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 In this article, the effect and behaviour of ultra-high-velocity heat motion are described. The 

ultra-high velocity of heat conduction in a system composed of particles in gas form is viewed 

as the motion of particles that aligns with the principles of thermodynamics, the theory of 

relativity, and quantum physics theory. An alternative method for ultra-high velocity heat 

conduction has been developed and explained. This method has been achieved by using the 

Lowrance invariant of the microscopic environment in Makowski spacetime, hence both 

quantum and relativistic concepts are used, presenting a quantum-relativistic environment. 

The average number of field quanta has been obtained based on the relativistic effect, which 

is connected with the constituent mass of particles and determines the density matrix of a 

quantum oscillator. The presented relativistic heat conduction model is theoretically 

consistent with many important laws of physics and provides a more accurate representation 

of heat conduction in many technologically important situations. 
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1. Introduction 

In fundamental particle physics, heat flow 
transfer rate 𝜎 refers to the amount of heat 𝑄 that 
is transferred per unit of time between two 
particles, objects, or regions, which are at 
different temperatures. It is a fundamental 
parameter in the study of heat transfer and is 
important in many scientific applications. 
Thermal radiation from gamma rays to radio 
waves, conduction, and convection are the main 
forms of heat flow [1]. Thermal radiation with the 
majority in the infrared region is the heat transfer 
through electromagnetic waves such as infrared 
radiation. It refers to the process by which 

thermal energy is emitted from the fundamental 
particles in the form of photonic waves. Thermal 
radiation has important applications in 
astrophysics, nanotechnology, and 
engineering [2]. During 2005-2017 by Zhang [2-
5] and then in 2023 Vistman [6] this important 
subject, has been described under relativistic 
conditions. Based on their result, “The law for the 
black-body radiation in the whole interval of its 
(black-body) movement speed has been obtained, 
i.e., from zero up to the speed of light in vacuum.” 
[5]. Hence, generally radiative heat flow transfer 
rates are proportional to differences in 
temperature to the higher power or fourth power 
as follows: 
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https://portal.issn.org/resource/ISSN/2383-3068
mailto:jahanshir@bzte.ac.ir
https://doi.org/10.22075/JHMTR.2024.30976.1452
https://creativecommons.org/licenses/by-nc/4.0/


Jahanshir / Journal of Heat and Mass Transfer Research 11 (2024) 53 - 60 

54 

𝜎 ~𝑇1
4 − 𝑇2 

4 (1) 

where, 𝑇1 is temperature, 𝑇2 is a reference 
temperature and 𝜎  is the conducted heat flow 
rate in the medium. Conduction is the heat flow 
transfer through a material by the movement of 
its molecules or electrons.  It occurs in a material 
due to the direct contact between constituent 
particles at different temperatures, and from the 
particle with a higher temperature to the one 
with a lower temperature is transferred until 
both particles reach thermal equilibrium. The 
heat flow transfer rate to the temperature 
gradient in material (particle) using Fourier's law 
can be calculated. Mathematically heat flow 
transfer rate can be expressed in 1𝐷 space in the 
𝑥-direction as 

𝜎𝑥 = −𝑘𝐴∇𝑥𝑇 (2) 

where 𝑇 is temperature, ∇𝑥𝑇 is the thermal 
gradient, parameter 𝐴 is the cross-section area 
through which heat flow is transferred, 𝜎𝑥  is the 
conducted heat flow rate in the 𝑥-direction, 𝑘 is 
the thermal conductivity of the medium and 
would be constant or in more cases could depend 
on position and time. Equation (2) by 
experimental data and is widely used in 
engineering and physics to model heat transfer in 
physical systems has been validated. Convention 
is the heat flow transfer by the movement of a 
fluid, such as hadronic fluid, air or water, due to 
differences in density and temperature.  Heat 
conduction between two particles with different 
temperatures, 𝑇1 and 𝑇2, in the direction from the 
particle at 𝑇1 to the particle at 𝑇2. Particles have 
an important role in thermal prosses; Hence, the 
physical behavior of particles and their effect on 
these processes have needed to be described. It 
may usually be calculated as follows 

𝜎 = ℎ(𝑇1 − 𝑇2) (3) 

where 𝑇2 is a reference temperature and ℎ is the 
convective heat flow transfer coefficient. 
Parameters ℎ  and 𝑘 may additionally depend 
upon 𝑇1 being very susceptible. While there may 
be cases wherein the connection between 
conductive and convective heat flow transfer 
rates and temperature differences (𝑇1 − 𝑇2) is 
approximately linear, this isn't normally proper 
for all applications and conditions. In many cases, 
the relationship between 𝜎 and 𝑇1 variations may 
be quite complex. It can rely upon a selection of 
factors, including of the substances concerned, 
the geometry of the system, and the presence of 
different modes of heat flow transfers. For 
example, the convective heat flow transfer 
coefficient, which describes the heat flow rates 
between a fluid and a solid surface, is usually 
nonlinear and depends on factors 𝑣 fluid speed 
and 𝑇1. Particles, as recognized by theoretical and 

experimental scientists, are considered the 
smallest harmonic oscillating quantum system 
from both a physical and a mathematical 
perspective. The quantum harmonic oscillator is 
a theoretical version utilized in quantum 
mechanics to explain the behavior of a particle. 
The quantum harmonic oscillator is subject to a 
restoring force proportional to its displacement 
from a fixed point. The model assumes that the 
particle is moving in a 1𝐷 space and transferring 
heat flow. In this model, the energy of the 
quantum harmonic oscillator is quantized, 
meaning that the particle can have a certain 
discrete energy eigenvalue. The eigenenergy of 
the particle is associated with its natural 
frequency ω. It is a useful model for 
understanding the behavior of quantum systems 
that exhibit thermal motion. In quantum 
mechanics, the behavior of a particle as a 
quantum harmonic oscillator is described using 
the Schrödinger equation 𝐻𝛹 = 𝐸𝛹, which is a 
fundamental equation of quantum mechanics 
that describes the evolution of the wavefunction 
of a particle over time or the evolution of a system 
within heat flow transfer. The heat flow is related 
to the particles which transfer temperature. Here, 
the relativistic thermal relation of heat flow can 
be defined. Therefore, the heat flow conduct 
based on all physical properties of systems 
(particles) has needed to be explained, i.e., we 
need quantum mechanics and special relativity 
theories and principles [3]. The main focus of a 
quantum-relativistic thermal system is the 
changes in the states that occur due to heat, 
energy, and mass transformation across its 
boundary conditions. To understand the 
properties and behavior of a quantum-relativistic 
thermal system, it is essential to discuss the 
relativistic and quantum characteristics of 
motion and heat flow. The relativity theory is 
concerned with particles moving at speeds 
comparable to the speed of light, while most of 
these physical systems have microscopic 
dimensions and are described by quantum 
mechanics theory. Therefore, quantum-
relativistic effects cannot be ignored. The main 
quantum-relativistic properties of particles that 
propagate into the environment are described by 
photons with the 𝑐 = 3 ∙ 108(𝑚/𝑠) speed of light 
in a vacuum (electromagnetic waves) or phonon 
with the speed of sound in the heat flow 
conduction. During the period 1959-1979, 
Stewart, Müller, and Israel developed a thermo-
relativistic theory of heat flux as a part of the 
stress–energy-momentum tensor of order 2, 
𝑇𝜇𝜈𝜇𝜈=0,1,2,3 in the Makowski spacetime. Where 

the contravariant components of the stress-
energy tensor are: the time-time component 
(𝑇00 = 𝜌) is the density of relativistic mass 
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𝐸 = 𝑚𝑐2, the components (𝑇0𝜇 = 𝑇
𝜇0)𝜇=1,2,3 are 

the momentum, and the components 
(𝑇𝜐𝜇 )(𝜇=𝜐)=1,2,3 are the pressure [5]. In 2021 

based on mass-energy relation in relativity limit, 
the heat flow behavior is physically described by 
a dual form. Heat flow in the relativistic 
presentation can be as bulk with the mass during 
its motion, and its conversion can be wide-
spreading as energy. This duality manner of heat 
flow is named thermo-mass theory. A systematic 
reconstruction of thermo-mass theory within 
quantum mechanics theory can give us a 
quantum-relativistic relation for heat flow. So, 
the quantum-relativistic nano and multi-femto 
particle systems such as gas flux or hadronic flow 
can be described or approximated. The paper is 
organized as follows: 

• In the present section, a quantum-relativistic 
thermal system has been considered. 

• In Section 2, the general remarks about the 
relativistic transformation law for temperature 
and heat flux have been explained. 

• In the next section, Section 3, the quantum 
mechanics relation of heat flow has been 
considered and linked to the relativistic 
behavior of a system. 

• In the last section, the conclusion has been 
presented. 

2. Relativistic Temperature 
Transformation 

All The usual Cartesian Euclidian space and 
time around us is made of a 3D 𝑥, 𝑦, 𝑧 Euclidean 
space with the 1-dimensional 𝑡 time. In this space 
and time coordinate is named after Newtonian 
mechanics, all physical law and interactions 
between objects are required to be invariant 
concerning transformation (to any Galilean 
invariant or Galilean relativity (Fig. 1)).  

 

Fig. 1. Newtonian space-time 3D continuum 

As we know in Newtonian mechanics where 
𝑣 ≪ 𝑐, where 𝑐 is speed of light, the motion of 
subject hold in all frames related to one another 
by a Galilean transformation i.e.: 

𝑥′ = 𝑥 − 𝑣𝑡
𝑦′ = 𝑦

𝑧′ = 𝑧
𝑡′ = 𝑡

 

For all inertial frames of reference, physical 
quantities remain the same within a space and 
time, and the distance, 𝑑𝑠, between two points, 
defined by the Pythagorean theorem 

𝑑𝑠 = √(𝑑𝑥)2 + (𝑑𝑦)2 + (𝑑𝑧)2.  

As we know, 𝑑𝑠 is invariant i.e.  𝑑𝑠 remains 
unchanged irrespective of any transformation 
and rotation of the 3𝐷 coordinate system. In 
relativistic physics, when the speed of particles is 
comparable to the speed of light, the behavior of 
space and time are changed. In this situation, we 
link to the field of relativistic physics, in which 
particles move at speeds comparable to the speed 
of light. Einstein presented a new theory, which 
describes the interconnected of coordinates and 
time (space-like time) [5]. The Cartesian 
Euclidian spacetime that describes this property 
is made of a 4𝐷 𝑡,𝑥,𝑦,𝑧 pseudo-Euclidean 
spacetime (Fig. 2) with the length dimension, and 
in 1908 it was named after Hermann Minkowski 
spacetime. Hence, as we know in relativistic 
mechanics where 𝑣 ≈ 𝑐, the motion of subject 
hold in all frames related to one another by a 
Lorentz invariance i.e. 

𝑥′ =
𝑥 − 𝑣𝑡

√1 −
𝑣2

𝑐2

𝑦′ = 𝑦

𝑧′ = 𝑧

𝑡′ =
𝑡 −

𝑣𝑥

𝑐2

√1 −
𝑣2

𝑐2

 

Frames of reference (𝑥, 𝑦, 𝑧, 𝑡) and 
(𝑥′,𝑦′,𝑧′,𝑡′)) can be divided into two groups: 
inertial (relative motion with constant velocity) 
and non-inertial (accelerating, moving in curved 
paths, rotational motion with constant angular 
velocity, etc.). The term "Lorentz 
transformations" only refers to transformations 
between inertial frames, usually in the context of 
special relativity (Fig. 2). 

 

Fig. 2. Minkowski spacetime 4D continuum 
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A Minkowski spacetime continuum is a 
geometric representation of motions in a 4𝐷 
𝑡,𝑥,𝑦,𝑧 pseudo-Euclidean continuum, and all 
events in this continuum are called a world point, 
and the movement of some particles re called a 
world line (Fig. 3).  

 

Fig. 3. The light cone, the absolute future, the absolute past, 
and elsewhere based on the Minkowski 

 spacetime continuum. 

The distance, 𝑑𝑠, between two events of the 
Minkowski spacetime must be invariant in all 
inertial coordinates based on Lorentz invariant 
and transformation of two related inertial 
reference frames 𝑆 and 𝑆′with the 𝑣 relative 
velocity between the two frames. 

𝑑𝑥2 − 𝑐2𝑑𝑡2 = 𝑑𝑥′2 − 𝑐2𝑑𝑡′2 (4) 

The Lorentz invariant is as follows [5] 

𝑥  =
𝑥′ + 𝑣𝑡′

√1 −
𝑣2

𝑐2

,                       𝑥′ =
𝑥 − 𝑣𝑡

√1 −
𝑣2

𝑐2

      

 

𝑡  =
𝑡′ +

𝑣𝑥′

𝑐2

√1 −
𝑣2

𝑐2

,                       𝑡′ =
𝑡 −

𝑣𝑥 

𝑐2

√1 −
𝑣2

𝑐2

 

(5) 

Hence, the distance between two points in the 
Minkowski spacetime continuum is defined by 
the Pythagorean theorem is given by the formula 

𝑑𝑠 = √(𝑑𝜏)2 + (𝑑𝑥)2 + (𝑑𝑦)2 + (𝑑𝑧)2        (6) 

where 𝑑𝜏 = 𝑖𝑐𝑑𝑡 is the imaginary component of 

real-time, 𝑐 is the speed of light, and 𝑖 = √−1 is 
the imaginary unit. This transformation results in 
a space-like time component 𝑑𝜏, which is used in 
the Minkowski spacetime coordinate to describe 
the relation of time and space. In this theme, time 
and space are parts of the 4𝐷 spacetime, and one 
cannot distinguish between time and space 
components in the Minkowski spacetime. Time 
and space relations are described by the 𝑑𝑠 
interval in the relativistic framework. According 
to the principles of Einstein's special theory of 
relativity, when two reference frames are moving 
relative to each other near the speed of light, they 
will measure different values for the length and 

the duration of events.  This is due to the effects 

of time dilation 𝑑𝑡′ = √1 −
𝑣2

𝑐2
𝑑𝑡 and length 

contraction, 𝑑𝑥 = √1 −
𝑣2

𝑐2
𝑑𝑥′, which arises from 

the fact that the speed of light is constant in all 
inertial reference frames. As a particle moves 
with velocity 𝑣 of an object comparable to the 
speed of light, its mass and heat transfer (energy) 
also increase by relation 𝑄 = 𝑚𝑐2. Also, the 
temperature 𝑇 and heat flow transfer 𝑄 undergo 
relativistic changes. Hence, the relativistic 
corrections to the temperature heat flow transfer 
must be described. The thoughts of relativistic 
thermal transformation behavior have been 
explored in lots of research from 1905 to 1963. 
The relativistic temperature refers back to the 
temperature of a particle or object with the 
inertial reference frame 𝑆  . as measured by 
observer who's in a different inertial reference 
frame 𝑆′. According to the principle of relativity, 
the laws of physics should be the same in all 
inertial reference frames. However, we know that 
temperature and heat flow have to measure by 
observer's relative velocity 𝑣, like the results of 
length contraction and time dilation. In 1907 
Einstein, and Plank proposed that if a body of 
temperature 𝑇 in its initial rest reference frame 𝑆, 
and a moving observer with velocity 𝑣 = 𝑐𝑜𝑛𝑠𝑡  
and close to the speed of light in its rest inertial 
reference frame 𝑆′, the observer detects the 
temperature of the body in the 𝑆, 𝑇′ ≺ 𝑇, 𝑄′ ≺ 𝑄 
by the formula [7] 

𝑇′ = 𝑇′ = 𝑇  √1 −
𝑣2

𝑐2
,            𝑄′ = 𝑄 √1 −

𝑣2

𝑐2
          (7) 

where 𝑇 and 𝑄 are the temperature and heat flow  

transfer of the body in its rest reference S, 𝑇′ and 
𝑄′ are the temperature and heat flow  transfer in 
the inertial reference 𝑆′ as measured by the 
observer, and 𝑣 is the relative velocity between S 
and 𝑆′[5]. Equation (7) predicts that the inertial 
reference 𝑆   would appear colder, and the heat 
flow transfer would reduce to a moving observer 
in the inertial reference 𝑆′. In 1966 Landsberg 
determined that the temperature is a scalar value 
in the Lowrance invariant scale in both inertial 
reference S and 𝑆′. Hence, he describes that the 
temperature and the heat flow transfer are 
equivalent in both inertial reference S and 𝑆′, i.e.,  

𝑇′ = 𝑇  ,                          𝑄′ = 𝑄           (8) 

In 1963, German physicist Heinrich Ott 
analyzed and verified the thermal relativistic 
transformation problems and defined the inverse 
of Planck's transformation laws. He explained 
that if an observer with a velocity 𝑣 measures 
temperature and heat flow  transfer of the 
continuity inertial reference frame outside itself, 
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the observer would measure temperature with a 
hotter temperature and the heat flow with a 
larger value. Generally, the thermal relativistic 
transformation of a body or event inside the 
inertial reference frame 𝑆 as measured by an 
observer in a different inertial reference 𝑆′ is 
given temperature 𝑇′ ≻ 𝑇, 𝑄′ ≻ 𝑄 by the formula 
[7] 

𝑇′ =
𝑇  

√1−
𝑣2

𝑐2

,                         𝑄′ =
𝑄 

√1−
𝑣2

𝑐2

    (9) 

where 𝑇 and 𝑄 are the temperature and heat flow  

transfer of the body in its rest reference S, 𝑇′ and 
𝑄′ are the temperature and heat flow  transfer in 
the inertial reference 𝑆′ as measured by the 
observer, and 𝑣 is the relative velocity between S 
and 𝑆′. Equation (9) presents the relativistic 
effect of temperature. The key result is the 
transformation laws for the thermal transfer and 
the heat flow, predicting that a body or system 
would appear hotter to a moving observer. It is an 
essential idea inside the theoretical framework of 
special relativity. It has implications for our 
understanding and knowledge of the thermal 
characteristics of particles and events in the 
relativistic limit.  

3. Thermal Quantum-Relativistic 
Relation  

In this section, a relation between a quantum 
system at its reference frame 𝑆 with temperature 
𝑇 and the environment as an observer 𝑆′ with the 
relative velocity 𝑣 between them have been 
provided.  The issue of quantum-relativistic 
transformation of temperature and heat flow 
using a moving quantum system in the inertial 
reference environment with relativistic velocity 
have been defined. Then, the quantum system 
(body) weakly interacting with the quantum 
scalar field 𝜑 in the thermal environment at the 

finite temperature 𝑇 =
1

𝑘𝑏𝛽
 has been investigated. 

The total Hamiltonian of the system is 
𝐻 = 𝐻𝑝 + 𝐻𝜑 +𝐻𝐼 , where 𝐻𝑝  is the Hamiltonian 

of particles, 𝐻𝜑  is the Hamiltonian of free 

massless scalar field, and  𝐻𝐼  is the interaction 
Hamiltonian and also the system as a simple 
quantum oscillator has been supposed [8].  

The quantum oscillator is an important model 
that is used to explain the behavior of particles 
and physical phenomena. The total Hamiltonian 
of the quantum oscillator system is divided into 
the zeroth approximation 𝐻0Ψ = 𝐸0Ψ 
(Hamiltonian of the ground state or vacuum for a 

free particle 𝐻0 =
𝑝2

2𝑚
+
𝑚𝜔2

2
𝑥2) with mass 𝑚, 

oscillator frequency 𝜔 and charge 𝑞, that 
obtained analytically and perturbative parts 𝐻𝐼 , 
to the zeroth approximation. 𝐻𝐼  should be small 

corrections to the Zeroth approximation. We 
propose that the quantum oscillator system’s 
wavefunction has a Gaussian behavior for short 
and large distances.  This condition has been 
leaded us to define the expansion of these 
wavefunctions over the oscillator basis in Hilbert 
space. Based on this representation, the variables 
in the Schrodinger equation and properties and 
behavior of particles should be modified. Now for 
describing the temperature and heat flow 
transfer of the system and its relation in both 
inertial reference S and 𝑆′, we have to define the 
master equation for the quantum harmonic 
oscillator due to describe the time evolution of 
the density matrix (density operator)  
�̂� = ∑ 𝑝𝑖|𝜑𝑖⟩𝑖 ⟨𝜑𝑖| → ∫𝜑𝑖

∗(𝑥)�̂�𝜑𝑗
 (𝑥)𝑑𝑥, where  𝑝𝑖  

is the probability of finding the system in the 𝑖 
state,  |𝜑𝑖⟩ and ⟨𝜑𝑖| are the wave function for the 
𝑖 state. We know that �̂� = �̂�2 , 𝑡𝑟�̂� = 1 [8]. The 
master equation is a fundamental tool in studding 
quantum oscillator systems, which can exchange 
energy and heat with the environment. The 
general form of this equation for the quantum 
harmonic oscillator without spin-orbit 
interactions, based on the annihilation and 
creation operators, reads 

𝑑�̂�

𝑑𝑡
= 

−
𝑖

ℏ
[�̂�,�̂�] +∑𝛾(𝜔) (𝐿𝑖  �̂�𝐿𝑖

+ −
1

2
{𝐿𝑖  𝐿𝑖

+,�̂�})

𝑖

 
(10) 

where 𝐿𝑖  is a set of jump operators and describes 
how the environment acts on the system, 

{�̂�, �̂�} = �̂��̂� + �̂��̂� is anticommutator, 

[�̂�,�̂�] = �̂��̂� − �̂��̂� is commutator, and 𝛾(𝜔) is the 

positive and constant decay rate 𝛾(𝜔) = 𝜔2
2𝑞2

3𝑚𝑐3
.  

The Hamiltonian of a free harmonic  
oscillator in 1𝐷 spacetime coordinates is 

𝐻0 = ℎ𝜔 (�̂�
+�̂� +

1

2
) = ℎ𝜔 (𝑛 +

1

2
) where  

𝑛 = 0,1,2,⋯ , and canonical variables in the form 
of annihilation �̂� and creation �̂�+ operators read 
[9]  

�̂� = √
ℏ

2𝑚𝜔
(�̂� − �̂�+),       �̂� = −𝑖√

ℏ𝑚𝜔

2
(�̂� + �̂�+)     (11) 

and transition operators are related to the 
annihilation �̂� and creation �̂�+ operators as 
follows 

�̂� = √
ℏ

2𝑚𝜔
�̂�,                �̂�+ = √

ℏ

2𝑚𝜔
�̂�+ (12) 

Now, using equation (12)and insert into 
equation (13), the master equation becomes [11] 
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𝑑�̂�

𝑑𝑡
= −

𝑖

ℏ
[�̂�,�̂�] + ∑ 𝛾(𝜔)

𝜔≻0

(𝑁(𝜔) + +1) 

 × (�̂��̂��̂�+ −
1

2
�̂�+�̂��̂� −

1

2
�̂��̂�+�̂�) 

+∑ 𝛾(𝜔)𝑁(𝜔)

𝜔≻0

�̂�+�̂��̂� −
1

2
�̂��̂�+�̂� −

1

2
�̂��̂��̂�+ 

(13) 

where 𝑁(𝜔) is the average number of field 

quanta and reads 

𝑁(𝜔) = 

𝑘𝑏𝑇√1 −
𝑣2

𝑐2

2𝑣ℏ𝜔
𝑙𝑜𝑔

(

 
 
 
 1 − 𝑒𝑥𝑝(−

ℏ𝜔

𝑘𝑏𝑇
√
1+

𝑣

𝑐

1−
𝑣

𝑐

)

1 − 𝑒𝑥𝑝(−
ℏ𝜔

𝑘𝑏𝑇
√
1−

𝑣

𝑐

1+
𝑣

𝑐

)

)

 
 
 
 

 
(14) 

and, in the non-relativistic limit 𝑣 → 0,  

𝑁(𝜔) =
1

𝑒
−
ℏ𝜔
𝑘𝑏𝑇−1

.  

After a series of mathematical changes and the 
replacement of the annihilation �̂� and creation �̂�+ 
operators from equation (11), the master 
equation defines as follows [11] 

𝑑�̂�

𝑑𝑡
= −𝑖𝜔[�̂�+�̂� + 𝐻 ,�̂�] +

𝛾(𝜔)

2𝑚𝜔
(𝑁(𝜔) + 1) 

× (�̂��̂��̂�+ −
1

2
�̂�+�̂��̂� −

1

2
�̂��̂�+�̂�) 

+
𝛾(𝜔)

2𝑚𝜔
𝑁(𝜔) (�̂�+�̂��̂� −

1

2
�̂��̂�+�̂� −

1

2
�̂��̂�𝑎+) 

(15) 

So, the master equation for the quantum 
oscillator system has been presented. The 
relativistic rule for the thermal behavior of a 
moving quantum oscillating system in the 
thermal environment will be defined in the next 
section. Therefore, the connection between 
quantum system and thermal environment 
behavior in relativistic limits will be presented. 

4. Frequency and Thermal 
Relation of Quantum Harmonic 
Oscillator 

We work and deal in quantum mechanics and 
quantum field theory with the perturbative 
behavior of Hamiltonian [10]. In most cases, we 
have to describe heat flow transformation and 
relativistic effects of quantum systems. When we 
try to begin calculation, the most important 
problem is the ground state of a system under 
heat flow transform and thermal interaction with 
the environment. Therefore, we need to present 
calculations based on the properties of 
thermodynamics, quantum mechanics, and 
quantum field theory [14]. One of the most 
methods in quantum field theory is the Normal 
ordering product of canonical and field 

operators. This method lets us define the ground 
and excited states, and then based on the master 
equation, we can approximate the quantum-
relativistic effect of a system that exists of bound 
states of two particles under thermal and heat 
flow transformation. The Hamiltonian of two 
particles, which we choose as a quantum 
harmonic oscillator system 1𝐷 reference frame 
under the thermal environment within spherical 
symmetry potential 𝑈(𝑥) and supposed existence 
of a bound state, read [13] 

𝐻 =
�̂�2

2𝑚
+ 𝑈(𝑥) (16) 

then rewrite it in the form [12] 

𝐻 = (
�̂�2

2𝑚
+
𝑚𝜔2

2
𝑥2) + (𝑈(𝑥) −

𝑚𝜔2

2
𝑥2)  (17) 

The equation (17) based on (11) can be 
defined as follows [11] 

𝐻 = 𝐻0 + 휀0 + 𝐻𝐼   (18) 

where 휀0 =
𝜔

2
 is the vacuum state or ground state 

of Hamiltonian 𝐻, 𝐻0 = 𝜔�̂�
+�̂�  is the free 

oscillator Hamiltonian and 

𝐻𝐼 = 𝑈(𝑥) −
𝑚𝜔2

2
𝑥2 

      = ∫(
𝑑𝑘

2𝜋
) �̌�(𝑘)𝑒−

𝑘2

4𝜔 : 𝑒𝑖𝑘𝑥: −
𝜔2

2
(: 𝑞2: +

1

2𝜔
) 

is interaction Hamiltonian and :∗: is the Normal 
ordering symbol. The wavefunction of the 
vacuum state with the normalization condition 
〈0|0〉 = 1, reads 

 |0⟩ = (
𝜔

𝜋
)
1/4
𝑒−

𝜔2

2
𝑥2  (19) 

This presentation of Hamiltonian in the 
Normal ordering form has a requirement that the 
interaction Hamiltonian should not contain terms 
in 𝑥2. This condition can present the equation for 
the quantum harmonic oscillator frequency 𝜔, 
which we will use to calculate of the master 
equation (15)[15]. To define frequency 𝜔, we use 
the bound state Hamiltonian within the radial 
Schrödinger equation [13] function 
𝐻𝛹(𝑟,𝜃,φ) = 𝐸(𝜇) ℜ(𝑟)𝛩(𝜃)Φ(φ) as follows 
(ℏ = 𝑐 = 1) 

∫ 𝑑3𝑟ℜ(𝑟) (−
1

2𝑚1
 [

𝑑2

𝑑𝑟2
+
2

𝑟

𝑑

𝑑𝑟
] −

1

2𝑚2
 [

𝑑2

𝑑𝑟2
+

∞

0
2

𝑟

𝑑

𝑑𝑟
] +

ℓ(ℓ+1)

2𝜇𝑟2
+𝑈(𝑥) − 𝐸(𝜇) )ℜ(𝑟) = 0  

1

𝑚1
 +

1

𝑚2
  =

1

𝜇
 

(20) 

ℓ is the angular momentum quantum number, μ 
is the reduced mass of the bound state. by 
changing 𝑟 = 𝑞2𝜌, ℜ(𝑟) → 𝛷(𝑞2𝜌) and using (11), 
equation (20) reads 
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[
1

2𝜇
(�̂� 
2(𝑞)) + 4𝜌2𝑞4𝜌−2(𝑈(𝑞) − 𝐸(𝜇) )] 𝛷 = 0    (21) 

where 𝐷 = 2 + 2𝜌 + 4𝜌ℓ,  𝜌 ≻ 0 and determines 
from the potential model and wavefunction at 
large or short distances. Now using a series of 
mathematical transformations from (20) and 
(18), one can define 

휀0 =
𝑑𝜔

4
+ 4𝜇𝜌2𝑞4𝜌−2(𝑈(𝑞) − 𝐸(𝜇) ) = 0 (22) 

Parameter 𝜇 presents relativistic mass correction 
in the system based on quantum field theory and 
Feynman path integral form [14], and reads  

1

𝜇
=

1

√𝑚1
2 − 2𝜇2

𝑑𝐸(𝜇)

𝑑𝜇

+
1

√𝑚2
2 − 2𝜇2

𝑑𝐸(𝜇)

𝑑𝜇

 
(23) 

𝐸(𝜇) is the eigenvalue of the radial Schrödinger 

equation (20), and 𝜇𝑖 = √𝑚𝑖
2 − 2𝜇2

𝑑𝐸(𝜇)

𝑑𝜇
  is the 

relativistic mass of particle constituent particles 
that moves with velocity 𝑣. Applying the main 

quantum oscillating condition, i.e. 
𝑑𝜀0(𝐸𝑛)

𝑑𝜔
= 0, 

(the bound state exists at the minimum of 
oscillator frequency and energy eigenvalue), we 
determine the oscillator frequency in 𝑅𝑁 
space [12] 

𝜔2 +∫(
𝑑𝑘

2𝜋
)
𝑁

(
𝑘2

𝑁
) 𝑒

−𝑘2

4𝜔 �̌�(𝑘2) = 0 (24) 

after a series of mathematical representations, we 
determine the frequency as follows 

  𝜔 = 2∫ 𝑑𝑢
𝑢𝐷𝑒−𝑢

Γ(𝑑+1)

𝑑

𝑑𝑢

∞

0
𝑈 ((

𝑢

𝜔
)
1/2
) (25) 

Our work provides a link between the 
relativistic motion of quantum systems in the 
thermal heat environment. We will define the 
thermal and relativistic form of the master 
equation concerning the heat flow transfer [15]. 
Now we determine the master equation [16] of a 
quantum system in the heat flow transfer 
environment at the relativistic limit for the 
Coulomb potential type 𝜌 = 1 and equation (21) 
one can define 

휀0 =
𝐷𝜔

2
+ 4𝜇𝑞2(−

𝛼𝑠

𝑞2
− 𝐸(𝜇) ) = 0    (26) 

and then the ground state (ℓ = 0) frequency for the 
bound states of particles with the rest masses 
𝑚1 = 𝑚2 = 𝑚, defined 𝜔 = 2𝜇𝛼𝑠 , hence the master 
equation for the moving quantum bound state system 
reads  

 
𝑑�̂�

𝑑𝑡
= −𝑖2𝜇𝛼𝑠[�̂�

+�̂� + 휀0,�̂�] +
𝛾(𝜔)

4𝜇2𝛼𝑠
(𝑁(𝜔) +

1) (�̂��̂��̂�+ −
1

2
�̂�+�̂��̂� −

1

2
�̂��̂�+�̂�) + 

𝛾(𝜔)

4𝜇2𝛼𝑠
𝑁(𝜔) (�̂�+�̂��̂� −

1

2
�̂��̂�+�̂� −

1

2
�̂��̂�𝑎+) 

(27) 

The parameter 𝑁(𝜔) and 𝜇 present the 
quantum-relativistic behavior of the system 
based on heat flow transfer in the inertial 
reference 𝑆′ as measured by the observer, and 𝑣 
is the relative velocity between S and 𝑆′. Then 
𝑁(𝜔) and 𝜇,  (𝜇1 = 𝜇2 = 2𝜇) is determined as 
follows 

𝑁(𝜔)

=
𝑘𝑏𝑇√1 − 𝑣

2

2𝜇1𝛼𝑠𝑣
𝑙𝑜𝑔

(

 
 
1 − 𝑒𝑥𝑝 (−

𝜇1𝛼𝑠

𝑘𝑏𝑇
√
1+𝑣

1−𝑣
)

1 − 𝑒𝑥𝑝 (−
𝜇1𝛼𝑠

𝑘𝑏𝑇
√
1−𝑣

1+𝑣
)
)

 
 

 
(28) 

Using equation (27) for a free quantum 
oscillator with the frequency 𝜔0 and mass 𝑚, one 
can calculate diagonal matrix elements of �̂� in the 
nonrelativistic limit  𝑣 → 0,  as follows [14] 

�̂� = (

𝜌00 ⋯      𝜌03     
⋮ ⋱ ⋮
𝜌10 ⋯ 𝜌33

) = 

= (𝑒
−
ℏ𝜔0
𝑘𝑏𝑇 − 1)𝑒

ℏ𝜔0
𝑘𝑏𝑇

𝑛
𝛿𝑛𝑛′;     𝑛, 𝑛

′ = 0,1,2,3 

(29) 

5. Conclusions 

The link between two systems, in which one 
of the two systems with respect to the other 
moves, with relativistic velocity 𝑢 has been 
studied.  One of the systems is the bound state of 
two equal particles, and the other system can be 
supposed as an environment with an observer. 
The thermal relativistic transformation of a 
system as a quantum harmonic oscillator in the 
inertial reference frame 𝑆 as measured by an 
observer in a different inertial reference 𝑆′  that 
moves with relativistic velocity 𝑢 concerning 
each other 𝑇′ = 𝛾𝑇  > 𝑇.  In conclusion, a helpful 
method for defining the master equation of a 
quantum harmonic oscillator that describes heat 
flow transfer and temperature relation of two 
inertial systems with relativistic relative velocity 
𝑣 have been presented. Then the quantum 
harmonic frequency 𝜔 based on the quantum 
field theory presentation and the master 
equation due to calculate the matrix density have 
been explained. The quantum harmonic oscillator 
as a body with a finite temperature has been 
considered and then the bound state system 
(body) of two equal particles at a relatively strong 
coupling environment under Otto’s formula 
(temperature and heat transport) has been 
explained and defined.  The relativistic effect 
directly includes the constituent mass of particles 
𝜇1and in the number of field quanta 𝑁(𝜔) has 
been determined and based on this result the 
equation of density matrix of a quantum 
oscillator has been explained.  Based on the 
relativistic heat conduction model, Eq. (28-29), 
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that are consistent with many laws of physics, 
and is a more accurate representation of heat 
conduction in many technologically important 
situations such as astrophysics, cosmology, 
condensed matter physics, reactor engineering, 
thermal engineering, and high-energy laser 
engineering, the achievements claimed by this 
paper are: 

1. Proper the relativistic corrections of mass in 
the of heat conduction theory. 

2. Determination the frequency of system 

under heat conduction at ultra-high 

velocities.  

3. Calculation the matrix elements with the 

relativistic conditions of heat conduction.  

4. Assimilation with thermodynamics, 

quantum mechanics and relativity. 

Nomenclature 

T Temperature [K] 

H Hamiltonian [MeV] 

m Mass [MeV] 

E Energy eigenvalue [MeV] 

𝜔 Quantum oscillator frequency [MeV] 

𝜇 The reduced mass of system [MeV] 

𝜇𝑖  Constituent mass of particle [MeV] 

𝑁(𝜔) The average number of field quanta 

𝛼𝑠 Coupling constant 

ℓ Orbital quantum number 

𝛤(x) Gamma function 

�̂� Annihilation  

𝑎+ Creation operator 

ℏ Reduced Planck constant [J.s] 

𝑘𝑏 Boltzmann constant [J/K] 

:∗: Normal ordering symbol 

m Rest mass [MeV]  

𝑄 Heat [J]  
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