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 The main aim of this research is to optimize the injection molding process parameters in 

order to mitigate the shrinkage of polypropylene (PP) spur gears. The methodology used 

integrated experimental approaches with artificial neural networks (ANN), and Taguchi 

methods to determine the optimal combination of injection molding parameters. The 

experimental data was used to create an ANN model using Matlab software that accurately 

predicts unseen data with a variation of less than 5%. The trained ANN model was further 

used to predict gear shrinkage in the context of Taguchi-based design of experiments. The 

investigation involved the use of Taguchi and analysis of variance techniques, determining 

that cooling time is the most important and relevant parameter. This is followed by packing 

time and melt temperature. The analysis revealed that the gears saw the least amount of 

shrinkage when the molding was carried out using the optimal combination of injection 

molding parameters. 
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1. Introduction 

The performance of engineering components 
has been sustainably improved in recent decades 
by making use of advanced and environmentally 
friendly materials, efficient production 
techniques, and optimized component thickness 
[1,2]. The mechanical performance of plastic 
components increases as wall thickness 
increases. However, manufacturing thick-walled 
plastic parts is a challenge because, as thickness 
increases, maintaining a uniform melt pressure 
throughout the wall thickness is very difficult,  

which results in density and shrinkage variation 
throughout the wall thickness of the part [3,4]. 
The IM process often uses artificial neural 
networks (ANN) to predict outcomes because 
this process offers high prediction accuracy and 
saves time and material consumption in real-time 
manufacturing. A developed model predicts the 
behavior of independent variables, such as input 
parameters, on dependent quality 
characteristics, such as target. The ANN model 
consists of layers and neurons, whose 
combination mainly determines the accuracy of 
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prediction. Additionally, it also depends on the 
amount of input and target data used in model 
development [5,6]. Meiabadi et al. [7] carried out 
polymer IM process parameter optimization 
using ANN and genetic algorithm (GA) methods. 
The developed ANN model consisted of one input 
layer, two hidden layers, and one output layer. 
These three layers each have four, ten, and three 
neurons. Using Moldflow, ANN, and experimental 
investigation, it was observed that at injection 
pressures of 10.9 MPa, 10.8 MPa, and 11.0 MPa; 
the component weights of 16.6 g, 16.1 g, and 16.3 
g; and process cycle times of 32.0 s, 31.6 s, and 
32.7 s were observed, accordingly. Abdul et al. [8] 
predicted shrinkage of HDPE parts using the ANN 
and Taguchi methods. The ANN input layer, 
hidden layer, and output layer contain three, four, 
and two neurons, respectively. The developed 
ANN model had a prediction error of 0.08% and 
0.69% with experimental outcomes for part 
length and width, respectively. Lockner et al. [5] 
tried to reduce the sample size requirement for 
training an ANN model using the transfer 
learning method. This method used existing data 
from other processes as training data. The 
developed ANN model was based on a transfer 
learning approach that showed superior features 
to the base approach. Xu et al. [9] optimized IM 
process parameters to enhance the quality of 
plastic parts by integrating ANN with particle 
sworn optimization (PSO). The developed ANN 
model consisted of one input layer, two hidden 
layers, and one output layer. The Taguchi method 
has been applied in the IM process to optimize 
process parameters to achieve the best quality 
characteristics of molded components [10,11]. 
Moayyedian et al. [10] optimized thin-walled PP 
parts by integrating ANN with the Taguchi 
method. The Taguchi L18 OA array was used to 
design the experiments using parameters such as 
gate design, filling time, cooling time, pressure 
holding time, and melt temperature. The 
observation was made to minimize short shots, 
shrinkage rate, and warpage. They found a 1.5% 
margin of error between the normalized 
outcomes of both methods. Wang et al. [12] used 
Taguchi L18 OA to reduce micro gear shrinkage. It 
was reported that the minimum shrinkage of 
0.06% was found using a mold temperature of 80 
oC, injection speed of 300 mm/s, a packing speed 
of 20 mm/s, a packing time of 1 s, and a melt 
temperature of 190 oC. In addition to this, the 
ANOVA method revealed that packing time was 

the most significant parameter for reducing gear 
shrinkage. This was followed by injection speed 
and mold temperature. Mehat et al. [13] 
optimized IM process parameters to minimize PP 
gear shrinkage by incorporating Taguchi, grey 
relational analysis (GRA), and principal 
component analysis (PCA). The Taguchi L9 OA 
was used to design the experiment by optimizing 
melt temperature, packing pressure, packing 
time, and cooling time. The minimum shrinkage 
of 1.8%, 1.53%, and 2.42% were found in tooth 
thickness, addendum circle diameter, and 
dedendum circle diameter, respectively. The melt 
temperature was found to be the most significant 
factor for gear shrinkage reduction, with a 
contribution of 71.47%. Hao et al. [14] analyzed 
the quality of plastic gear by integrating the CAE 
method with ANN based on MATLAB. The 
maximum error of 0.077% was reported between 
simulation and ANN prediction. Hakimian et al. 
[15] reduced the warpage and shrinkage of micro 
gear using the simulation-based Taguchi method. 
They found that amorphous polymers shrink and 
warp less than crystalline polymers at the same 
IM parameter. 

This literature review showed that the vast 
majority of models of neural networks were 
developed through simulation studies. This may 
be due to the fact that experimentation requires 
more time and money. However, the simulation 
technique cannot implicate all constraints 
involved in the IM experiment and its accuracy 
further declines if the product to be molded has a 
higher wall thickness and complex shape. Thus, 
experiments were carried out to gather sufficient 
input and target data to construct an accurate 
neural network model. This model was used to 
predict the outcomes of the Taguchi experiment 
to reduce gear shrinkage. In addition to this, a 
conformation test was performed to validate the 
findings, and regression analysis was applied to 
examine each factor's impact on gear shrinkage. 

2. Methodology 

Figure 1 shows the workflow scheme followed 
in the present work. There were two methods 
adopted to minimize gear shrinkage, namely ANN 
and Taguchi methods, which were performed 
using Matlab and Minitab software. The steps 
involved in formulation of the methodology 
include the: 
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Fig. 1. Workflow scheme 

2.1. Experimental Setup 

The IM process is used to produce useful parts 
from plastic granules. The solid granules are 
heated through band heaters to melt the plastic to 
be injected into the mold cavity. The IM process 
mainly contains four stages, specifically filling, 
packing, cooling, and ejection. The prominent 
process parameters are injection pressure, 
packing pressure, melt temperature, mold 
temperature, injection time, packing time, and 
cooling time. The chosen feature is gear 
shrinkage, which is significantly influenced by the 
aforementioned factors. In the present work, an 
experimental investigation was performed to 
minimize the spur gear diametric shrinkage. The 
expression used to calculate shrinkage is shown 
in eq. 1 [16]. The measured diameter was the 
addendum circle diameter of the spur gear (DG) 
and mold cavity (DC). The designed spur gear has 

a module of 3 mm, a pressure angle of 20o, and a 
tooth count of 12. Figure 2 shows a 2D CAD model 
of spur gear, where all linear dimensions are 
measured in mm [4]. 

 
Fig. 2. Generated 2D model of spur gear 

The selected polymer was polypropylene (PP) 
homopolymers having a density of 0.91 g/cm3, 
melt flow index of 8 g/10 min, tensile strength of 
30 MPa, barrel temperature, and mold 
temperature should be in the range of 180 oC to 
260 oC and 30 oC to 40 oC, respectively [17]. The 
IM parameters were varied in such a way that at 
a time one factor was changed while other factors 
were fixed at a medium level. The range of each 
factor used in the generation of data is given in 
Error! Reference source not found..  

The Milacron servo IM machine was used for 
experiments (Fig. 3). This machine has a 
maximum hydraulic pressure of 17.5 MPa, 
maximum melt pressure of 248 MPa, maximum 
screw speed of 320 rpm, and maximum flow rate 
of 116 cm3/s. 

Hrinkag (%) = {
𝐷𝐶 − 𝐷𝐺  

𝐷𝐶

} X 100 (1) 

Table 1. Range of IM processing factors 

Parameter Unit 
Range 

Min Max 

Injection Pressure (IP) MPa 100 180 

Packing pressure (PaP) MPa 125 160 

Packing time (PT) s 5 30 

Cooling time (CT) s 5 25 

Injection time (IT) s 0.5 1.75 

Melt temperature (MT) ℃ 170 205 

Mold temperature (MoT) ℃ 30 52 
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Fig. 3. Schematic of in-house available injection molding machine 

2.2. Artificial Neural Network Design 

MATLAB software was used to conduct the 
ANN analysis, and the generated structure is 
shown in Fig. 4. The developed ANN model has 
one input layer, one hidden layer, and one output 
layer. The input layer has seven IM factors: 
injection pressure, packing pressure, packing 
time, injection time, cooling time, melt 
temperature, and mold temperature. One neuron 
was assigned in place of each factor; hence, the 
input layer contains seven neurons.  Using trial-
and-error methodology, the neurons in the 
hidden layers were chosen, and a minimum error 
value of 64 neurons was obtained. Similarly, the 
neuron counts in the output layer are the same as 
the output variables. Since an investigation was 
made for shrinkage as an output variable; the 
output layer contains only one neuron. The inputs 
and hidden layers were activated using the 
"Tansig" activation function, while the hidden 

and output layers were activated using the 
"Purelin" activation function. The performance 
function was taken as a mean square error (MSE) 
for minimization of network errors on the 
training data, and the learning approach was 
dependent on the Levenberg Marquardt process.  

The set of control variables and target 
variables were then utilized as input-output data 
for the training and verification of neural 
networks. The 36 datasets that composed the 
samples included in this investigation have been 
used for training, validation, and testing, 
respectively, in percentages of 68%, 16%, and 
16%. Additionally, an ANN simulation was 
performed with 10 unknown data points, and the 
results were compared to the results of the 
experiment. The response variable was obtained 
using eq. 2. 

Y = FFANN[𝑥1 … … … 𝑥7] (2) 

 

 

Fig. 4. Construction of ANN 
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Table 2. Set of IM process parameters and shrinkage 

S. No. MT MoT IP PaP IT PT CT Shrinkage (%) 

1 175 40 100 125 0.5 20 20 1.453 

2 175 40 120 125 0.5 20 20 1.432 

3 175 40 160 125 0.5 20 20 1.410 

4 175 40 180 125 0.5 20 20 1.391 

5 175 40 140 130 0.5 20 20 1.327 

6 175 40 140 140 0.5 20 20 1.295 

7 175 40 140 160 0.5 20 20 1.124 

8 175 40 180 160 0.5 20 20 1.120 

9 175 46 125 150 0.5 20 20 1.222 

10 175 40 180 160 0.5 5 20 1.174 

11 175 40 180 160 0.5 15 20 1.104 

12 175 40 180 160 0.5 25 20 1.145 

13 175 40 180 160 0.5 30 20 1.150 

14 175 40 180 150 0.5 5 20 1.220 

15 175 40 180 150 0.5 10 20 1.216 

16 175 40 180 150 0.5 20 20 1.178 

17 175 40 180 160 1.5 15 20 1.388 

18 175 40 180 160 2 15 20 1.567 

19 175 40 180 160 0.5 15 10 1.251 

20 185 40 180 160 0.5 15 20 1.131 

21 195 40 180 160 0.5 15 20 1.168 

22 205 40 180 160 0.5 15 20 1.649 

23 175 52 180 160 0.5 15 20 1.157 

24 185 34 135 135 1.75 25 25 1.269 

25 170 40 150 150 0.5 20 20 1.251 

26 170 34 140 140 0.5 20 20 1.420 

27 170 34 150 150 0.5 20 20 1.444 

28 170 40 150 150 0.5 20 15 1.228 

29 170 40 150 150 0.5 15 15 1.283 

30 170 46 150 150 0.5 15 15 1.230 

31 175 30 100 100 0.5 5 20 1.497 

32 175 30 100 100 0.5 10 20 1.439 

33 175 30 100 100 1 15 20 1.405 

34 175 30 100 100 1.5 15 20 1.396 

35 175 30 100 100 1.5 15 5 1.114 

36 175 30 100 100 0.5 15 10 1.186 

 

2.3.  Steps in the Taguchi Method 

The Taguchi method is used for the robust 
design of experiments. This is done by collecting 
important data to obtain the significant factors 
that influence the performance of the part by 
reducing the number of experiments. This 
minimizes the requirement for resources and 
computational and experimental time.  

2.3.1. Selection of Quality Characteristics 

The Taguchi methodology is an effective 
method for enhancing the level of usefulness, 
cost, and performance. This technique creates a 
distinct set of process parameters for 
experiments using the concept of an orthogonal 
array (OA). Compared to complete or fractional 
factorial designs of experiments, the method has 
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been found to be more effective. A signal-to-noise 
ratio (SNR) technique is used to determine the 
data set's performance parameters. The data is 
categorized into three groups, namely nominal is 
better, larger is better, and smaller is better, and 
the corresponding SNR is calculated using 
equations 3-6. Additionally, the regression 
analysis-based analysis of variance approach is 
used to conduct relevant analyses of independent 
variables or combinations of numerous factors on 
quality characteristics [18–25]. 

Minal is better 
S

  N
− 10log (

1

nS
∑ yi

2n
i=1 ) (3) 

Larger is better 
S

N
=  −10log (

1

𝑛
∑ 𝑦𝑖

2𝑛
𝑖=1 )   (4) 

Smaller is better 
S

N
=  −10log (

1

𝑛
∑ 𝑦𝑖

2𝑛
𝑖=1 ) (5) 

Mean square deviation =  (
1

𝑛
∑ 𝑦𝑖

2

𝑛

𝑖=1

) (6) 

2.3.2. Selection of Control Factors and Levels 

The selection of a control factor for the 
optimization study was based on a parametric 
study conducted to generate the shrinkage data 
for ANN training, validation, and testing. The 
significant control factors were melt 
temperature, packing pressure, injection time, 
packing time, and cooling time. The levels of these 
factors were chosen by considering their effect on 
shrinkage and machine constraints. The 
combinations of selected factors were made to 
search out the optimum combination of factors to 
further minimize the gear shrinkage. Table 3 
shows selected factors and their levels. 

Table 3. Selected factors and their levels 

Factors Unit 
Level 

1 2 3 4 

MT ℃ 176 179 182 185 

PaP MPa 153 157 161 165 

IT s 0.2 0.4 0.6 0.8 

PT s 8 11 14 17 

CT s 13 16 19 22 

2.3.3. Selection of Orthogonal Array  

The Minitab software was used to perform 
Taguchi analysis. The selected number of factors 
was five, and their levels were four. Based on 
selected factors and their levels, L16 OA was 
available in the design of the experiment (DOE). 
The obtained DOE set is shown in Table 4. 

Table 4. Layout of L16 OA 

Experiments MT PaP IT PT CT 

1 176 153 0.2 8 13 

2 176 157 0.4 11 16 

3 176 161 0.6 14 19 

4 176 165 0.8 17 22 

5 179 153 0.4 14 22 

6 179 157 0.2 17 19 

7 179 161 0.8 8 16 

8 179 165 0.6 11 13 

9 182 153 0.6 17 16 

10 182 157 0.8 14 13 

11 182 161 0.2 11 22 

12 182 165 0.4 8 19 

13 185 153 0.8 11 19 

14 185 157 0.6 8 22 

15 185 161 0.4 17 13 

16 185 165 0.2 14 16 

2.3.4. Analysis of Variance 

The selected factors in the study were 
numeric variables. Hence, regression analysis 
was carried out using Minitab software to obtain 
an analysis of the variance table for identifying 
the relative contribution of each factor in gear 
shrinkage. This technique determines significant 
factors based on a confidence interval of 95% and 
their relative contribution. However, limitations 
like factor instability, public awareness of certain 
relationships, and assumption violations can all 
have an impact on the analysis's ability to 
determine the relative contribution.  

3. Result and Discussion 

The minimization of spur gear shrinkage is 
carried out by integrating ANN with the Taguchi 
method. 

3.1. Artificial Neural Network 

The regression graph for training, validation, 
and testing data for gear shrinkage is shown in 
fig. 5. It was clear from the graph that the degrees 
of fit for training, validation, testing, and all 
together were 0.99018, 0.98539, 0.99445, and 
0.99004, which were very close to each other. 
This demonstrates that the model successfully 
captured the behavior contained in the training 
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data set, while the high correlation coefficient (R) 
for the test set of data indicated that the 
suggested model had adapted efficiently without 
over-fitting. Figure 6 displays the error curve for 
shrinkage of ANN predictions with an 
experimentally produced unknown data set. It 
was observed that the experimental shrinkage 

values and the ANN simulated shrinkage values 
agreed through each run, and the trend lines for 
both exhibited a close similarity. In the entire set 
of unobserved shrinkage data, the error was 
found to be within 4.478%. Thus, it was claimed 
that the produced ANN model was verified by the 
results of the experiments. 

  

Fig. 5. Regression plot of ANN 

 

Fig. 6. Error plot for shrinkage of unseen data set 

3.2. Optimisation of IM Parameters 

A trained ANN model was used to predict the 
gear shrinkage for the Taguchi L16 OA. The 
predicted shrinkage was used to perform Taguchi 

analysis to obtain SNR corresponding to L16 OA, 
SNR table for each level of IM process parameters, 
and main effect plot. The simulated shrinkage 
value and SNR are displayed in Table 5  
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Table 5. Results of the L16 OA 

Experiment Shrinkage (%) S/N Value 

1 1.218 -1.71132 

2 1.170 -1.36092 

3 1.143 -1.16185 

4 1.135 -1.09751 

5 1.136 -1.10692 

6 1.133 -1.08351 

7 1.215 -1.68874 

8 1.181 -1.44251 

9 1.136 -1.10632 

10 1.176 -1.41098 

11 1.128 -1.04739 

12 1.125 -1.02546 

13 1.143 -1.16038 

14 1.138 -1.12321 

15 1.135 -1.09619 

16 1.127 -1.04135 

3.2.1. Estimation of Signal-to-Noise Ratio 

In this study, smaller is better SNR criteria 
were used for identifying the optimal set of 
process parameters. The eq. 5 was used to 
determine the SNR for each experiment and 

factor level. Figure 7 shows the main effect plot 
for the SN ratio. This plot represents the 
relationship between each parameter and SNR. It 
was noticeable seen that with an increase in the 
melt temperature, packing time, and cooling time, 
the SNR value increases and approaches zero. 
This indicates that boosting these parameters 
will increase the signal and decrease the noise. 
However, as packing pressure increases, SNR first 
rises, then falls, and finally rises instead to its 
highest value. Likewise, as injection time is 
increased, SNR first rises before falling to its 
lowest value. The maximum SNR and the 
associated level of factors are thus optimal for 
minimizing gear shrinkage. As observed, the 
highest SNR for the factors specifically melt 
temperature, packing pressure, injection time, 
packing time, and cooling time was determined to 
be at levels 4, 4, 2, 4, and 4, respectively. The 
respective optimum combination of the 
parameters included a melt temperature of 185 
°C, packing pressure of 165 MPa, injection time of 
0.4 s, packing time of 17 s, and cooling time of 22 
s. Table 6 shows the SNR value of factors at each 
level and their rank on gear shrinkage. The 
maximum difference in SNR is called Delta, and 
the factor having the maximum Delta is ranked 1. 
As a result, it is clear that cooling time has come 
out on top. This was followed by packing time, 
melt temperature, injection time packing 
pressure, and associated ranks of 2, 3, 4, and 5.  

 
Fig. 7. Main effect plot for SN ratios 

Table 6. Signal to Noise Ratios 

Level MT PaP IT PT CT 

1 -1.333 -1.271 -1.221 -1.387 -1.415 

2 -1.33 -1.245 -1.147 -1.253 -1.299 

3 -1.148 -1.249 -1.208 -1.18 -1.108 

4 -1.105 -1.152 -1.339 -1.096 -1.094 

Delta 0.228 0.12 0.192 0.291 0.321 

Rank 3 5 4 2 1 
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3.2.2. Analysis of Variance 

Table 7 shows an analysis of variance for gear 
shrinkage. It can be clearly seen that the model P 
value is less than 0.05; which denotes the 
significance of the applied regression model with 
a confidence interval of 95%. Additionally, the P 
value of cooling time, packing time, and melt 
temperature are less than 0.05; hence, these 
parameters are significant parameters for 

minimizing gear shrinkage. The corresponding 
contribution of these factors on shrinkage was 
found to be 40.633%, 27.65%, and 22.836%, 
respectively. However, the P value of injection 
time and packing pressure is higher than 0.05; 
hence, these parameters are insignificant for 
shrinkage minimization. The corresponding 
contribution of these factors on shrinkage was 
found to be 5.085% and 3.790%. 

Table 7. Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value Contribution (%) 

Model 5 0.011856 0.002371 12.82 0  

MT 1 0.002707 0.002707 14.64 0.003 22.836 

PaP 1 0.00045 0.00045 2.43 0.15 3.790 

IT 1 0.000603 0.000603 3.26 0.101 5.085 

PT 1 0.003278 0.003278 17.73 0.002 27.656 

CT 1 0.004817 0.004817 26.05 0 40.633 

Error 10 0.001849 0.000185    

Total 15 0.013706     

 

Figure 8 shows the interaction plot of the IM 
factor for shrinkage. In this plot, parallel lines do 
not indicate interaction; nevertheless, non-
parallel lines and intersecting lines indicate the 
significant connection between the factors. It can 
be observed that parallel lines are not present in 
the interaction plot between the factors which 
denotes a single factor does not significantly 
influence the shrinkage. However, the majority of 
the lines intersect, and their slopes also vary, 
indicating the strong mutual interaction of 
factors affecting gear shrinkage. Hence, gear 
shrinkage is a cumulative effect of all factors that 
have been taken into account. At the lowest melt 
temperature of 176 oC, shrinkage significantly 
reduces with an increase in packing pressure, 
injection, packing, and cooling time; however, at 

the highest melt temperature of 185 oC, it is not 
affected by another factor significantly. Fig.  
shows a contour plot for gear shrinkage. It is clear 
from plots that the cooling time has a dominant 
role in shrinkage, if the packing time is more than 
21 seconds, shrinkage lies within 1.14%. 
However, if it is essential to reduce the cooling 
time to reduce overall cycle time without 
increasing the shrinkage by more than 1.14%, the 
remaining factors level, namely melt temperature 
must be between 181 oC to 184 oC, packing time 
must be greater than 14 s (Fig.  (a-b)). But packing 
pressure and injection time are found to be the 
least significant parameters for shrinkage 
minimization (Fig.  (c-d). Therefore, contour plots 
consolidate the findings obtained from Taguchi 
and the analysis of variance. 

 
Fig. 8. Interaction plot for gear shrinkage 
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(a) (b) 

  

(c) (d) 

Fig. 9. Contour plot for shrinkage (a) Cooling time versus Melt temperature, (b) Cooling time versus Packing time,  
(c) Cooling time versus Packing pressure, and (d) Cooling time versus Injection time 

3.2.3. Conformation Test 

The conformation test was carried out to 
minimize the gear shrinkage using an optimum 
combination of process parameters, namely melt 
temperature of 185 oC, packing pressure of 165 
MPa, injection time of 0.4 s, packing time of 17 s, 
and cooling time of 22 s. The ANN prediction was 
made using these parameters and the 
corresponding shrinkage was found to be 
1.121%. Similarly, experimental analysis was 
also conducted using the same parameters, and 
the corresponding shrinkage was found to be 
1.127%. Hence, it can be deduced that the 
developed ANN model had high prediction 
accuracy as the produced shrinkage was found to 
be in good agreement with experimental findings, 
and the corresponding error was found to be 
0.535%. 

The minimum shrinkage of PP gear in the 
current investigation was determined to be 
1.127%, which is significantly less than the 
1.606% and 1.656% shrinkage reported by 
Solanki et al.[16,26], resulting in a 42.502% 
improvement. The most significant factor in 
minimizing gear shrinkage was found to be 
cooling time, which was similar to the findings of 
Mehat et al. [27].  

4. Conclusions 

In the present study, the optimization of IM 
process parameters was carried out with the aim 

of minimizing the shrinkage of PP gear. This was 
conducted by integrating an artificial neural 
network and the Taguchi method. The IM factors 
selected for optimization were melt temperature, 
packing pressure, injection time, packing time, 
and cooling time. Additionally, analysis of 
variance was carried out to determine the 
contribution of selected parameters on gear 
shrinkage. Based on the findings, the following 
conclusions could be drawn: 

• The designed ANN for shrinkage of PP gear 
shows a degree of fit greater than 0.99 in 
training, validation, and testing. 

• The predicted shrinkage for the unseen set of 
experiments was found to be in good 
agreement with experimental outcomes, and 
the maximum error was within 5.0%. 

• The Taguchi analysis depicted the optimum 
IM parameter as a melt temperature of 185 ℃, 
packing pressure of 165 MPa, injection time of 
0.4 s, packing time of 17 s, and cooling time of 
22 s.  

• The analysis of variance advocated that the 
cooling time, packing time, and melt 
temperature were found to be significant IM 
factors with contributions of 40.633%, 
27.656%, and 22.836%, respectively. 

• The conformation test revealed minimum 
gear shrinkage was obtained at optimum 
parameters via ANN and experimental 
analysis. 
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Application 

The PP gears are widely used in lightweight 
power transmission and underwater 
applications. 

Future Scope 

The present study has the following 
limitations, which need more comprehensive 
work on fabrication and analysis. 

• Fillers such as glass fiber, carbon fiber, etc. can 
be added with PP to further reduce the gear 
shrinkage.  

• Wear and fatigue analysis of PP gear can be 
conducted using a gear test rig. 

Nomenclature 

PP Polypropylene 

ANN Artificial neural network 

ANOVA Analysis of variance 

GRA Grey relational analysis  

PCA Principal component analysis 

OA Orthogonal array 

CAE Computer-aided engineering 

IM Injection molding 

PSO Particle sworn optimization 

IP Injection pressure 

PaP Packing pressure 

PT Packing time 

CT Cooling time 

IT Injection time 

MT Melt temperature 

MoT Mold temperature 

Dc Addendum circle diameter of mold 
cavity 

DG Addendum circle diameter of spur gear 

MSE Mean square error 

DOE Design of experiment 

SNR Signal-to-noise ratio 

R correlation coefficient 

SS Sum of squares 

MS Mean square 

DF Degree of freedom 
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