 𝜏𝐷𝜔)(̇ 𝛽𝑖𝑗𝜃0�̇�𝑖𝑗 − 𝜌𝑄), 𝑖, 𝑗 = 1,2,3, 
(5) 

where 𝐹𝑖, 𝜌,  𝑢𝑖 ,  𝑒𝑖𝑗 ,  𝜏𝑖𝑗 ,  𝐶𝑖𝑗𝑘𝑙  respectively stand 

for the body force per unit mass, the mass density 
of the medium, the mechanical displacement, the 
strain tensor, the stress tensor, elasticity tensor 
and 𝛽𝑖𝑗  is the thermal elastic coupling tensor; 𝑐𝐸  

is the specific heat at constant strain, Q is the heat 
source per unit mass, 𝛼0, 𝛼1, 𝜏  are thermal 
relaxation parameters, 𝐾𝑖𝑗  is the thermal 

conductivity tensor, θ is the change in 
temperature above the reference temperature 𝜃0, 
𝐷𝜔  denotes first order memory dependent 
derivative, subscript comma represents material 
derivative with respect to space variable and the 
superscript dot represents derivative with 
respect to time. 

Special Cases: 

1. If we consider 𝛼0 = 𝛼1= 𝜏 = 0 then the 
governing equations (2) - (5) reduce to the 

governing equations of classical coupled 
thermoelasticity (CCTE) [48]. 

2. When 𝛼1 = 0, 𝛼0 = 𝜏 ≠ 0 then the governing 
equations (2) - (5) reduce to the governing 
equations of Lord- Shulman model which is 
also known as extended thermoelasticity 
(ETE) [5]. does 𝛼0 ≠0, 𝛼1 ≠0, 𝜏 = 0 then the 
governing equations (2) - (5) reduce to the 
governing equations of Green-Lindsay model 
which is also known as temperature rate 
dependent thermoelasticity (TRDTE) [1]. 

3. Formulation of the Problem 

We consider an unbounded, linear 
thermoelastic continuum that is homogeneous 
and transversely isotropic in nature and is 
influenced under the action of a line heat source 
acting along the 𝑧-axis of the cylindrical polar 
coordinates system (𝑟, 𝜙, 𝑧) used for the 
description of the problem. We assume that the 
problem is axisymmetric and hence the 
displacement, and temperature are functions of 𝑟 
and 𝑡 only. Therefore the displacement vector 
possesses only radial component 𝑢 = 𝑢(𝑟, 𝑡) and 
the stress tensor possesses only radial 
component 𝜏𝑟𝑟 and transverse component 𝜏𝜙𝜙 . 

As a consequence, the equations of motion, 
and heat conduction equation take the following 
forms respectively 

𝐶11 (
𝜕2𝑢

𝜕𝑟2
+
1

𝑟

𝜕𝑢

𝜕𝑟
−
𝑢

𝑟2
) − 𝛽

𝜕

𝜕𝑟
(1 + 𝛼1𝐷𝜔)𝜃 

+𝜌𝐹𝑟 = 𝜌 ü, 
(6) 

𝐾 (
𝜕2𝜃

𝜕𝑟2
+
1

𝑟

𝜕𝜃

𝜕𝑟
) = 𝜌𝑐𝐸(1 + 𝛼0𝐷𝜔)�̇� 

+(1 + 𝜏𝐷𝜔) [θ0β (
∂u̇

∂r
+
u̇

r
) − ρQ], 

(7) 

and constitutive equations can be obtained as 
follows 

𝜏𝑟𝑟 = 𝐶11
𝜕𝑢

𝜕𝑟
+ 𝐶12

𝑢

𝑟
− 𝛽(1 + 𝛼1𝐷𝜔)𝜃, (8) 

𝜏𝜙𝜙 = 𝐶12
𝜕𝑢

𝜕𝑟
+ 𝐶11

𝑢

𝑟
− 𝛽(1 + 𝛼1𝐷𝜔)𝜃, (9) 

where 𝐶11, 𝐶12 are the material constants, 𝛽 is the 
coupling parameter. 

We introduce the following dimension-free 
variables 

𝑟∗ =
𝛺

𝑉
𝑟,  𝑡∗ = 𝛺𝑡,  𝑢∗ =

𝛺𝑉𝜌

𝛽𝜃0
𝑢,  𝜃∗ =

𝜃

𝜃0
 , 

𝛼0
∗ = 𝛺𝛼0, 𝛼1

∗ = 𝛺𝛼1,  𝜏
∗ = 𝛺𝜏, 𝛾 =

𝐶12
𝐶11

, 

𝑄∗ =
𝑄

𝑄0
, 𝐹𝑟

∗ =
𝐹𝑟
𝐹0
, 𝜔∗ = 𝛺𝜔, 

 𝜏𝑟𝑟
∗ =

𝜏𝑟𝑟
𝛽𝜃0

,  𝜏𝜙𝜙
∗ =

𝜏𝜙𝜙

𝛽𝜃0
, 

(10) 

where 
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𝛺 =
𝐶11𝑐𝐸

𝐾
, 𝑉2 =

𝐶11

𝜌
, 𝑄0 =

𝐾𝜃0𝛺
2

𝜌𝑉2
, 𝐹0 =

𝛺𝛽𝜃0

𝜌𝑉
. 

Using these dimension free variables we get 
the above equations (suppressing the asterisks 
for simplicity) as 

𝜕2𝑢

𝜕𝑟2
+

1

𝑟

𝜕𝑢

𝜕𝑟
−

𝑢

𝑟2
−

𝜕

𝜕𝑟
(1 + 𝛼1𝐷𝜔)𝜃 + 𝐹𝑟 = �̈�,   (11) 

𝜕2𝜃

𝜕𝑟2
+
1

𝑟

𝜕𝜃

𝜕𝑟
= (1 + 𝛼0𝐷𝜔)�̇� 

+(1 + 𝜏𝐷𝜔) [ε (
∂u̇

∂r
+

u̇

r
) − Q], 

(12) 

where  𝜀 =
𝛽2𝜃0

𝜌2𝑐𝐸𝑉
2 , 

𝜏𝑟𝑟 =
𝜕𝑢

𝜕𝑟
+ 𝛾

𝑢

𝑟
− (1 + 𝛼1𝐷𝜔)𝜃, (13) 

𝜏𝜙𝜙 = 𝛾
𝜕𝑢

𝜕𝑟
+
𝑢

𝑟
− (1 + 𝛼1𝐷𝜔)𝜃. (14) 

Here we choose the kernel function 𝑘(𝑡 − 𝜉) 
as follows: 

𝑘(𝑡 − 𝜉) = 1 −
2𝑏

𝜔
(𝑡 − 𝜉) +

𝑎2

𝜔2
(𝑡 − 𝜉)2 

(15) 

 =

{
 
 

 
 

 1                              𝑖𝑓 𝑎 = 𝑏 = 0,

1 − (
𝑡−𝜉

𝜔
)                    𝑖𝑓 𝑎 = 0, 𝑏 =

1

2
,

1 − (𝑡 − 𝜉)                 𝑖𝑓  𝑎 = 0, 𝑏 =
𝜔

2
,

(1 −
𝑡−𝜉

𝜔
)
2

              𝑖𝑓   𝑎 = 𝑏 = 1,

 

𝑎 and 𝑏 being constants. 

4. Solution of the Problem 

To solve the problem we take the Laplace 
transform defined by 

𝑓(̅𝑟, 𝑝) = ∫ 𝑓(𝑟, 𝑡)𝑒−𝑝𝑡𝑑𝑡
∞

0
, Re(𝑝) > 0, (16) 

On equations (11), (12), (13) and (14) to get 

𝑑2�̅�

d𝑟2
+
1

𝑟

𝑑�̅�

𝑑𝑟
−
�̅�

𝑟2
−
𝑑

𝑑𝑟
(1 +

𝛼1
𝜔
𝐺𝜔) �̅� 

        +𝐹�̅� = 𝑝
2�̅�,   

(17) 

𝑑2�̅�

𝑑𝑟2
+
1

𝑟

𝑑�̅�

𝑑𝑟
= 𝑝 (1 +

𝛼0
𝜔
𝐺𝜔) �̅� 

         + (1 +
𝜏

𝜔
𝐺𝜔) [εp (

du̅

dr
+

u̅

r
) − Q̅], 

(18) 

𝜏�̅�𝑟 =
𝑑�̅�

𝑑𝑟
+ 𝛾

�̅�

𝑟
− (1 +

𝛼1
𝜔
𝐺𝜔) �̅�, (19) 

𝜏�̅�𝜙 = 𝛾
𝑑�̅�

𝑑𝑟
+
�̅�

𝑟
− (1 +

𝛼1
𝜔
𝐺𝜔) �̅�, (20) 

where  

𝐺𝜔(𝑝) = 1 −
2𝑏

𝜔𝑝
+
2𝑎2

𝜔2𝑝2
 

−𝑒−𝑝𝜔 [(1 − 2𝑏 + 𝑎2) +
2(𝑎2 − 𝑏)

𝜔𝑝
+
2𝑎2

𝜔2𝑝2
]. 

(21) 

Using equation (17), equation (18) can be 
written as 

(
𝑑2

d𝑟2
+
1

𝑟

𝑑

𝑑𝑟
−
1

𝑟2
)
𝑑�̅�

𝑑𝑟
= 𝜀𝑝3 (1 +

𝜏

𝜔
𝐺𝜔) �̅� 

+𝑝 [𝜀 (1 +
𝜏

𝜔
𝐺𝜔) (1 +

𝛼1
𝜔
𝐺𝜔)

+ (1 +
𝛼0
𝜔
𝐺𝜔)]

𝑑�̅�

𝑑𝑟
 

−(1 +
𝜏

𝜔
𝐺𝜔) (𝜀𝑝𝐹�̅� +

𝑑�̅�

𝑑𝑟
). 

(22) 

We now write equations (17) and (22) in 
vector-matrix differential equation as follows: 

𝐿�̃� = 𝐴�̃� + 𝑓, (23) 

where  

𝐿 ≡
𝑑2

d𝑟2
+
1

𝑟

𝑑

𝑑𝑟
−
1

𝑟2
 (24) 

is the Bessel operator, �̃� = [
�̅�
𝑑�̅�

𝑑𝑟

], A=[
𝑎11 𝑎12
𝑎21 𝑎22

] , 

𝑓 = [
−�̅�𝑟

−(1 +
𝜏

𝜔
𝐺𝜔) (𝜀𝑝𝐹�̅� +

𝑑�̅�

𝑑𝑟
)
], 

and 

𝑎11 = 𝑝
2, 𝑎12 = (1 +

𝛼1
𝜔
𝐺𝜔),  

𝑎21 =  𝜀𝑝
3 (1 +

𝜏

𝜔
𝐺𝜔), 

𝑎22 =  𝑝 [𝜀 (1 +
𝜏

𝜔
𝐺𝜔) (1 +

𝛼1
𝜔
𝐺𝜔)

+ (1 +
𝛼0
𝜔
𝐺𝜔)] . 

(25) 

If 𝜒1 and 𝜒2  be the eigenvalues of the matrix, 
then the eigenvectors 𝑉1  and 𝑉2 corresponding to 
the respective eigenvalues 𝜒1 and  𝜒2 are given by 

𝑉1 = [
−𝑎12

𝑎11 − 𝜒1
], 𝑉2 = [

−𝑎12
𝑎11 − 𝜒2

]. (26) 

Let 

𝑉 = [𝑉1 𝑉2] = [
−𝑎12 −𝑎12

𝑎11 − 𝜒1 𝑎11 − 𝜒2
]  

then 

 

𝐴𝑉 = 𝑉Λ, (27) 

where Λ = [
𝜒1 0
0 𝜒2

], 

and hence 

𝐴 = 𝑉Λ𝑉−1 . (28) 

Now equations (23) and (28) together yield 
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𝐿�̃� = Λ�̃� + 𝑉−1𝑓, (29) 

which can also be written in scalar form as 
follows 

𝑑2yq

d𝑟2
+

1

𝑟

𝑑𝑦𝑞

𝑑𝑟
− (𝜒𝑞 +

1

𝑟2
) 𝑦𝑞 = 𝑃𝑞 , (𝑞 = 1,2),   (30) 

where we have assumed 

𝑉−1𝑓 = [
𝑃1
𝑃2
], (31) 

�̃� = 𝑉−1�̃� = [
𝑦1
𝑦2
]. (32) 

Let 𝑢𝑞1(𝑟), 𝑢𝑞2(𝑟) (𝑞= 1, 2) be two linearly 

independent solutions of the homogeneous 
equations corresponding to the equations in (30), 
then 

𝑢11 = 𝐾1(𝜆1𝑟),       𝑢12 = 𝐼1(𝜆1𝑟), 

𝑢21 = 𝐾1(𝜆2𝑟),       𝑢22 = 𝐼1(𝜆2𝑟), 
(33) 

and the complementary functions 𝑦1𝑐  and 𝑦2𝑐  of 
the equations in (30) are given by 

𝑦1𝑐 = 𝑎1𝐾1(𝜆1𝑟) + 𝑏1𝐼1(𝜆1𝑟), 

𝑦2𝑐 = 𝑎2𝐾1(𝜆2𝑟) + 𝑏2𝐼1(λ2 r), 
(34) 

where  𝜒𝑞= 𝜆𝑞
2(𝑞 = 1, 2) and 𝐼1, 𝐾1 respectively 

denote the modified Bessel functions of first and 
second kind of order one. 

In absence of body force (i.e when 𝐹𝑟 = 0), the 
equation (31) gives 

[
𝑃1
𝑃2
] =

1

𝑎12(𝜆2
2 − 𝜆1

2)
[
𝑎11 − 𝜆2

2 𝑎12
−(𝑎11 − 𝜆1

2) −𝑎12
] 

× [
0

−(1 +
𝜏

𝜔
𝐺𝜔)

𝑑�̅�

𝑑𝑟
], 

which implies 

𝑃1 =
(1 +

𝜏
𝜔
𝐺𝜔)

(𝜆1
2 − 𝜆2

2)

𝑑�̅�

𝑑𝑟
, 𝑃2 =

(1 +
𝜏
𝜔
𝐺𝜔)

(𝜆2
2 − 𝜆1

2)

𝑑�̅�

𝑑𝑟
 . (35) 

Particular integrals 𝑦1𝑝  and 𝑦2𝑝  

corresponding to the equations in (30) are given 
by 

𝑦𝑞𝑝 = −𝑢𝑞1∫
𝑢𝑞2𝑃𝑞

𝑊𝑞
𝑑𝑟 + 𝑢𝑞2∫

𝑢𝑞1𝑃𝑞

𝑊𝑞
𝑑𝑟, 

  (𝑞 = 1,2) 

(36) 

where 

𝑊𝑞 = |
𝑢𝑞1 𝑢𝑞2
𝑢′𝑞1 𝑢′𝑞2

| =
1

𝑟
,      (𝑞 = 1,2). 

We now choose the line heat source in the form, 

𝑄 =
𝑞0
2𝜋𝑟

𝛿(𝑟 − 𝑐)𝐻(𝑡), (37) 

which acts along 𝑟 = 𝑐; 𝛿(𝑡), 𝐻(𝑡) representing 
the well-known Dirac delta function and 
Heaviside unit step function respectively and 𝑞0 
is a constant. 

Taking Laplace transform of the equation (37) 
we get 

�̅� =
1

𝑝

𝑞0
2𝜋𝑟

𝛿(𝑟 − 𝑐), (38) 

and hence particular integrals are obtained from 
(36) using (33) and (35) as follows 

𝑦1𝑝 = −𝑢11∫
𝑢12𝑃1
𝑊1

𝑑𝑟 

        = −
𝑞0 (1 +

𝜏
𝜔
𝐺𝜔) 𝜆1

2𝜋𝑝(𝜆1
2 − 𝜆2

2)
𝐼0(𝜆1𝑐)𝐾1(𝜆1𝑟),  

𝑦2𝑝 = −𝑢21∫
𝑢22𝑃2
𝑊2

𝑑𝑟 

        = −
𝑞0 (1 +

𝜏
𝜔
𝐺𝜔) 𝜆2

2𝜋𝑝(𝜆2
2 − 𝜆1

2)
𝐼0(𝜆2𝑐)𝐾1(𝜆2𝑟), 

(39) 

where we have disregarded the second term in 
(36) for the sake of bounded solution. Again, 
since the heat source is acting along the 𝑧 axis, 
taking 𝑐 → 0  the particular integrals of equations 
in (30) are obtained from (39) as follows 

𝑦1𝑝 =
𝑞0 (1 +

𝜏
𝜔
𝐺𝜔) 𝜆1

2𝜋𝑝(𝜆1
2 − 𝜆2

2)
𝐾1(𝜆1𝑟), 

𝑦2𝑝 =
𝑞0 (1 +

𝜏
𝜔
𝐺𝜔) 𝜆2

2𝜋𝑝(𝜆2
2 − 𝜆1

2)
𝐾1(𝜆2𝑟). 

(40) 

Furthermore, since the medium is infinte and 
𝐾1(𝑟),  𝐼1(𝑟) become unbounded as 𝑟 → 0  and as 
𝑟 → ∞ respectively, we set 𝑎𝑖 = 𝑏𝑖 = 0  
(𝑖 = 1, 2)  in equation (34). Thus the solutions for 
the equations in (30) are given by 

𝑦1 =
𝑞0 (1 +

𝜏
𝜔
𝐺𝜔) 𝜆1

2𝜋𝑝(𝜆1
2 − 𝜆2

2)
𝐾1(𝜆1𝑟),  

𝑦2 =
𝑞0 (1 +

𝜏
𝜔
𝐺𝜔) 𝜆2

2𝜋𝑝(𝜆2
2 − 𝜆1

2)
𝐾1(𝜆2𝑟). 

(41) 

Now the solution of (23) are obtained using 
(32) in the following form 

�̃� = [
�̅�
𝑑�̅�

𝑑𝑟

] = [
− (1 +

𝛼1

𝜔
𝐺𝜔) 𝑦1 − (1 +

𝛼1

𝜔
𝐺𝜔) 𝑦2

(𝑝2 − 𝜆1
2)𝑦1 + (𝑝

2 − 𝜆2
2)𝑦2

] . 

 (42) 

From this we get 

�̅� = −𝑀{𝜆1𝐾1(𝜆1𝑟) − 𝜆2𝐾1(𝜆2𝑟)}, (43) 
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𝑑�̅�

𝑑𝑟
=

𝑀

(1 +
𝛼1
𝜔
𝐺𝜔)

{𝜆1𝐾1(𝜆1𝑟)(𝑝
2 − 𝜆1

2) 

         −𝜆2𝐾1(𝜆2𝑟)(𝑝
2 − 𝜆2

2)}, 

(44) 

where 

𝑀 =
𝑞0 (1 +

𝛼1
𝜔
𝐺𝜔) (1 +

𝜏
𝜔
𝐺𝜔)

2𝜋𝑝(𝜆1
2 − 𝜆2

2)
. 

Integrating equation (44) we obtain 

�̅� = −
𝑀

(1 +
𝛼1
𝜔
𝐺𝜔)

{𝐾0(𝜆1𝑟)(𝑝
2 − 𝜆1

2) 

−𝐾0(𝜆2𝑟)(𝑝
2 − 𝜆2

2)}. 

(45) 

Using equations (43) and (45) in (19), (20) 
we get respectively 

𝜏�̅�𝑟 = −𝑀 [
(𝛾 − 1)

𝑟
{𝜆1𝐾1(𝜆1𝑟)−𝜆2𝐾1(𝜆2𝑟)}

− 𝑝2{𝐾0(𝜆1𝑟) − 𝐾0(𝜆2𝑟)}] 

(46) 

and  

𝜏�̅�𝜙 = −𝑀 [
(1 − 𝛾)

𝑟
{𝜆1𝐾1(𝜆1𝑟)−𝜆2𝐾1(𝜆2𝑟)}

+ {𝜆1
2𝐾0(𝜆1𝑟)

− 𝜆2
2𝐾0(𝜆2𝑟)}

− 𝑝2{𝐾0(𝜆1𝑟) − 𝐾0(𝜆2𝑟)}] . 

(47) 

All results of [46] corresponding to the 
fractional parameter 𝛼 = 1 can be derived from 
our results by taking 𝜔 → 0 and 𝑘(𝑡, 𝜉) = 1. 

Again the results for isotropic material can be 
derived from our results by simply taking  

𝛾 =
𝜆

𝜆+2𝜇
, 𝜀 =

𝛽2𝜃0

𝜌𝑐𝐸(𝜆+2𝜇)
 and 𝛽 = (3𝜆 + 2𝜇)𝛼𝑡 in 

our calculations, where 𝜆, 𝜇 are Lame’s constant, 
𝛼𝑡  is the coefficient of linear thermal expansion 
for isotropic material. 

5. Numerical Results and Discussion 

For numerical solutions, we have considered 
a single crystal of zinc and the parameters are 
chosen as follows [21]: 

𝐶11 = 1.628 × 1011N/m2, 𝛼0 = 0.05, 𝑞0 = 1, 

𝐶12 = 0.362 × 10N/m2, 𝛼1 = 0.1, 𝜃0 = 296K, 

𝐾 = 1.24 × 102W/mK, 𝛽 = 5.75 × 106N/m2K, 

𝜀 = 2.21 × 10−2, 𝜌 = 7.14 × 103Kg/m3. 

Using MATLAB software numerical solutions 
for displacement, temperature and radial stress 

are obtained in the time domain by the Stehfest 
method [45]. The numerically obtained solutions 
are plotted in graphs to study the influence of the 
delay time parameter and the kernel functions on 
the above-mentioned thermophysical quantities. 

 
Fig. 1. Variation of displacement 𝑢 with 𝑟 for different 

theories at 𝜔 = 0.5, 𝑡 = 0.1, 𝑎 = 1, 𝑏 = 1. 

Figure 1 exhibits the variation of 
displacement u along r for different theories in 
the range 0 < 𝑟 < 0.8 for 𝜔 = 0.5, 𝑡 = 0.1, 𝑎 = 1, 𝑏 = 
1 and it shows that the magnitude of the 
displacement component 𝑢 corresponding to 
TRDTE model is larger compare to ETE model 
which has again greater magnitude than CCTE 
model. In all the curves magnitude of 𝑢 gradually 
increases in 0 < 𝑟 < 0.1 (approx) and then 
decreases to vanish. 

 
Fig. 2. Variation of displacement 𝑢 with 𝑡 for different 

theories at 𝜔 = 0.5, 𝑟 = 0.3, 𝑎 = 0, 𝑏 = 0. 

Figure 2 indicates the variation of 
displacement u with the time t for different 
theories when 𝜔 = 0.5, 𝑎 = 0, 𝑏 = 0, 𝑟 = 0.3 in the 
range 0 < 𝑡 < 1. We see that the initial value of u 
for each of the three models is the same. With the 
increase of time t the values of u gradually 
increase to achieve larger values in the TRDTE 
model compared to the ETE model which again 
has larger values compared to the CCTE model 
and finally becomes stable in all cases. 
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Fig. 3. Variation of temperature 𝜃 with 𝑟 for different 

theories at 𝜔 = 0.5, 𝑡 = 0.1, 𝑎 = 1, 𝑏 = 1. 

Figure 3 shows the variation of temperature 𝜃 
along r for different theories in the range 
0 < 𝑟 < 0.8 when 𝜔 = 0.5, 𝑎 = 1, 𝑏 = 1, 𝑡 = 0.1. From 
the graph, it is clear that the magnitude of 𝜃  
corresponding to the ETE model is the greatest 
and that corresponding to the TRDTE model is 
the least. 

 
Fig. 4. Variation of temperature 𝜃 with 𝑡 for different 

theories at 𝜔 = 0.5, 𝑟 = 0.3, 𝑎 = 0, 𝑏 = 0. 

Figure 4 represents the variation of 
temperature 𝜃 with the time t for different 
theories when 𝜔 = 0.5, 𝑟 = 0.3, 𝑎 = 0, 𝑏 = 0 in the 
range 0 < 𝑡 < 1. From the figure, we see that the 
magnitude of the corresponding to the ETE model 
is the greatest and that corresponding to the 
TRDTE model is the least. 

 
Fig. 5. Variation of radial stress 𝜏𝑟𝑟 with 𝑟 for different 

theories at 𝜔 = 0.5, 𝑡 = 0.1, 𝑎 = 1, 𝑏 = 1. 

Figure 5 indicates the variation of radial stress 
𝜏𝑟𝑟  with 𝑟 for different theories at 𝜔 = 0.5, 𝑡 = 0.1, 
𝑎 = 1, 𝑏 = 1 in the range 0 < 𝑟 < 0.8. We observe 
that the magnitude of radial stress 𝜏𝑟𝑟 for each 
model is decreasing in nature and eventually 
vanishes. The maximum of the radial stress 𝜏𝑟𝑟 
for each model is attained near the center, which 
is the largest for the TRDTE model and the 
smallest for the CCTE model. 

 

Fig. 6. Variation of radial stress 𝜏𝑟𝑟 with 𝑡 for different 
theories at 𝜔 = 0.5, 𝑟 = 0.3, 𝑎 = 0, 𝑏 = 0. 

Figure 6 exhibits the variation of radial stress 
𝜏𝑟𝑟   with 𝑡 for different theories when 𝜔 = 0.5, 
𝑟 = 0.3, 𝑎 = 0, 𝑏 = 0 in the interval 0 < 𝑡 < 1. We see 
that the magnitude of 𝜏𝑟𝑟 corresponding to the 
CCTE model is the least and that corresponding to 
the TRDTE model is the greatest. Graphs 
corresponding to different thermoelastic models 
are distinguishable in the interval 0.1 ≤ 𝑡 ≤ 0.8 
(approx) and after which they become stable. 
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Fig. 7. Variation of displacement 𝑢 with 𝑟 for different values 
of ω in TRDTE model at 𝑡 = 0.1, 𝑎 = 0, 𝑏 = 0. 

Figure 7 represents the variation of 
displacement 𝑢 along 𝑟 for different values of 𝜔 
in the TRDTE model at 𝜔 = 0.1, 𝑎 = 0, 𝑏 = 0 in the 
range 0 < 𝑟 < 0.8. For any choice of 𝜔 distribution 
of 𝑢 have increasing nature near the origin and 
after that they decay to vanish. 

 

Fig. 8. Variation of displacement 𝑢 with 𝑟 for different kernel 
functions in TRDTE model at 𝜔 = 0.5, 𝑡= 0.1. 

Figure 8 demonstrates that the variation of 
displacement u with r for different kernel 
functions in the TRDTE model at 𝜔 = 0.5, 𝑡 = 0.1 
in 0 < 𝑟 < 0.8. For every choice of the kernel 
function, the distribution of 𝑢 has a uniform 
increasing nature in 0 < 𝑟 ≤ 0.1 (approx) and has 
a uniform decreasing nature in 0.1 ≤ 𝑟 ≤ 0.66 
(approx). It is observed that the curve 
corresponding to the nonlinear kernel (𝑎 = 1,  
𝑏 = 1) has greater magnitude compared to all 
linear kernels. For graphs corresponding to 
linear kernels, we see that magnitudes are 
greater for smaller values of the parameter 𝑏. 

 

Fig. 9. Variation of temperature 𝜃 with 𝑟 for different delay 
time parameter 𝜔 in TRDTE model at 𝑡 = 0.1, 𝑎 = 0, 𝑏 = 0. 

Figure 9 indicates the variation of 
temperature 𝜃 along 𝑟 for different delay time 
parameter 𝜔 in the TRDTE model when 𝑡 = 0.1, 
𝑎 = 0, 𝑏 = 0 for the interval 0 < 𝑟 < 0.8. We see that 
the value of 𝜃 for each chosen delay time 
parameter is the same near origin and with larger 
value of 𝜔 the curve travels the larger distance 
vanishes. 

 

Fig. 10. Variation of temperature 𝜃 with 𝑟 for different 
kernel functions in TRDTE model at 𝜔 = 0.5, 𝑡 = 0.3. 

Figure 10 exhibits the variation of 
temperature 𝜃 along 𝑟 for different kernel 
functions in the TRDTE model at 𝜔 = 0.5, 𝑡 = 0.3 
for the interval 0 < 𝑟 < 0.8. It is clear that for every 
chosen kernel function, the temperature 𝜃 attains 
the greatest value near the origin and uniformly 
decreases nature. For the nonlinear kernel  
(𝑎 = 1, 𝑏 = 1) 𝜃 travels the smaller distance to 
vanish. Among the linear kernels the magnitudes 
are greater for greater value of the parameter 𝑏 
and travels the larger distance to vanish for larger 
value of the parameter 𝑏. 
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Fig. 11. Variation of the radial stress 𝜏𝑟𝑟 with 𝑟 for different 
delay time parameter 𝜔 in TRDTE model at 𝑡 = 0.1, 𝑎 = 0, 𝑏 = 0. 

Figure 11 shows that the variation of the 
radial stress 𝜏𝑟𝑟 versus radial distance r for 
different delay time parameter 𝜔 in TRDTE 
model at 𝑡 = 0.1, 𝑎 = 0, 𝑏 = 0 in the range  
0 < 𝑟 < 0.8. We see that the radial stress 𝜏𝑟𝑟 is 
compressive in nature for all considered 𝜔. Each 
values of 𝜔 curve has oscillatory behavior near 
the origin and then uniformly decrease to vanish. 
With larger values of 𝜔 the length of the intervals 
in which oscillatory behavior appears diminishes. 

 

Fig. 12. Variation of the radial stress 𝜏𝑟𝑟 with 𝑟 for different 
kernel functions in TRDTE model at 𝜔 = 0.5, 𝑡 = 0.1. 

Figure 12 indicates the variation of the radial 
stress 𝜏𝑟𝑟 versus radial displacement 𝑟 for 
different kernel functions in TRDTE model at 
𝜔 = 0.5, 𝑡 = 0.1 in the range 0 < 𝑟 < 0.8. From the 
graph we see that for any choice of the kernel 
function magnitude of the radial stress 𝜏𝑟𝑟 is 
decreasing in nature and eventually vanishes. Its 
magnitude has larger value for non linear kernel 
(𝑎 = 1, 𝑏 = 1). For linear kernels magnitudes are 
greater for smaller values of the parameter 𝑏. 

6. Conclusions 

The problem of investigating the 
displacement (𝑢), temperature (𝜃) and the radial 
stress (𝜏𝑟𝑟) in linear, homogeneous and 
transversely isotropic infinitely extended 
thermoelastic continuum under the influence of 
line heat source has been studied for different 
models in the context of memory dependent 

derivative with aid of eigenvalue approach. 
Cylindrical polar coordinates system (𝑟, 𝜙, 𝑧) has 
been employed for the description of the problem 
and solution is obtained in transformed domain 
of Laplace. Stehfest's [45] method is used for 
numerical Laplace inversion of the above-said 
solution. The analysis of the obtained results 
permits us to derive the following conclusions: 

1. Significant effects of different considered 
models, delay time parameters, and different 
choices of kernel functions are observed in the 
distribution of displacement component (𝑢), 
temperature (𝜃) and the radial stress 
component (𝜏𝑟𝑟). 

2. In the region of consideration of 𝑟 the 
magnitude of displacement component (𝑢) 
corresponding to the TRDTE model is greatest 
and that corresponding to the CCTE model is 
the smallest. A similar observation appears in 
the considered interval of time. 

3. The magnitude of temperature (𝜃) 
corresponding to the ETE model is the largest 
and that corresponding to the TRDTE model is 
the smallest and this observation is true in 
both the region of consideration as well as in 
the interval of consideration. 

4. Radial stress component (𝜏𝑟𝑟) is compressive 
in nature. The magnitude of 𝜏𝑟𝑟  corresponding 
to the TRDTE model is the largest and that 
corresponding to the CCTE model is the 
smallest. This observation is true in the region 
of consideration as well as in the interval of 
consideration. 

5. Displacement component (𝑢) and the radial 
stress component (𝜏𝑟𝑟) travels longest 
distance to vanish for the nonlinear kernel 
(𝑎 =  1, 𝑏 =  1) but this phenomenon 
happens for temperature distribution (𝜃) for 
the case of linear kernel function when 𝑎 = 0, 

𝑏 =
1

2
. 

6. Displacement component (𝑢) and the radial 
stress component (𝜏𝑟𝑟) travels longest 
distance to vanish for the smallest value of ω, 
but for temperature distribution (𝜃) the curve 
corresponding to largest value of 𝜔 vanishes at 
longest distance. 

7. As the paper deals with thermoelastic 
interactions in the context of memory-
dependent derivative, it describes the 
behavior of an elastic material more 
realistically than the theory of 
thermoelasticity with fractional as well as 
integer one. 

8. All results of [46] corresponding to the 
fractional parameter 𝛼 = 1 can be derived from 
our results by taking 𝜔 → 0 and 𝑘(𝑡, 𝜉) = 1. 
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9. The results for isotropic material can be 
derived from our results by simply taking  

𝛾 =
𝜆

𝜆+2𝜇
, 𝜀 =

𝛽2𝜃0

𝜌𝑐𝐸(𝜆+2𝜇)
 and 𝛽 = (3𝜆 + 2𝜇)𝛼𝑡  in 

our calculations, where λ, μ are Lame’s 
constant, 𝛼𝑡  is the coefficient of linear thermal 
expansion for isotropic material. 
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