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 In the present study, the governing equation of pressurized axisymmetric thick cylinders 

made of Functionally Graded materials (FGMs) with large deformations is derived using the 

Nonlinear Plane Elasticity Theory (NPET). Because of large deformations along the radial 

direction and hence the existence of nonlinear terms in kinematic equations, the governing 

equation is a nonlinear second-order equation with variable coefficients, which is solved in 

plane stress and plane strain states using the perturbation technique. According to the 

equilibrium equation, boundary conditions and different end conditions of the cylinder: open 

ends and closed ends; radial, axial, and circumferential stresses and radial displacement in 

cylindrical shells are analytically calculated. To investigate the accuracy of the results 

obtained from the analytical solution, the numerical finite element modeling of the mentioned 

cylinder with ABAQUS software based on the nonlinear elasticity theory is done and the 

results of the two methods are compared. This research reveals that the obtained results by 

the mentioned analytical solution procedure have good accuracy for cylindrical shells under 

pressure load. The aim of this study is to provide a mathematical solution for the nonlinear 

analysis of large deformations of FGM cylinders. 
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1. Introduction 

In mechanical science, Functionally Graded 
Materials (FGMs) may be characterized by the 
variation in composition and structure gradually 
over volume, resulting in corresponding changes 
in the properties of the material. FGMs are 
advanced materials with gradient compositional 
variation of two or more materials that are varied 
continuously as a function of position along 
certain dimensions of the structure. The FGM's 
are adequate for many industrial departments 
such as corrosion and erosion-resistant coatings, 
dental implants, heat exchanger conduits, heat 

diffuser plates, plasma coatings for nuclear 
fusion, etc. 

Lamé provided an exact solution for isotropic 
axisymmetric thick-walled cylinders, his solution 
later led to Plane Elasticity Theory (PET) [1]. 
Zhifei et al. reported the exact solution of FGM 
hollow cylinders with isotropic multilayers based 
on Lamé's solution [2]. Sanders indicated strain-
displacement relations for thin shells while 
considering the large deformations, he simplified 
the equilibrium and strain-displacement 
relationships using assumptions [3]. Fukui and 
Yamanaka extracted and solved the governing 
equation of a thick-walled FGM pipe under 
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internal pressure using the classical theory (PET) 
and the Runge-Kutta numerical method [4]. 
Thomas and Liu analyzed the large strain and 
large rotation of the shells and finally arrived at a 
nonlinear finite element formulation [5]. By 
considering a power function for Young's 
modulus, Ghannad and Nejad analyzed thick-
walled cylindrical shells under internal and 
external pressure using PET [6]. In the same year, 
Ghannad and Gharooni analyzed symmetric 
thick-walled cylinders made of performance-
graded materials under uniform internal and 
external pressure using High-order Shear 
Deformation Theory (HSDT) instead of PET [7]. 
Ghannad and Nejad derived an analytical formula 
based on the First-order Shear Deformation 
Theory (FSDT) for axisymmetric thick-walled 
inhomogeneous cylinders under uniform internal 
and external pressure considering a power 
function for FGMs [8]. The next year, they derived 
the governing equations of thick cylindrical shells 
with variable thickness made of FGMs with 
clamped-clamped end conditions. They solved 
the equations analytically using the Matched 
Asymptotic Method (MAM) of the perturbation 
technique [9]. Tang and Bich investigated the 
nonlinear response of the spherical shell, 
assuming that the variation of mechanical 
properties along the radius of the sphere follows 
a power function. In this research, temperature 
effects were considered in addition to pressure 
effects [10]. Static and dynamic nonlinear 
stability of functionally graded plates and shells 
was investigated by Duc [11]. Thuy Anh et al. 
studied thin annular Functionally Graded 
spherical shells too, but they investigated the 
stability of these shells under external pressure 
and temperature [12]. Ranjen Kar and Kumar 
Panda examined the linear and nonlinear 
deformation behavior of the FGM spherical shell 
panel under thermomechanical load. The 
nonlinear mathematical model of the FG shell 
panel was developed based on HSDT and green 
Lagrange-type geometrical nonlinearity [13]. 
Srividhya et al. carried out a nonlocal nonlinear 
analysis of functionally graded plates subjected 
to static loads based on the Third-order Shear 
Deformation Theory (TSDT) and von Karman 
nonlinear strains [14]. Sofiyev and Dikmen 
studied the buckling of shells composed of FGM 
under uniform compressive lateral pressure, they 
did this for mixed boundary conditions [15]. 
Quan et al. studied the nonlinear vibration of 
porous functionally graded sandwich plates on 
elastic foundations based on the Reddy high-
order shear deformation theory of von Kármán 
type nonlinearity, they employed Reddy's higher-
order shear deformation theory [16]. Bahadorani 
et al. derived a governing equation of pressurized 
axisymmetric cylinders made of homogeneous 

and isotropic materials with large deformations 
and small strains using NPET [17]. Ellouz et al. 
inspect the magneto-electro-elastic coupling 
performance of thin-walled smart structures 
with laminate design presenting FGM composite 
using improved first-order shear deformation, 
they proposed a new useful MEE FE model [18]. 

Previous research generally relied on 
numerical or semi-analytical methods, while this 
article is done using a mathematical and 
analytical method purely. The perturbation 
technique is a mathematical method for solving 
nonlinear differential equations. Of course, if 
shear stress and strain appear in the problem, 
this method is not solved. In the present paper, 
the governing equation of pressurized thick-
walled axisymmetric thick cylindrical shells 
made of Functionally Graded materials (FGMs) 
with large deformations and small strains is 
derived using Nonlinear Plane Elasticity Theory 
(NPET). The governing equation is solved in 
plane stress and plane strain states using the 
perturbation technique. The application of this 
research is for non-hyper elastic materials that 
follow Hooke's law and do not have extremely 
small deformations (they have large 
deformations relatively). 

2. Formulation 

Linear constitutive equations (Hook's low) 
are used in the extraction of governing equations. 
The shell material is assumed to be functionally 
graded along the radius. The cylinder thickness is 
constant and it is subjected to uniform pressure 
in internal and/or external radii. The problem is 
considered to be completely axisymmetric. 
Figure 1 shows the cross-section of the thick 
cylinder under study. 

 
Fig. 1. Cross section of cylindrical shell 

Similar to Plane Elasticity Theory (PET), in 
Nonlinear Plane Elasticity Theory (NPET), it is 
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assumed that sections that are planar and 
perpendicular to the central axis of the cylinder, 
remain in the same position after deformations 
due to pressure loadings. In other words, the 
shear effect is ignored. In addition, stress and 
strain tensors will be diagonal. Thus, radial and 
axial deformations are dependent only on radial 
and axial coordinates, respectively. 

The axisymmetric equilibrium equations in 
the cylindrical coordinate system and the 
absence of body forces are expressed as: 

𝑑𝑖𝑣𝜎̃ = 0{
𝜎𝑟,𝑟 +

1

𝑟
(𝜎𝑟 − 𝜎𝜃) = 0

𝜎𝑥,𝑥 = 0                         
 (1) 

where 𝜎𝑟 , 𝜎𝜃 and 𝜎𝑥  are radial, circumferential, 
and axial stresses, respectively. The nonlinear 
kinematic equation in general is as follows. 

𝜀̃ =
1

2
[(𝛻⃗ 𝑢⃗ ) + (𝛻⃗ 𝑢⃗ )

𝑇
+ (𝛻⃗ 𝑢⃗ )

𝑇
(𝛻⃗ 𝑢⃗ )] (2) 

According to assumptions, the problem is 
completely axisymmetric (geometry, material, 
and loading) and large deformation occurs only 
along the radial direction. Therefore general 
strain-displacement relations (2) reduce to the 
following form (Saint Venant-Kirchhoff model). 

{
 
 
 

 
 
 𝜀𝑟 = 𝑢𝑟,𝑟 +

1

2
(𝑢𝑟,𝑟)

2

⬚

𝜀𝜃 =
1

𝑟
𝑢𝑟 +

1

2
(
1

𝑟
𝑢𝑟)

2

⬚
𝜀𝑥 = 𝑢𝑥,𝑥                     

 (3) 

where 𝜀𝑟 , 𝜀𝜃 and 𝜀𝑥 denote radial, circumferential, 
axial strains; 𝑢𝑟 and 𝑢𝑥 radial and axial 
displacements, respectively. A comma in 
subscript denotes derivative concerning the 
variable written just after it. The constitutive 
relations for nonhomogeneous and isotropic 
materials are [6]: 

{
𝜎𝑟
𝜎𝜃
} = 𝐸(𝑟) [

𝐴 𝐵
𝐵 𝐴

] {
𝜀𝑟
𝜀𝜃
} 

𝜎𝑥 = 𝛼(𝜎𝑟 + 𝜎𝜃) 

(4) 

where 𝐸(𝑟) is Young's modulus and 𝐴 and 𝐵 are 
constants related to Poisson's ratio 𝜈 as described 
below. 

I). Plane stress (cylinder with open ends) [6] 

𝜎𝑥 = 0   ,   𝜀𝑥 ≠ 0   ,   𝛼 = 0 

𝐴 =
1

1 − 𝜈2
 ,   𝐵 =

𝜈

1 − 𝜈2
 ,   𝜈∗ =

𝐵

𝐴
= 𝜈 

(5) 

II). Plane strain (cylinder with closed ends) 
[6] 

𝜎𝑥 ≠ 0   ,   𝜀𝑥 = 0   ,   𝛼 = 𝜈 

𝐴 =
1 − 𝜈

(1 + 𝜈)(1 − 2𝜈)
 , 

𝐵 =
𝜈

(1 + 𝜈)(1 − 2𝜈)
 ,   𝜈∗ =

𝐵

𝐴
=

𝜈

1 − 𝜈
 

(6) 

where 𝛼 is dependent on end conditions. As a 
common assumption, the Poisson's ratio is 
considered to be constant, because of the minor 
effects its change has on analysis results. The 
nonhomogeneous Young's modulus 𝐸(𝑟) is the 
power function of dimensionless radial 
coordinate 𝑟̅. 

𝐸(𝑟) = 𝐸𝑖 𝑟̅
𝑛 (7) 

In (7), 𝐸𝑖  is the modulus of elasticity at the 
inner surface (i.e. surface at 𝑟 = 𝑟𝑖) and 𝑛 is the 
inhomogeneity constant, determined empirically 
and the radial coordinate (𝑟) is normalized as 
𝑟̅ = 𝑟 𝑟𝑖⁄ . 

By substituting (3) and (7) into (4) and the use 
of (1), and after some simplifications, one may 
lead to the following equation. 

[𝐸(𝑟)(𝐴𝜀𝑟 + 𝐵𝜀𝜃)],𝑟  

+
1

𝑟
[𝐸(𝑟)(𝐴 − 𝐵)(𝜀𝑟 − 𝜀𝜃)] = 0 

(8) 

𝐴𝑢𝑟,𝑟𝑟 +
𝐴(𝑛 + 1)

𝑟
𝑢𝑟,𝑟 +

(𝐵𝑛 − 𝐴)

𝑟2
𝑢𝑟

+ 𝐴𝑢𝑟,𝑟𝑢𝑟,𝑟𝑟 +
𝐵

𝑟2
𝑢𝑟𝑢𝑟,𝑟

+
(𝐴𝑛 + 𝐴 − 𝐵)

2𝑟
(𝑢𝑟,𝑟)

2

+
(𝐵𝑛 − 𝐵 − 𝐴)

2𝑟3
𝑢𝑟
2 = 0 

(9) 

Equation (9) is the governing equation of the 
NPET problem. 

3. Solution 

The first step for solving NPET equation (9) is 
to make it dimensionless using the dimensionless 
parameters that are listed in appendix. 

𝐴 [𝑢𝑟,𝑟∗𝑟∗
∗ +

(𝑛 + 1)

𝑟∗
𝑢𝑟,𝑟∗
∗ +

(𝜈∗𝑛 − 1)

𝑟∗2
𝑢𝑟
∗] 

+ [(𝑢𝑟,𝑟∗
∗ 𝑢𝑟,𝑟∗𝑟∗

∗ ) + (𝜈∗𝑢𝑟
∗
𝑢𝑟,𝑟∗
∗

𝑟∗2
)

+
(𝑛 + 1 − 𝜈∗)

2𝑟∗
(𝑢𝑟,𝑟∗

∗ )
2

+
(𝜈∗𝑛 − 𝜈∗ − 1)

2𝑟∗3
𝑢𝑟
∗2] 𝜖

= 0 

(10) 
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Compared to lower-order derivatives, higher-
order derivatives are not dominant; thus the (10) 
mathematically represents a regular 
perturbation problem. So, the dimensionless 
radial displacement can be expanded as follows. 

𝑢𝑟
∗ = 𝑢0 + 𝜖𝑢1 + 𝑂(𝜖

2) (11) 

The term 𝑂(𝜖2) is a term of 𝜖2 magnitude. By 
substituting (11) into (10) and then separating 
the coefficients of the same powers of 
perturbation parameter 𝜖, the equation can be 
rewritten as follows. 

(𝑢0,𝑟∗𝑟∗ + (𝑛 + 1)
𝑢0,𝑟∗ 

𝑟∗

+ (𝜈∗𝑛 − 1)
𝑢0

𝑟∗2
)
𝜖0

𝑅

+ ((𝑢1,𝑟∗𝑟∗ +
(𝑛 + 1)𝑢1,𝑟∗ 

𝑟∗

+
(𝜈∗𝑛 − 1)𝑢1

𝑟∗2
) + (𝑢0,𝑟∗ 𝑢0,𝑟∗𝑟∗)

+ (𝜈∗
𝑢0𝑢0,𝑟∗ 

𝑟∗2
) +

(𝑛 + 1 − 𝜈∗)

2𝑟∗
(𝑢0,𝑟∗ )

2

+
(𝜈∗𝑛 − 𝜈∗ − 1)

2𝑟∗3
𝑢0
2)
𝜖1

𝑅
+ 𝑂(𝜖2) = 0 

(12) 

For 𝜖 ≪ 1, (12) is held only when the 
coefficients of different powers of epsilon are 
zero. 

3.1.   Zero-Order Equation (Coefficient of 𝝐𝟎) 

In this case, equation (𝜖0 coefficients) is 
expressed as: 

𝑢0,𝑟∗𝑟∗ + (𝑛 + 1)
𝑢0,𝑟∗

𝑟∗
+ (𝜈∗𝑛 − 1)

𝑢0

𝑟∗2
= 0 (13) 

which is a linear ordinary differential equation 
with variable coefficients. To solve (13) one can 

substitute 𝑢0(𝑟
∗) = 𝑟∗

𝑡
 into it. This leads to the 

characteristic equation below. 

𝑡2 + 𝑛𝑡 + (𝜈∗𝑛 − 1) = 0 (14) 

The roots of the characteristic equation are: 

𝑡1, 𝑡2 =
−𝑛 ± √∆

2
, ∆= 𝑛2 − 4(𝜈∗𝑛 − 1) (15) 

These roots are real, because ∆> 0 
consistently holds. So the solution of (14) is a 
linear combination of terms corresponding to 
each of the two roots (15).  

𝑢0 = 𝐶1𝑟
∗𝑡1 + 𝐶2𝑟

∗𝑡2 (16) 

where 𝐶1 and 𝐶2 are constants to be determined 
later. 

3.2.   First-Order Equation (Coefficient of 𝝐𝟏) 

The next equation to be solved is the 𝜖1 
coefficient. 

(𝑢1,𝑟∗𝑟∗ +
(𝑛 + 1)𝑢1,𝑟∗ 

𝑟∗
+
(𝜈∗𝑛 − 1)𝑢1

𝑟∗2
)

+ (𝑢0,𝑟∗ 𝑢0,𝑟∗𝑟∗) + (𝜈
∗
𝑢0𝑢0,𝑟∗ 

𝑟∗2
)

+
(𝑛 + 1 − 𝜈∗)

2𝑟∗
(𝑢0,𝑟∗ )

2

+
(𝜈∗𝑛 − 𝜈∗ − 1)

2𝑟∗3
𝑢0
2 = 0 

(17) 

When a zero-order solution is obtained, by 
substituting that into (17), a second-order linear 
nonhomogeneous differential equation is 
obtained. 

𝑢1,𝑟∗𝑟∗𝑟
∗2 + (𝑛 + 1)𝑢1,𝑟∗ 𝑟

∗

+ (𝜈∗𝑛 − 1)𝑢1

= − [𝑡1
3 + 𝜈∗𝑡1 +

𝑛 − 1 − 𝜈∗

2
𝑡1
2

+
𝜈∗𝑛 − 𝜈∗ − 1

2
] 𝐶1

2𝑟∗
(2𝑡1−1)

− [𝑡2
3 + 𝜈∗𝑡2 +

𝑛 − 1 − 𝜈∗

2
𝑡2
2

+
𝜈∗𝑛 − 𝜈∗ − 1

2
] 𝐶2

2𝑟∗
(2𝑡2−1)

− [(𝑡1 + 𝑡2)𝑡1𝑡2 + 𝜈
∗(𝑡1 + 𝑡2)

+ (𝑛 − 1 − 𝜈∗)𝑡1𝑡2

+ (𝜈∗𝑛 − 𝜈∗ − 1)]𝐶1𝐶2𝑟
∗(𝑡1+𝑡2−1) 

(18) 

Equation (18) has a homogeneous solution 
(𝑢1ℎ) and a particular solution (𝑢1𝑝). The 

homogeneous form of (18) is the same as the 
zero-order equation (13). Therefore the 𝑢1ℎ has a 
similar solution with the same roots for 
characteristic equation 𝑡1 and 𝑡2. 

𝑢1ℎ = 𝐶3𝑟
∗𝑡1 + 𝐶4𝑟

∗𝑡2 (19) 

Using the Wronskian method in (18), the 
particular solution can be obtained as follows. 

𝑢1𝑝

= (
1

(2𝑡1 − 𝑡2 + 1)

−
1

(𝑡1 + 1)
)

𝐾1
(𝑡2 − 𝑡1)

𝑟∗
(2𝑡1+1)

+ (
1

(𝑡2 + 1)

−
1

(2𝑡2 − 𝑡1 + 1)
)

𝐾2
(𝑡2 − 𝑡1)

𝑟∗
(2𝑡2+1)

+ (
1

(𝑡1 + 1)

−
1

(𝑡2 + 1)
)

𝐾3
(𝑡2 − 𝑡1)

𝑟∗
(𝑡1+𝑡2+1) 

(20) 
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In which: 

𝐾1 = − [𝑡1
3 + 𝜈∗𝑡1 +

𝑛 − 1 − 𝜈∗

2
𝑡1
2

+
𝜈∗𝑛 − 𝜈∗ − 1

2
] 𝐶1

2
 

𝐾2 = −[𝑡2
3 + 𝜈∗𝑡2 +

𝑛 − 1 − 𝜈∗

2
𝑡2
2

+
𝜈∗𝑛 − 𝜈∗ − 1

2
] 𝐶2

2
 

𝐾3 = −[(𝑡1 + 𝑡2)𝑡1𝑡2 + 𝜈
∗(𝑡1 + 𝑡2)

+ (𝑛 − 1 − 𝜈∗)𝑡1𝑡2
+ (𝜈∗𝑛 − 𝜈∗

− 1)]𝐶1𝐶2 

(21) 

So, the general solution of (18) will be the sum 
of the homogeneous and the particular solution; 

𝑢1 = 𝑢1ℎ + 𝑢1𝑝 (22) 

Now, dimensionless radial displacement can 
be approximated according to (11). 

𝑢𝑟
∗

≅ (𝐶1 + 𝜖𝐶3)𝑟
∗𝑡1 + (𝐶2 + 𝜖𝐶4)𝑟

∗𝑡2

+ 𝜖 [(
1

(2𝑡1 − 𝑡2 + 1)

−
1

(𝑡1 + 1)
)

𝐾1
(𝑡2 − 𝑡1)

𝑟∗
(2𝑡1+1)

+ (
1

(𝑡2 + 1)

−
1

(2𝑡2 − 𝑡1 + 1)
)

𝐾2
(𝑡2 − 𝑡1)

𝑟∗
(2𝑡2+1)

+ (
1

(𝑡1 + 1)

−
1

(𝑡2 + 1)
)

𝐾3
(𝑡2 − 𝑡1)

𝑟∗
(𝑡1+𝑡2+1)] 

(23) 

Using dimensionless parameters (A1) and 
substituting (23) into (2) and making use of (3), 
dimensionless radial stress can be obtained. To 
determine the unknown constants 𝐶1, 𝐶2, 𝐶3 and 
𝐶4, the boundary conditions should be applied. To 
this end, the dimensionless form of boundary 
conditions for internal and external pressure 
loading is used. 

𝜎𝑟
∗│𝑟∗=𝑟𝑖

∗ = −𝑃𝑖
∗

𝜎𝑟
∗│𝑟∗=𝑟𝑜∗ = −𝑃𝑜

∗
 (24) 

Substituting (24) into (A2), leads to two 
algebraic equations including different powers of 
𝜖. Again, as the perturbation parameter is too 
small compared to unity, different powers of 𝜖 on 
both sides of the equation should be equal. It 
gives required equations for the calculation of the 
unknown constants, whose final results are listed 
in appendix equations (A3) to (A6). 

4. Case Study and Results Survey  

In this section, firstly, the nonlinear response 
is investigated within a case study. In the 
following, the effects of different parameters on 
nonlinear behavior are shown. To verify the 
validity of the presented analytical solution 
method, the results of the NPET and FEM are 
presented in section 4.2. 

4.1. Case Study 

Consider a nonhomogeneous cylinder with 
constant thickness, inner radius 𝑟𝑖 = 30 mm, 
outer radius 𝑟𝑜 = 34 mm, length 𝐿 = 400 mm and 
power distribution of modulus of elasticity. The 
modulus of elasticity 𝐸𝑖  at the internal radius has 
the value of 0.7 GPa. It is also assumed that the 
passion’s ratio 𝜈 has a constant value of 0.3. The 
cylinder is subjected to internal and external 
pressures 𝑃𝑖 = 8 MPa, and 𝑃𝑜 = 8 MPa, 
respectively. For this cylinder, the plane strain 
condition is used. In Figures 2 to 6, the 
distribution of stresses and radial displacement 
through the wall thickness for different values of 
𝑛 are plotted. 

 
Fig. 2. Distribution of dimensionless radial displacement in 

plane strain state, 𝑃𝑖 = 𝑃𝑜 = 8 MPa 

 
Fig. 3. Distribution of dimensionless radial stress in plane 

strain state, 𝑃𝑖 = 𝑃𝑜 = 8 MPa 
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Fig. 4. Distribution of dimensionless circumferential stress 

in plane strain state, 𝑃𝑖 = 𝑃𝑜 = 8 MPa 

 
Fig. 5. Distribution of dimensionless axial stress in plane 

strain state, 𝑃𝑖 = 𝑃𝑜 = 8 MPa 

 
Fig. 6. Distribution of von Mises effective stress in plane 

strain state, 𝑃𝑖 = 𝑃𝑜 = 8 MPa 

We know, uniform internal and external 
pressure cause positive and negative 
displacement respectively. As seen in Figures 2 
and 3, displacement and radial stress have 
negative values. Since the cylinder is under 
uniform internal and external pressure, because 
of greater influence of the stress caused by 
external pressure than internal pressure, the 
external pressure has dominant effect and causes 

negative displacement. It can also be seen in 
Figures 4 and 5 that heterogeneous materials 
with positive constant values of heterogeneity 
cause a decrease in circumferential and axial 
stresses along the radius of the cylinder, while 
negative constant values of heterogeneity 
increase the stresses along the radius direction. 

4.2. Effective Parameters on Nonlinear Response 

4.2.1.  Effects of End Conditions 

In this section, the distribution of stresses and 
radial displacement is compared with the solution 
from reference [1]. The cylinder is only under 
internal pressure, 𝑃𝑖 = 8 MPa. It is also assumed that 
𝐸 = 0.7 GPa and the shell is homogeneous (𝑛 = 0). 
Distribution of radial displacement, radial stress, 
circumferential stress and axial stress are shown for 
plane stress and plane strain conditions, in Figures 7 
to 10, respectively. 

Figure 7 shows that radial displacement in 
plane stress state has higher values than plane 
strain in all three types of loadings (internal 
pressure, external pressure and internal and 
external pressure), while the boundary 
conditions do not have much effect on the radial 
and circumferential stress (see Figures 8 to 10). 

 
Fig. 7. Distribution of dimensionless radial displacement 

calculated by NPET and PET, 𝑃𝑖 = 8 MPa  
(homogeneous cylinder) 

 
Fig. 8. Distribution of dimensionless radial stress calculated 

by NPET and PET, 𝑃𝑖 = 8 MPa (homogeneous cylinder) 
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Fig. 9. Distribution of dimensionless circumferential stress 

calculated by NPET and PET, 𝑃𝑖 = 8 MPa  
(homogeneous cylinder) 

 
Fig. 10. Distribution of dimensionless axial stress calculated 

by NPET and PET, 𝑃𝑖 = 8 MPa (homogeneous cylinder) 

 
Fig. 11. Distribution of von Mises effective stress calculated 

by NPET and PET, 𝑃𝑖 = 8 MPa (homogeneous cylinder) 

Figure 11 shows the distribution of von Mises 
effective stress, for plane strain and plane stress 
conditions. It is observed that the values of von 
Mises effective stress at the inner layer of the 
cylinder for NPET is lower than PET results and 
at the outer layer of the cylinder it is higher than 
PET results. 

4.2.2.  Effects of Thickness 

The cylinder thickness is another parameter 
that affects its nonlinear behavior. So, the 
displacement of cylindrical shells subjected to 
internal pressure 𝑃𝑖

∗ = 0.0914 for different 
thicknesses is studied. Results are shown in 
Figures 12 to 15. For these figures, the middle 
surface radius is 𝑅 = 40 mm and the 
inhomogeneity constant is 𝑛 = 0. 

 
Fig. 12. Distribution of dimensionless radial displacement 

for ℎ = 20 mm 

 
Fig. 13. Distribution of dimensionless radial displacement 

for ℎ = 14 mm 

 
Fig. 14. Distribution of dimensionless radial displacement 

for ℎ = 10 mm 
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Fig. 15. Distribution of dimensionless radial displacement 

for ℎ = 4 mm 

By reducing the thickness, cylinder can no be 
assumed a thick wall cylinder, therefore, as 
shown in Figures 12 to 15, thickness reduction 
causes significant difference in linear and non-
linear radial displacement. 

4.2.3.  Effects of Pressure and Young's Modulus  

To show the effects of the loading and 
material parameters on the nonlinear response, 
the distribution of the displacement of the 
cylindrical shell for four amounts of pressure 
𝑃𝑜
∗ = 0.04, 0.0914, 0.0032, 0.00914 are plotted in 

Figures 16 to 19. For all figures in this section, 
𝑟𝑖 = 30 mm, 𝑟𝑜 = 34 mm, 𝑛 = 0, 𝜈 = 0.3. 

 
Fig. 16. Distribution of dimensionless radial displacement 

for 𝑃𝑜
∗ = 0.0032 

 
Fig. 17. Distribution of dimensionless radial displacement 

for 𝑃𝑜
∗ = 0.00914 

 
Fig. 18. Distribution of dimensionless radial displacement 

for 𝑃𝑜
∗ = 0.04 

 
Fig. 19. Distribution of dimensionless radial displacement 

for 𝑃𝑜
∗ = 0.0914 

Due to the dimensionless parameters: 

𝑃𝑜
∗ =

𝑃𝑜
𝜖𝐸

=
𝑅𝑃𝑜
ℎ𝐸

 (25) 

If the average radius (R), external pressure 
(𝑃𝑜) and elasticity coefficient (E) be constant, 
thickness (h) and dimensionless pressure 𝑃𝑜

∗ will 
have an inverse relationship. According to 
Figures 16 to 19 during to increasing pressure 
(similar to decreasing thickness), the difference 
between linear and non-linear displacement 
increase. 

4.3. Comparison with Numerical Solution Results 

To compare the results with the Finite Element 
solution, a cylinder with inner radius 𝑟𝑖 = 30 mm, 
outer radius 𝑟𝑜 = 34 mm, length 𝐿 = 400 mm and 
power distribution of modulus elasticity are 
considered. The modulus of elasticity at the inner 
surface is 𝐸𝑖 = 0.7 GPa and the Poisson’s ratio has a 
constant value of 0.3. This cylinder is subjected to 
equal internal and external pressures 𝑃𝑖 = 𝑃𝑜 =
8 MPa in plane strain state. The modeling is 
performed using ABAQUS software. According to the 
axisymmetric structure, CAX8R solid elements which 
have eight-node in the form of quadrilateral with 
curved sides are used for the modeling. In this type of 
element in addition to corner nodes, there are mid-
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side nodes that enable to use nonlinear shape 
function (quadratic) for interpolation. The stiffness 
matrix for this element is 1616. The nonlinear 
behavior of cylinder is investigated by modeling the 
longitudinal section of pressurized shell. 

In Figures 20 to 22, analytical solution is 
compared with the numerical solution. It is observed 
that the two solutions show good agreement. 

In Table (1), the values of effective stress are 
given resulting from the analysis of the cylinder using 
NPET and PET for plane strain conditions under 
internal and external pressure at the inner, middle 
and outer layers. It is observed that for material with 
𝑛 > 0 (𝑛 < 0) the highest amount of effective stress 
occurs at the outer (inner) layer of the cylinder. The 
values of effective stress from FE analysis for 𝑛 > 0 
(𝑛 < 0) are more (less) than the values of effective 
stress from NPET solution.  

 
Fig. 20. Distribution of dimensionless radial displacement 

calculated by NPET and FE, 𝑃𝑖 = 𝑃𝑜 = 8 MPa, (Plane strain 

state in nonhomogeneous cylinder) 

 
Fig. 21. Distribution of dimensionless radial stress calculated 

by NPET and FE, 𝑃𝑖 = 𝑃𝑜 = 8 MPa, (Plane strain state in 

nonhomogeneous cylinder) 

 
Fig. 22. Distribution of dimensionless circumferential stress 

calculated by NPET and FE, 𝑃𝑖 = 𝑃𝑜 = 8 MPa, (Plane strain 
state in nonhomogeneous cylinder) 

Table 1. Distribution of von Mises effective stress [MPa] calculated by NPET and FEM, 𝑃𝑖 = 𝑃𝑜 = 8 MPa,  
(Plane strain state in nonhomogeneous cylinder) 

𝑷𝒊 = 𝑷𝒐 = 𝟖 𝐌𝐏𝐚 Solution 𝒏 = −𝟐 𝒏 = −𝟏 𝒏 = 𝟎 𝒏 = 𝟏 𝒏 = 𝟐 

Inner layer 

NPET 0.420887 0.408928 0.4 0.39397 0.390641 

FEM 0.419987 0.408577 0.40 0.39411 0.39076 

Middle layer 

NPET 0.39988 0.400009 0.4 0.399842 0.399531 

FEM 0.39986 0.399987 0.40 0.399840 0.39954 

Outer layer 

NPET 0.391037 0.394374 0.4 0.408092 0.418783 

FEM 0.391140 0.394480 0.40 0.407818 0.418091 
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5. Conclusions 

It can be concluded that positive (negative) 
values of 𝑛, make the shell more rigid (softer). So, 
as expected displacement in nonhomogeneous 
shells with 𝑛 < 0 (𝑛 > 0) is more (less) than in 
homogeneous shells. Moreover, for 𝑛 > 0 (𝑛 < 0) 
the highest amount of the value of the effective 
stress occurs in the outer (inner) layer. At the 
inner layer of shells the strength decrease 
(increase) for negative (positive) 𝑛 compared to 
the homogenous shell.  

The distribution of displacement in different 
ending conditions has significant differences. For 
plane strain condition it is more than plane stress 
condition. But it does not have significant 
differences for stresses. The lower (higher) the 
thickness of the shell, the more (the less) the 
difference between linear and nonlinear 
solutions. The softer (more rigid) material of the 

shell increases (decreases) this difference. 
Actually, for industrial applications in which 
materials are used with high Young's modulus, 
provided that the shell is not thin, shell behavior 
is highly linear and there is no need to study 
nonlinear behavior. So, in pressurized cylindrical 
shells, the nonlinear behavior can be seen in thin 
shells made of soft materials.  
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Appendix 

A.1. Dimensionless Parameters 

𝑢𝑟
∗ =

𝑢𝑟

ℎ
 ,           𝑟∗ =

𝑟

𝑅
,            𝜖 =

ℎ

𝑅
≪ 1 ,            𝑃𝑖

∗ =
𝑃𝑖

𝜖𝐸
 ,           𝑃𝑜

∗ =
𝑃𝑜

𝜖𝐸
  , 
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𝑑𝑟
=
1

𝑅
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𝑑𝑟∗
 ,

𝑑2

𝑑𝑟2
=
1

𝑅2
𝑑2

𝑑𝑟∗2
 

(A1) 

A.2. Equations 

𝜎𝑟
∗ = (𝑟̅)𝑛 [((𝐴𝑡1 + 𝐵)𝐶1𝑟

∗(𝑡1−1) + (𝐴𝑡2 + 𝐵)𝐶2𝑟
∗(𝑡2−1))

+ 𝜖 [((𝐴𝑡1 + 𝐵)𝐶3)𝑟
∗(𝑡1−1) + ((𝐴𝑡2 + 𝐵)𝐶4)𝑟

∗(𝑡2−1)

+ ((
1

(2𝑡1 − 𝑡2 + 1)
−

1

(𝑡1 + 1)
)
(𝐴(2𝑡1 + 1) + 𝐵)𝐾1
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(2𝑡1)

+ (((
1
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(2𝑡2 − 𝑡1 + 1)
)
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(𝑡2 − 𝑡1)
)) 𝑟∗

(2𝑡2)

+ ((
1

(𝑡1 + 1)
−

1

(𝑡2 + 1)
)
(𝐴(𝑡1 + 𝑡2 + 1) + 𝐵)𝐾3

(𝑡2 − 𝑡1)
) 𝑟∗

(𝑡1+𝑡2)

+ (
(𝐴𝑡1

2 + 𝐵)

2
𝐶1
2) 𝑟∗2

(𝑡1−1) + (
(𝐴𝑡2

2 + 𝐵)

2
𝐶2
2) 𝑟∗2

(𝑡2−1)

+ ((𝐴𝑡1𝑡2 + 𝐵)𝐶1𝐶2)𝑟
∗(𝑡1+𝑡2−2)]] 

(A2) 
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𝐶1 =
(
𝑃𝑜
∗

𝑘𝑛
− 𝑃𝑖

∗𝑘(𝑡2−1))
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∗2(𝑡1−1) − 𝑟𝑜

∗2(𝑡1−1))

(𝐴𝑡2 + 𝐵)(𝑘
(𝑡2−1) − 𝑘(𝑡1−1))𝑟𝑖

(𝑡2−1)
𝐶1
2

+

1
2
(𝐴𝑡2

2 + 𝐵)(𝑘(𝑡1−1)𝑟𝑖
∗2(𝑡2−1) − 𝑟𝑜

∗2(𝑡2−1))

(𝐴𝑡2 + 𝐵)(𝑘
(𝑡2−1) − 𝑘(𝑡1−1))𝑟𝑖

(𝑡2−1)
𝐶2
2

+
(𝐴𝑡1𝑡2 + 𝐵)(𝑘

(𝑡1−1)𝑟𝑖
∗(𝑡1+𝑡2−2) − 𝑟𝑜

∗(𝑡1+𝑡2−2))

(𝐴𝑡2 + 𝐵)(𝑘
(𝑡2−1) − 𝑘(𝑡1−1))𝑟𝑖

(𝑡2−1)
𝐶1𝐶2 

(A6) 
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