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 A novel two-dimensional elasticity solution is presented in this paper, specifically designed 

for studying the vibration of functionally graded porous (FGP) beams. The kinetics of the 

beam are defined by two-dimensional elasticity theory, and Lagrange’s equations are used to 

derive the governing equations of motion. The Ritz method devises the expansion of 

displacement variables in polynomial and trigonometric series in the thickness and axial 

directions. Furthermore, microvoids can emerge as a result of technical issues during the 

manufacture of functionally graded materials (FGMs), leading to the development of 

porosities. The porosity distribution functions, one for three porosity distributions: uniform 

porosity (UP), non-uniform porosity-I (NUP-I), and non-uniform porosity-II (NUP-II), are 

considered in the problem. This study investigates the impact of the gradation exponents (p) 

in the z-direction, the slenderness ratio (L/h), the distribution of porosity, the porosity 

coefficient (e), and various boundary conditions on the natural frequencies. A comparison 

with the findings from higher-order shear deformation theory (HSDT) validated the accuracy 

and effectiveness of the proposed methodology. 
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1. Introduction 

In recent years, there has been a general 
upward trend in the number of applications that 
use porous structures in several sectors, such as 
civil engineering for the creation of protective 
layers, space engineering for the development of 
lightweight aircraft, and biomedical engineering 
for the creation of implants and scaffolds [1-4]. 
Functionally graded porous (FGP) structures [5 -
14] have captured the interest of several 
researchers because of their diverse range of 
applications. Vibration, buckling, and bending 
behavior of porous beams are all interesting and 
challenging problems in this field.  

Numerous theories have been proposed to 
explore the behavior of FGP beams. Classical 
beam theory (CBT) and first-order beam theory 
(FBT) were very popular in the analysis. Eltaher 
et al. [15] conducted a CBT-based analysis of the 
vibration and bending behaviors of FGP 
nanobeams. The analysis of the linear and 
nonlinear vibrations of FGP beams was 
conducted by Wattanasakulpong et al. [16], who 
applied computational beam theory (CBT) 
methodology to the analysis of the linear and 
nonlinear vibrations of FGP beams. Based on CBT 
and the nonlocal strain gradient theory, Hieu et al. 
[17] used CBT and the nonlocal strain gradient 
theory to investigate how an FGP microbeam 
resting on an elastic base can cause buckling and 
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nonlinear free vibration. Because shear 
deformation is not considered, CBT can only be 
used for thin beams. Researchers created FBT to 
account for the significant shear deformation in 
moderate and thick beams. Chen et al. [18] 
performed elastic buckling and static bending 
tests on FGP beams that can be deformed in shear 
using the Timoshenko beam theory. Kitipornchai 
et al. [19] found the free frequency and critical 
buckling stress of FGP beams that were 
strengthened with graphene platelets. Jing Zhao 
et al. [20] established a modified series solution 
utilizing FBT to analyze the free vibrations of 
moderately thick FGP deep curved and straight 
beams. Pham et al. [21] developed an improved 
first-order beam element that uses the neutral 
surface location to analyze the bending of FGP 
beams. Using analytical, finite element, and 
artificial neural network techniques, Turan et al. 
[22] examined the free vibration and buckling of 
functionally graded porous beams under various 
boundary conditions. Evidently, FBT is being 
used more frequently to analyze the behavior of 
FGP beams; nevertheless, determining the 
necessary shear correction factor presents a 
challenge. HBTs can be used to solve FGP beams. 
Adıyaman [23] investigated the free vibration 
analysis of an FGP beam using higher-order shear 
deformation theory (HSDT). Suppakit Eiadtrong 
et al. [24] devised the thermal vibration of FGP 
beams using HSDT with classical and non-
classical boundary conditions by employing a 
modified Fourier method. Using higher-order 
theories, Mahmoud Askari [25] performed 
vibration analysis of coupled transverse and 
shear piezoelectric functionally graded porous 
beams. Nguyen et al. [26] presented a simple two-
variable shear deformation theory for the 
bucking, bending, and vibration behaviors of FGP 
beams. With the aid of the Chebyshev collocation 
method and HSBT, Wattanasakulpong et al. [27] 
analyzed the free vibration of FGP beams. Bin Qin 
[28] presented an analysis of the free and forced 
vibrations of FGP straight beams under arbitrary 
boundary conditions using HSDT. Y. Shabani et al. 
[29] conducted an analytical solution for static 
buckling and free vibration analysis of bi-
dimensional functionally graded (2D-FG) metal-
ceramic porous beams. 

Numerous techniques have been developed 
for analyzing FGP beams, with the finite element 
method (FEM) being the most prevalent. The 
vibration of porous beams was analyzed by Rjoub 
and Hamad [30] using the Transfer Matrix 
Method. To analyze the buckling, static, and 
dynamic behaviors of porous graphene-
reinforced curved beams, Anirudh et al. [31] 
developed the FEM. Di Wu et al. [32] used the 
FEM to conduct calculations on FGP beam-type 
structures, specifically focusing on both free and 

forced vibrations. Mesbah et al. [33] used FEM to 
analyze the behavior of FGP beams under 
circumstances of free vibration and buckling. M. 
Turan [34] introduced a novel higher-order FEM 
for analyzing the static behavior of functionally 
graded porous beams in two directions. 

In addition, numerous scientists have been 
intrigued by the Ritz method to understand the 
behavior of FGP beams. D. Chen [35] investigated 
the free and forced vibrations of shear-
deformable FGP beams using the Ritz method and 
the Newmark β approach. A modified Fourier 
series technique based on the Ritz method was 
employed by Zhao et al. [36] to analyze the 
vibration of deep-curved FGP beams. Bin Qin [28] 
developed a Jacobi-Ritz approach to analyze the 
free and forced vibrations of FGP straight beams 
with arbitrary boundary conditions using HSDT. 
Nguyen et al. [37] introduced a Legendre-Ritz 
method to solve the bending, buckling, and free 
vibration characteristics of FGP beams supported 
by an elastic foundation. Hung et al. [38] 
conducted a nonlinear bending analysis of beams 
made of FG porous material reinforced with 
graphene platelets. The analysis was performed 
using the Ritz approach, which considered 
several boundary conditions. 

Elasticity theory is another viable option 
because it considers thickness-wise deformation. 
Sankar [39] proposed an elasticity solution for 
beams with functionally graded material 
properties. Yang et al. [40] introduced the 
elasticity solutions of the equilibrium equations 
in the plate and the traction boundary conditions 
on the faces of the plates. A. Singh et al. [41] 
developed a precise two-dimensional (2D) 
elasticity solution for an axially functionally 
graded (FG) beam with an arbitrary support. 
Miao et al. [42] completed a study on a two-
dimensional elasticity model to analyze the 
bending and free vibration of laminated 
graphene-reinforced composite beams. Peng Wu 
et al. [43] presented exact solutions for simply 
supported multilayer functionally graded (FG) 
beams with viscoelastic interlayers to forecast 
their time-dependent mechanical characteristics. 
For curved sandwich beams with FG-CNTRC face 
sheets and porous cores, Serajzadeh et al. [44] 
developed a two-dimensional low-velocity 
impact model. Amir Najibi et al. [45, 46] 
conducted two compelling experiments using 3D 
elasticity theory. The first study investigated the 
natural frequencies of a thick hollow cylinder 
using the 2D-FGM Mori-Tanaka scheme. The 
second study examined the natural frequencies of 
a bidirectional FG truncated thick hollow cone in 
three dimensions. 

However, the applicability of exact solutions 
obtained using elasticity equations is restricted to 
basic geometries and particular boundary 
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conditions. Thus, the development of a 
straightforward beam theory for structures 
composed of FGP materials will be beneficial. By 
juxtaposing the beam theory with the elasticity 
solutions, we can establish their validity. The 
exact solutions to the plane elasticity equations 
yield the stress and displacement fields. The 
preceding results of the FSBT [22] and HSBT [23, 
47-49] are compared with the outcomes derived 
from the elasticity theory. 

The primary aim of this study is to provide a 
two-dimensional elasticity solution for 
examining the natural vibration of FGP beams 
with three distinct porosity distributions: 
uniform porosity (UP), non-uniform porosity-I 
(NUP-I), and non-uniform porosity-II (NUP-II). 
An in-depth analysis and discussion are 
conducted on the impact of boundary conditions, 
the span-to-height ratio, the porous distribution 
pattern, and the porosity coefficient. The 
undisclosed findings are showcased as a 
benchmark for future investigations. 

2. Theoretical Formulation 

2.1. Functionally Graded Porous Beams 

The diagram in Figure 1 illustrates a PFG 
beam that possesses a rectangular cross-section 
with dimensions (b x h) and a linear length 
represented by the symbol L.  

 
Fig. 1. Geometry of the FGP beam 

The FGP beams have a consistent range of 
characteristics that are proportional to the 
volume of the various isotropic metal and 
ceramic components. The following power-law 
expression illustrates the useful properties of the 
FGP beams [4, 23]: 

( ) ( ) ( )( )
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where p is a power-law index, e represents the 

porosity coefficient, 
c  and are the mass density 

ρ, Young’s modulus E, and shear modulus, 
respectively. ( )ef z is a function that depicts the 

distribution of the void along the thickness of the 
beam. 

In this paper, three porosity distributions (UP, 
NUP-I and NUP-II) shown in Fig. 2 are considered 
as follows: 
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Fig. 2. Cross-sectional beam for various 

 distribution functions 

2.2. Kinematics 

By and at the position (x, z) of the beam, 
respectively, denote the axial and transverse 
displacements. The relationships between the 
linear displacement and strain of the beam are: 

  = = = +, ,z , ,, ,x x z xz z xu w u w  (3) 

where the comma denotes a distinction in 
relation to the subscript that follows the 
coordinates. Given the estimated plan stress in 
the beam plane (x, z), i.e. 0y yz xy  = = = .  

In a generalized coordinate system, the elastic 
constitutive equation is written as: 

x x

z z

xz xz
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The Coefficients of elastic stiffness of FGP 
beams, namely those pertaining to in-plane and 
out-of-plane reductions, are represented as A11, 
A33, A13, and A55. The stiffness coefficients 
corresponding to position z are given as follows: 

( ) ( )
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= =

−
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The constant   in this study represents 

Poisson’s ratio and is assumed to have a value of 
0.3. 
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2.3. Lagrange’s Formulas 

The Lagrangian function is used to derive the 
kinetic equations: 

U K= −  (6) 

The U strain energy of the system can be 
represented as 

( )

( )

x x z z xz xzV
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A u u w w dV

     = + +

= + +

+ + +





2 2

11 , 13 , ,z 33 ,

2 2
55 ,z ,z ,x ,

1

2

1
2

2

2

 (7) 

The symbol for kinetic energy is K. 

( )
V

K u w dV +
2 21

=
2

 (8) 

where ρ is the layer mass density, and the 
dot-superscript convention represents 
differentiation with respect to time t. 

By substituting Eqs. (7) and (8) into Eq. (6), 
the Lagrangian function becomes: 
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2.4. Two-directional Ritz Solution  

The Ritz technique provides a set of 
approximations for the axial and transverse 
displacements of the FGP beams at a specific 
position (x, z).   

R S

rs rs
r s

u x t x z u t
= =

=
1 1

( ,z, ) ( , ) ( )  (10a) 

R S
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r s

w x t x z w t
= =

=
1 1

( ,z, ) ( , ) ( )  (10b) 

where rsu , rsw are the displacements that need to 

be computed, and rs x z ( , ) , rs x z ( , ) are the 

bidirectional shape functions illustrated in table 
1 and 2, which consist of a trigonometric function 
on the x-axis and a polynomial function on the  
z-axis. 

Table 1. Approximation functions of the beams 
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Table 2. Essential boundary conditions of the beams 

BC x = 0 x = L 

S-S w =0  w =0  

C-F xu w w= = =, 0   

C-C xu w w= = =, 0  xu w w= = =, 0  

Substituting Eqs. (10a), (10b) into Eq. (9), 
along with Lagrange’s equations, yields the 
governing equations of motion: 

rs rs

d
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with rsq  symbolizing the importance of ( rsu , rsw ), 

resulting in 


        

− =        
       

11 12 11
2

12 22 22T

u 0K K M 0

w 0K K 0 M
 (12) 

where K and M are the matrices of stiffness and 
mass, respectively, and their components are 
provided by 
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Finally, upon solving Eq. (13), the vibration 
responses of the PFG beams can be obtained. 

3. Mathematical Outcomes and 
Discussions 

The numerical results are based on the 
assumption that the bottom of the beam is 
composed of metal, whereas the top of the beam 
comprises ceramic. The parameters of the 
materials used in the solutions are detailed in 
Table 3. To obtain these results, three different 
boundary conditions of the beam were 
considered: Simply supported (S-S), clamped-
clamped (C-C), and clamped-free (C-F). It should 
be noted that the results normalized fundamental 
frequencies (NFF) are standardized to the 
following values: 
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m

m

L

h E


 =

2

 (14) 

where the subscript m indicates the metal-related 
characteristics. 

Table 3. Material property 

Material E(GPa)  (kg/m3)   

Ceramic (Al2O3) 380 3960 0.3 

Metal (Al) 70 2702 0.3 

3.1. Convergence Study 

This particular investigation focuses on a 
NUP-I beam with the following parameters:  
L/h = 5, p = 1, and e = 0.1 to evaluate the 
convergence properties. Table 4 presents the NFF 
of the FGP beams for various boundary 
conditions. The values Nx and Nz represent the 
number of series along the x and z axes, 
respectively, as a function of the NFF. The 
solutions demonstrate an impressive speed of 
convergence in the x-direction, where a 
significant number of series are involved in this 
specific dimension. The convergence of the NFF 
may be observed at a specific value of Nx, which is 
determined to be 12 based on the various 
boundary conditions. Nevertheless, as the 
number of series in the z-direction increases, the 
NFF decreases, resulting in the beam displaying 
softening characteristics. For further verification, 
Nx = 12 and Nz = 4 will be used as examples in the 
impending paper. 

3.2. Free Vibration Analysis 

Validation is an essential procedure to 
ascertain the precision and dependability of the 
results. Table 5 shows the different FGP beams 
that were tested. This study examines changes in 
the power-law index, span-to-height ratio, 
porosity ratio, porosity distribution type, and 
boundary conditions. The aforementioned values 
were compared with the outcomes derived using 
Turan [22] and Gökhan [23], which implemented 
HSBT and FEM. Hadji et al. [47] used the Navier-
type solution method and the new HSBT. It is 
evident that the present findings are consistent 
with those previously reported. The proposed 
theory's Eq. 3 posits that deformation along the 
beam's thickness causes the stress. Previous 
theoretical bases (CBT, FBT, and HSBT) typically 
did not discuss this issue. Therefore, the 
frequencies observed in the current investigation 
exhibit only minor deviations from those 
reported in previous studies. 

 
Fig. 3. NFF (S - S,  e  = 0.1, L/h = 5) of various porosity 

distribution types with respect to the power law index p 

An additional validation of the NFF acquired 
in the research is presented in Table 6 when the 
perfect cross-section is compared to the 
frequencies specified by Turan et al. [22], Nguyen 
et al. [48], Vo et al. [49], and Gökhan [23] for 
various 𝑝 and boundary conditions. Particularly 
for Turan's research results, the errors in percent 
are between 0.012% and 0.225% in the case of 
L/h = 5, while for L/h = 20, the two research 
results are almost identical; the difference is only 
0.02 for UP and from 0.02% to 0.064% for NUP-I. 
Analysis of the data presented in Table 6 reveals 
that the frequencies observed in the current 
investigation exhibit only minor deviations 
(0.008% to 1.304%) from those reported in 
previous studies.  

An S–S beam (L/h = 5 and e = 0.1) is 
considered from the UP, NUP-I, and NUP-2 series 
to investigate the effect of porosity distribution 
patterns on the NFF. The NFF of the UP, NUP-I, 
and NUP-2 beams is illustrated in Figure 3 as an 
expression of p. The NFF of all beams, when 
normalized, demonstrates a significant decrease 
throughout the region of 0 ≤ p < 2. However, this 
reduction is less pronounced for p-values greater 
than 2. Furthermore, the NUP-I beams 
demonstrate the greatest NFF, whereas the UP 
beams showcase the lowest values.  

 
Fig. 4. NFF (p = 2, e = 0,2) of UP beams with various 

boundary conditions  
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Figure 4 shows the NFF of UP beams (p = 2, 
e = 0,2) in relation to the L/h ratio under various 
boundary conditions. The NFF for the C-C beams 
demonstrated substantial increases as the L/h 
ratio increased, whereas these increases were 
comparatively negligible for the S-S and C-F 
beams. It is worth noting that NFF is highest in  
C-C beams and lowest in C-F beams. 

  
Fig. 5. NFF of C - C beams (p=2, L/h = 5) with  

respect to porosity ratio  

Figure 5 illustrates the investigation into the 
impact of the porosity ratio on the NFF of the C-
C beams (L/h = 5 and p = 2). With regard to 
vibration behavior, it is evident that the NFF for 
the UP and NUP-II beams decreases considerably 
as the porosity ratio increases, whereas the NUP-
I beams experience minimal change. As the 
porosity ratio increases, both stiffness and 
inertial mass decrease. The reduction in rigidity 
is more conspicuous in the case of the UP and 

NUP-II beams compared to the reduction in 
inertial mass. However, this distinction is trivial 
concerning the NUP-I beams. 

To validate the outcomes, an assortment of 
FGP beams were examined, each possessing 
distinct characteristics including power-law 
index, span-to-height ratio, porosity ratio, 
porosity distribution type, and boundary 
conditions. Tables 7, 8, and 9, respectively, 
display the NFF of the S-S, C-C, and C-F beams. 
The NFF increases as e increases for 𝑝 = 0, as 
shown in the tables above. However, for 𝑝 > 0, an 
increase in e decreases in frequencies. By 
detailing the corresponding changes in the shear 
and elastic moduli and the density, Eq. 1 provides 
a straightforward explanation of the NFF change. 
Nevertheless, as porosity increases, the 
proportional change in density outweighs the 
relative changes in the elastic modulus and shear 
modulus around p = 0. Because the global 
stiffness matrix K comprises the elastic modulus; 
and shear modulus, and the global mass matrix M 
comprises the density, the NFF increases as the 
porosity increases, as determined by Eq. 12. 
Nevertheless, for 𝑝 ≥ 0.5, the relative change in 
density is not reflected in the relative change in 
the elastic and shear moduli. 

Furthermore, as porosity increases, so does 
NFF. NFF rises in direct proportion to L/h. The UP 
type experiences the greatest frequency shift 
with increased porosity, whereas the NUP-I type 
experiences the least. Moreover, in all three 
instances (UP, NUP-I, and NUP-II), the NFF of C-C 
continued to provide the highest value and the 
NFF of C-F the lowest value, even when the 
coefficients e and p grew simultaneously. 

Table 4. Convergence analyses of the NFF of FGP beams (NUP-I, L/h = 5, p = 1, and e = 0.1) 

BCs Nz 
Nx 

2 4 6 8 10 12 14 16 

S-S 1 15.8204 15.8204 15.8204 15.8204 15.8204 15.8204 15.8204 15.8204 

2 4.2058 4.2058 4.2058 4.2058 4.2058 4.2058 4.2058 4.2058 

3 4.0315 4.0315 4.0315 4.0315 4.0315 4.0315 4.0315 4.0315 

4 4.0167 4.0167 4.0167 4.0167 4.0167 4.0167 4.0167 4.0167 

5 4.0163 4.0163 4.0163 4.0163 4.0163 4.0163 4.0163 4.0163 

6 4.0163 4.0163 4.0163 4.0163 4.0163 4.0163 4.0163 4.0163 

C-F 1 8.7113 8.3204 8.1832 8.1143 8.073 8.0456 8.0261 8.0115 

2 1.5466 1.5423 1.5413 1.5408 1.5406 1.5404 1.5403 1.5402 

3 1.5265 1.5030 1.4942 1.4896 1.4869 1.4851 1.4838 1.4828 

4 1.5228 1.4990 1.4901 1.4855 1.4828 1.4810 1.4798 1.4789 

5 1.5227 1.4990 1.4901 1.4855 1.4827 1.4809 1.4797 1.4788 

6 1.5227 1.4990 1.4900 1.4854 1.4826 1.4808 1.4795 1.4786 

C-C 1 17.2098 16.5653 16.3291 16.2066 16.1316 16.081 16.0446 16.017 

2 8.6061 8.5084 8.4763 8.4601 8.4503 8.4437 8.4389 8.4354 

3 8.4275 8.2851 8.2321 8.2046 8.1879 8.1769 8.1690 8.1631 

4 8.2902 8.1464 8.0953 8.0699 8.0552 8.0456 8.0390 8.0341 

5 8.2885 8.1448 8.0934 8.0676 8.0522 8.0421 8.0349 8.0295 

6 8.2881 8.1436 8.0910 8.0643 8.0484 8.0379 8.0305 8.0250 
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Table 5. Comparison of the NFF found in this investigation with the frequencies reported in Turan et al. [22], 
 Hadji et al. [47], and Gökhan [23] (S-S, p= 2) 

L/h Theory 

UP  NUP-I 

e = 0 e = 0.1 e = 0.2  e = 0 e = 0.1 e = 0.2 

5 M. Turan [22]  3.6344 3.4496 3.1554  3.6344 3.6187 3.5949 

Hadji et al. [47] 3.6264 3.4418 3.1489  3.6264 3.6069 3.5785 

Gökhan [23] 3.5970 3.4050 3.1023  3.5970 3.5736 3.5405 

Outcome 3.6323 3.4500 3.1589  3.6323 3.6142 3.5868 

10 M. Turan [22] 3.7929 3.5941 3.2789  3.7929 3.7790 3.7567 

Outcome 3.7921 3.5941 3.2797  3.7921 3.7776 3.7543 

20 M. Turan [22] 3.8368 3.6340 3.3128  3.8368 3.8235 3.8017 

Hadji et al. [47] 3.8361 3.6335 3.3123  3.8361 3.8226 3.8004 

Gökhan [23] 3.8341 3.6308 3.3090  3.8341 3.8201 3.7975 

Outcome 3.8365 3.6340 3.3130  3.8365 3.8232 3.8013 

Table 6. Comparison of NFF found in this investigation with the frequencies reported in Turan et al. [22],  
Nguyen et al. [48], Vo et al.,  and  Gökhan [23]  (𝐿/ℎ = 5, e = 0) 

BCs Theory 
p 

0 0.5 1 2 5 10 

S-S M. Turan [22] 5.2219 4.4692 4.0496 3.6936 3.4881 3.3643 

Nguyen et al. [48] 5.1528 4.4102 3.9904 3.6264 3.4009 3.2815 

Vo et al. [49] 5.1528 4.4019 3.9716 3.5979 3.3743 3.2653 

Gökhan [23] 5.1532 4.4016 3.9710 3.5970 3.3725 3.2644 

Outcome 5.1616 4.4189 3.9982 3.6323 3.4061 3.2874 

C-C M. Turan [22] 10.0864 8.7547 7.9841 7.2715 6.7148 6.3741 

Nguyen et al.[48] 10.0726 8.7463 7.9518 7.1776 6.4929 6.1650 

Vo et al. [49] 10.0678 8.7457 7.9522 7.1801 6.4961 6.1662 

Gökhan [23] 10.0321 8.7114 7.9200 7.1496 6.4626 6.1355 

Outcome 10.1575 8.8232 8.0187 7.2282 6.5384 6.2146 

C-F M. Turan [22] 1.9077 1.6286 1.4739 1.3446 1.2751 1.2636 

Nguyen et al. [48] 1.8957 1.6182 1.4636 1.3328 1.2594 1.2187 

Vo et al. [49] 1.8952 1.6180 1.4633 1.3326 1.2592 1.2184 

Gökhan [23] 1.8948 1.6176 1.4629 1.3322 1.2586 1.2178 

Outcome 1.9095 1.6301 1.4742 1.3422 1.2683 1.2274 
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Table 7. NFF of a beam for various porosity types, boundary conditions, e and 𝑝 (𝐿/ℎ = 5) 

Porosity BCs e 
p 

0 0.5 1 2 5 10 

UP S-S 0 5.1616 4.4189 3.9982 3.6323 3.4061 3.2874 

0.1 5.2357 4.4156 3.9176 3.4500 3.1545 3.0382 

0.2 5.3229 4.4073 3.7994 3.1589 2.7019 2.5817 

0.3 5.4272 4.3904 3.6160 2.6260 1.5250 1.1741 

C-C 0 10.1575 8.8232 8.0187 7.2282 6.5384 6.2146 

0.1 10.3183 8.8453 7.9022 6.9285 6.0814 5.7132 

0.2 10.5067 8.8625 7.7228 6.4418 5.2855 4.8330 

0.3 10.7309 8.8696 7.4286 5.5149 3.2345 2.3656 

C-F 0 1.9095 1.6301 1.4742 1.3422 1.2683 1.2274 

0.1 1.9336 1.6256 1.4409 1.2711 1.1727 1.1348 

0.2 1.9627 1.6194 1.3938 1.1595 1.0017 0.9656 

0.3 1.9983 1.6100 1.3227 0.9581 0.5575 0.4349 

NUP-I S-S 0 5.1616 4.4189 3.9982 3.6323 3.4061 3.2874 

0.1 5.2314 4.4642 4.0167 3.6142 3.3593 3.2411 

0.2 5.3065 4.5129 4.0346 3.5868 3.2884 3.1634 

0.3 5.3873 4.5653 4.0513 3.5461 3.1769 3.0173 

C-C 0 10.1575 8.8232 8.0187 7.2282 6.5384 6.2146 

0.1 10.2837 8.9026 8.0456 7.1749 6.3805 6.0177 

0.2 10.4183 8.9865 8.0693 7.0994 6.1517 5.7101 

0.3 10.5620 9.0752 8.0880 6.9925 5.8038 5.1754 

C-F 0 1.9095 1.6301 1.4742 1.3422 1.2683 1.2274 

0.1 1.9352 1.6468 1.4810 1.3360 1.2540 1.2152 

0.2 1.9629 1.6648 1.4877 1.3267 1.2322 1.1945 

0.3 1.9929 1.6843 1.4942 1.3129 1.1981 1.1562 

NUP-II S-S 0 5.1616 4.4189 3.9982 3.6323 3.4061 3.2874 

0.1 5.1733 4.3702 3.8936 3.4590 3.1924 3.0741 

0.2 5.1859 4.3118 3.7635 3.2297 2.8917 2.7743 

0.3 5.1996 4.2410 3.5973 2.9095 2.4230 2.2969 

C-C 0 10.1575 8.8232 8.0187 7.2282 6.5384 6.2146 

0.1 10.2091 8.7689 7.8681 6.9659 6.2170 5.8831 

0.2 10.2650 8.6990 7.6715 6.6033 5.7519 5.4103 

0.3 10.3259 8.6077 7.4059 6.0613 4.9790 4.6128 

C-F 0 1.9095 1.6301 1.4742 1.3422 1.2683 1.2274 

0.1 1.9101 1.6085 1.4317 1.2737 1.1839 1.1435 

0.2 1.9113 1.5835 1.3800 1.1846 1.0670 1.0270 

0.3 1.9130 1.5540 1.3153 1.0625 0.8879 0.8450 
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Table 8. NFF of a beam for various porosity types, boundary conditions, e and 𝑝 (𝐿/ℎ = 10) 

Porosity BCs e 

p 

0 0.5 1 2 5 10 

UP S-S 0 5.3959 4.6014 4.1608 3.7921 3.5950 3.4833 

0.1 5.4700 4.5933 4.0705 3.5941 3.3285 3.2271 

0.2 5.5577 4.5793 3.9400 3.2797 2.8452 2.7529 

0.3 5.6631 4.5557 3.7404 2.7093 1.5801 1.2389 

C-C 0 11.7576 10.0793 9.1274 8.2930 7.7537 7.4687 

0.1 11.9161 10.0648 8.9398 7.8784 7.1829 6.8971 

0.2 12.1055 10.0403 8.6694 7.2213 6.1661 5.8640 

0.3 12.335 9.9983 8.2540 6.0196 3.5166 2.7047 

C-F 0 1.9523 1.6635 1.5040 1.3716 1.3033 1.2638 

0.1 1.9762 1.6579 1.4689 1.2977 1.2050 1.1699 

0.2 2.0052 1.6505 1.4195 1.1819 1.0283 0.9977 

0.3 2.0409 1.6399 1.3454 0.9739 0.5684 0.4475 

NUP-I S-S 0 5.1616 4.6014 4.1608 3.7921 3.5950 3.4833 

0.1 5.2314 4.6510 4.1826 3.7776 3.5601 3.4566 

0.2 5.3065 4.7045 4.2043 3.7543 3.5057 3.4100 

0.3 5.3873 4.7624 4.2253 3.7185 3.4196 3.3235 

C-C 0 11.7576 10.0793 9.1274 8.2930 7.7537 7.4687 

0.1 11.9143 10.1807 9.1683 8.2509 7.6417 7.3520 

0.2 12.0829 10.2897 9.2080 8.1877 7.4725 7.1571 

0.3 12.2647 10.4072 9.2451 8.0947 7.2060 6.7906 

C-F 0 1.9523 1.6635 1.5040 1.3716 1.3033 1.2638 

0.1 1.9790 1.6809 1.5114 1.3661 1.2913 1.2555 

0.2 2.0079 1.6998 1.5189 1.3576 1.2728 1.2411 

0.3 2.0392 1.7204 1.5262 1.3448 1.2440 1.2154 

NUP-II S-S 0 5.3959 4.6014 4.1608 3.7921 3.5950 3.4833 

0.1 5.4019 4.5430 4.0425 3.5989 3.3555 3.2450 

0.2 5.4085 4.4742 3.8973 3.3466 3.0223 2.9131 

0.3 5.4159 4.3920 3.7146 3.0001 2.5120 2.3943 

C-C 0 11.7576 10.0793 9.1274 8.2930 7.7537 7.4687 

0.1 11.7749 9.9621 8.8857 7.8990 7.2729 6.9879 

0.2 11.7952 9.8241 8.5873 7.3799 6.5987 6.3155 

0.3 11.8190 9.6588 8.2082 6.6552 5.5462 5.2454 

C-F 0 1.9523 1.6635 1.5040 1.3716 1.3033 1.2638 

0.1 1.9517 1.6399 1.4589 1.2994 1.2140 1.1750 

0.2 1.9515 1.6128 1.4044 1.2062 1.0911 1.0526 

0.3 1.9518 1.5812 1.3367 1.0794 0.9048 0.8632 
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Table 9. NFF of a beam for various porosity types, boundary conditions, e and 𝑝 (𝐿/ℎ = 20) 

Porosity BCs e 
p 

0 0.5 1 2 5 10 

UP S-S 0 5.4610 4.6517 4.2056 3.8365 3.6488 3.5394 

0.1 5.5351 4.6421 4.1125 3.6340 3.3781 3.2816 

0.2 5.6228 4.6265 3.9785 3.3130 2.8860 2.8030 

0.3 5.7284 4.6010 3.7742 2.7319 1.5955 1.2578 

C-C 0 12.3090 10.5005 9.4972 8.6561 8.1997 7.9403 

0.1 12.4637 10.4702 9.2815 8.1970 7.5855 7.3481 

0.2 12.6505 10.4281 8.9763 7.4759 6.4829 6.2646 

0.3 12.8788 10.3659 8.5160 6.1754 3.6077 2.8285 

C-F 0 1.9637 1.6723 1.5119 1.3795 1.3127 1.2737 

0.1 1.9875 1.6665 1.4763 1.3047 1.2137 1.1794 

0.2 2.0165 1.6588 1.4263 1.1878 1.0355 1.0064 

0.3 2.0521 1.6477 1.3514 0.9780 0.5713 0.4509 

NUP-I S-S 0 5.4610 4.6517 4.2056 3.8365 3.6488 3.5394 

0.1 5.5380 4.7026 4.2284 3.8232 3.6178 3.5193 

0.2 5.6210 4.7575 4.2512 3.8013 3.5691 3.4834 

0.3 5.7108 4.8170 4.2735 3.7671 3.4921 3.4190 

C-C 0 12.3090 10.5005 9.4972 8.6561 8.1997 7.9403 

0.1 12.4774 10.6103 9.5440 8.6204 8.1165 7.8743 

0.2 12.6591 10.7292 9.5906 8.5651 7.9885 7.7606 

0.3 12.8559 10.8581 9.6359 8.4816 7.7870 7.5495 

C-F 0 1.9637 1.6723 1.5119 1.3795 1.3127 1.2737 

0.1 1.9907 1.6900 1.5195 1.3742 1.3014 1.2665 

0.2 2.0199 1.7091 1.5272 1.3659 1.2839 1.2540 

0.3 2.0516 1.7300 1.5347 1.3533 1.2567 1.2322 

NUP-II S-S 0 5.4610 4.6517 4.2056 3.8365 3.6488 3.5394 

0.1 5.4652 4.5905 4.0834 3.6376 3.4016 3.2936 

0.2 5.4701 4.5186 3.9337 3.3787 3.0589 2.9521 

0.3 5.4756 4.4331 3.7463 3.0245 2.5364 2.4211 

C-C 0 12.3090 10.5005 9.4972 8.6561 8.1997 7.9403 

0.1 12.3098 10.3572 9.2193 8.2094 7.6492 7.3925 

0.2 12.3135 10.1917 8.8816 7.6302 6.8884 6.6346 

0.3 12.3201 9.9972 8.4605 6.8389 5.7278 5.4555 

C-F 0 1.9637 1.6723 1.5119 1.3795 1.3127 1.2737 

0.1 1.9627 1.6482 1.4661 1.3062 1.2221 1.1835 

0.2 1.9622 1.6206 1.4108 1.2119 1.0976 1.0595 

0.3 1.9621 1.5883 1.3423 1.0839 0.9092 0.8681 
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4. Conclusions 

The authors introduced a novel two-unknown 
model for analyzing the vibrations of FGP beams. 
The axial and transverse displacements of the 
beam are represented using a hybrid formula that 
integrates a series of polynomials and triangles. 
Using Lagrange’s equations, it is possible to 
determine the defining equations of the FGP 
beams. Three varieties of boundary conditions 
and three types of porosity distributions were 
investigated in this study of beams. The efficacy 
of the proposed theory can be assessed using 
numerical examples. The boundary conditions, 
span-to-height ratio, power-law index, 
distribution type, and porosity coefficient were 
investigated. The results show that the suggested 
beam model is easy to use and good at predicting 
how FGP beams will vibrate when the boundary 
conditions and porosity distributions are 
changed. 
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