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Abstract

In this paper, we introduce several regularity properties for the non-differentiable convex-like C(T )-valued functions
which are defined on a Hilbert space. The relationships with various regularity properties are investigated. All results
are given in terms of the convex subdifferential. Non-trivial numerical examples are incorporated to demonstrate the
validity of the results established in this paper. To the best of our knowledge, this paper is the first to investigate the
regularity properties for the C(T )-valued functions, even in the differentiable case of finite-dimensional spaces.
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1 Introduction

In this paper, we study the regularity property for convex-like C(T )-valued functions f : H → C(T ), where H is
a Hilbert space and C(T ) denotes the set of real-valued continuous functions on a (not necessarily compact) metric
space T . Note that the C(T )-valued function f : H → C(T ) is said to be convex-like if for all t ∈ T the function
f(·)(t) : H → R is convex, i.e.,

f
(
λx1 + (1− λ)x2

)
(t) ≤ λf(x1)(t) + (1− λ)f(x2)(t), ∀x1, x2 ∈ H, ∀λ ∈ [0, 1], ∀t ∈ T.

If we write f ≤ g for two C(T )-valued functions f, g : H → C(T ), it means f(·)(t) ≤ g(·)(t) for all t ∈ T , i.e.,

f(x)(t) ≤ g(x)(t), ∀x ∈ H, ∀t ∈ T.

Given a convex-like C(T )-valued functions f : H → C(T ), we consider the following subset of H,

S :=
{
x ∈ H | f ≤ 0

}
,

where 0 denotes the zero C(T )-valued function. In other words, S can be rewritten as

S =
{
x ∈ H | f(x)(t) ≤ 0, ∀t ∈ T

}
. (1.1)
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According to

S =
⋂
t∈T

{x ∈ H | f(x)(t) ≤ 0} =
⋂
t∈T

f−1
(
(−∞, 0]

)
(t),

and regarding the convexity of level sets of real-valued convex functions [14, p. 41], we conclude that S is an intersection
of convex sets, and consequently is itself convex (Here, f−1(·)(t) denotes the inverse relation of f(·)(t)). In what follows
we shall assume that S ̸= ∅.

If a convex-like C(T )-valued function f : H → C(T ) and a vector x̂ ∈ S are given, the following condition is very
important in many theoretical and applied problems (see, e.g., [13, 15]):

N(S, x̂) = cone

 ⋃
t∈T (x̂)

∂f(x̂)(t)

 , (1.2)

where the normal cone of S at x̂ is denoted by N(S, x̂), the subdifferential of convex function f(·)(t) at x̂ is denoted
by ∂f(x̂)(t), and T (x̂) is defined as

T (x̂) := {t ∈ T | f(x̂)(t) = 0}.

Any property that is a sufficient condition for the equality (1.2) is called a regularity property.

It should be noted that if T is a finite set, C(T ) can be considered as same as R|T | (see, e.g., [1]), and then
the C(T )-valued functions f : H → C(T ) are reduced to the vector-valued functions f : H → R|T |. The regularity
properties of this special type of C(T )-valued functions can be seen in [1, 4, 12]. Also, if H = Rn and T is a compact
space, then the C(T )-valued function f : Rn → C(T ) is said to be a semi-infinite function. The regularity properties
of semi-infinite functions are studied in [7] for linear case, in [3] for differentiable case, in [2, 11] for convex case, in [6]
for DC (difference of convex functions) case, in [8] for quasiconvex case, and in [5, 9, 10] for nonsmooth case. Recently,
it has been studied in [13, 15] the cases where H is a Banach space and T is a compact space.

Since in this article, we do not consider any of the limitations of the above papers (even compactness of T ), the
results of this article can be considered as a generalization of all the above papers.

2 Preliminaries

In this section, we describe our natation and present preliminary results. Throughout the paper, the inner product
of two vectors x and y in the Hilbert space H will be denoted by ⟨x, y⟩, and the null vector of H will be denoted by
0H. Given a set A ⊆ H, we denote by A, the closure of A. Also, the convex hull and the convex cone generated by A
are denoted, respectively, by conv(A) and cone(A), defined as

conv(A) :=


⋂{

B | B is convex and A ⊆ B
}
, if A ̸= ∅

∅, if A = ∅
,

conv(A) :=


⋃
{r conv(A) | r ≥ 0

}
, if A ̸= ∅

{0H}, if A = ∅
.

The negative polar cone and the strictly negative set of A ⊆ H are, respectively, defined as

A⊙ :=


{
u ∈ H | ⟨u, x⟩ ≤ 0, ∀ x ∈ A

}
, if A ̸= ∅

{0H}, if A = ∅
,

A⊖ :=


{
u ∈ H | ⟨u, x⟩ < 0, ∀ x ∈ A

}
, if A ̸= ∅

∅, if A = ∅
.
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We can see ([1]) that A⊙ is always a closed convex cone in H, A⊙ =
(
A
)⊙

=
(
conv(A)

)⊙
=

(
cone(A)

)⊙
, and

A⊙ = A⊖ if A⊖ ̸= ∅. The bipolar theorem (see [1, 14]) states that

A⊙⊙ :=
(
A⊙)⊙ = cone(A) := cone(A).

If Ω is an arbitrary index and Bγ ⊆ H is a nonempty convex set as γ ∈ Ω, then [14, p. 34]

conv
( ⋃

γ∈Ω

Bγ

)
=

 ∑
γ∈Ω∗

αγbγ | αγ ≥ 0,
∑
γ∈Ω∗

αγ = 1, bγ ∈ Bγ , Ω∗ ⊆ Ω, |Ω∗| <∞

 . (2.1)

Theorem 2.1. [14, p. 15] Let A ⊂ H be a compact set. Then, cone(A) is closed if 0H /∈ conv(A).

Let B ⊆ H be a closed convex set, the normal cone of B at x0 ∈ B is defined as

N(B, x0) :=
{
u ∈ H | ⟨u, x− x0⟩ ≤ 0, for all x ∈ B

}
.

The negative polar cone of N(B, x0) is called the tangent cone of B at x0, i.e., Γ(B, x0) :=
(
N(B, x0)

)⊙
, and the

feasible directions cone of B at x0 is defined by

D(B, x0) :=
{
v ∈ H | ∃δ > 0 : x0 + εv ∈ B ∀ε ∈ (0, δ)

}
.

We can see ([4, 14]) Γ(B, x0) and N(B, x0) are always closed convex cones in H, N(B, x0) =
(
Γ(B, x0)

)⊙
,

Γ(B, x0) =
{
v ∈ H | ∃rn ↓ 0, ∃vn → v : x0 + rnvn ∈ B ∀n ∈ N

}
,

and Γ(B, x0) = D(B, x0). Suppose that φ : H → R is a convex function. The Fenchel (or convex) subdifferential of φ
at x0 ∈ H is defined as

∂φ(x0) := {ξ ∈ H | φ(x)− φ(x0) ≥ ⟨ξ, x− x0⟩, ∀x ∈ H} .

As the final point of this section, in the following theorem we summarize some important properties of the convex
subdifferential from [14] which are widely used in what follows.

Theorem 2.2. Let φ1, · · · , φm be convex functions from H to R. For a given x0 ∈ H, the following assertions hold:

(i) ∂φ1(x0) is a nonempty convex compact subset of H.

(ii) For all non-negative real numbers α1, · · · , αm, one has

∂
( m∑

i=1

αiφi

)
(x0) =

m∑
i=1

αi∂φi(x0).

(iii) If Φ : H → R is defined by Φ(x) := max
{
φi(x) | i = 1, · · · ,m

}
, then

∂Φ(x0) ⊆ conv
(⋃

i∈I

∂φi(x0)
)
,

where I := {i | Φ(x0) = φi(x0)} .

(iv) One has
∂φ1(x0) = {ξ ∈ H | φ′

1(x0; d) ≥ ⟨ξ, d⟩ , ∀d ∈ H} ,

φ′
1(x0; d) = max

{
⟨ξ, d⟩ | ξ ∈ ∂φ1(x0)

}
, ∀d ∈ H,

where φ′
1(x0; d) denotes the directional derivative of φ1 at x0 in the direction d ∈ H, i.e.,

φ′
1(x0; d) := lim

h↓0

φ1(x0 + hd)− φ1(x0)

h
.
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3 Main Results

At the first point of this section, we note that if the convex-like C(T )-valued function f : H → C(T ) and a vector
x̂ ∈ S are given, we will always assume that ⋃

t∈T (x̂)

∂f(x̂)(t) ̸= ∅. (3.1)

It should be noted that the assumption (3.1) is not restrictive at all, because otherwise we have T (x̂) = ∅, and as
a result, both sides of (1.2) are equal to {0H}.

Theorem 3.1. Assume that the convex-like C(T )-valued function f : H → C(T ) and a vector x̂ ∈ S are given. Then

cone

 ⋃
t∈T (x̂)

∂f(x̂)(t)

 ⊆ N(S, x̂).

Proof . Suppose that ξ ∈
⋃

t∈T (x̂) ∂f(x̂)(t) is given. Thus, ξ ∈ ∂f(x̂)(t0) for some t0 ∈ T (x̂), and so f(x̂)(t0) = 0. If

d ∈ D(S, x̂), then x̂ + δd ∈ S for some δ > 0, and hence f(x̂ + δd)(t0) ≤ 0. Now, by the definition of subdifferential
we get

0 ≥ 1

δ

(
f(x̂+ δd)(t0)− f(x̂)(t0)

)
≥ 1

δ
⟨ξ, δd⟩ = ⟨ξ, d⟩.

Since the above inequality holds for all d ∈ D(S, x̂), we have ξ ∈
(
D(S, x̂)

)⊙
. This inclusion and the fact that

(D(S, x̂))
⊙
=

(
D(S, x̂)

)⊙
= (Γ(S, x̂))

⊙
= N(S, x̂),

conclude that ξ ∈ N(S, x̂), and so ⋃
t∈T (x̂)

∂f(x̂)(t) ⊆ N(S, x̂).

Taking convex hulls in both sides of the above inclusion, we get

cone

 ⋃
t∈T (x̂)

∂f(x̂)(t)

 ⊆ cone (N(S, x̂)) = N(S, x̂),

and the proof is complete. □

Remark 3.2. The above theorem shows that to prove equality (1.2), it is enough to show

N(S, x̂) ⊆ cone

 ⋃
t∈T (x̂)

∂f(x̂)(t)

 . (3.2)

The following lemma provides an equivalent for inclusion (3.2).

Theorem 3.3. If a convex-like C(T )-valued function f : H → C(T ) and a vector x̂ ∈ S are given, then (3.2) holds if
and only if 

 ⋃
t∈T (x̂)

∂f(x̂)(t)

⊙

⊆ Γ(S, x̂),

cone

 ⋃
t∈T (x̂)

∂f(x̂)(t)

 is closed.

(3.3)
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Proof . If N(S, x̂) ⊆ cone
(⋃

t∈T (x̂) ∂f(x̂)(t)
)
, then ⋃

t∈T (x̂)

∂f(x̂)(t)

⊙

=

cone( ⋃
t∈T (x̂)

∂f(x̂)(t)

)⊙

⊆ (N(S, x̂))
⊙
= Γ(S, x̂),

and regarding to Theorem 3.1 and closedness of N(S, x̂), we conclude that cone
(⋃

t∈T (x̂) ∂f(x̂)(t)
)
is closed. Con-

versely, if (3.3) holds, the bipolar Theorem implies that

N(S, x̂) = (Γ(S, x̂))
⊙ ⊆

 ⋃
t∈T (x̂)

∂f(x̂)(t)

⊙⊙

= cone

( ⋃
t∈T (x̂)

∂f(x̂)(t)

)
= cone

 ⋃
t∈T (x̂)

∂f(x̂)(t)

 .

□

The above theorem leads us to the following definition.

Definition 3.4. Let f : H → C(T ) be a convex-like C(T )-valued function and x̂ ∈ S. We say that f satisfies the
Abadie regularity property (ARP, briefly) at x̂ if ⋃

t∈T (x̂)

∂f(x̂)(t)

⊙

⊆ Γ(S, x̂).

Theorem 3.3 and Remark 3.2 show that any sufficient condition for establishing ARP is a regularity property for
f , which can lead us to (1.2). We associate with the convex-like C(T )-valued function f : H → C(T ) the marginal
function ψ : H → (−∞, 0] as follows:

ψ(x) := sup {f(x)(t) | t ∈ T} , ∀x ∈ S.

It is easy to see that ψ is a convex function (see [14, p. 97]). One reason for difficulty of extending the results
finite T to infinite one is that in the finite case we have (see Theorem 2.2)

∂ψ(x̂) ⊆ conv

 ⋃
t∈T (x̂)

∂f(x̂)(t)

 , ∀x̂ ∈ H, (3.4)

but in general, (3.4) does not hold if T is infinite. We are thus led to the following definition.

Definition 3.5. We say that the Ioffe-Tikhomirov property (ITP, briefly) is satisfied at x̂ ∈ H, if (3.4) holds.

Now, we introduce a Kuhn-Tucker type regularity property for convex-like C(T )-valued functions.

Definition 3.6. Let f : H → C(T ) be a convex-like C(T )-valued function and x̂ ∈ S. We say that f satisfies the
Kuhn-Tucker regularity property (KTRP, briefly) at x̂ if{

d ∈ H | ψ′(x̂; d) ≤ 0
}
⊆ Γ(S, x̂).

Notice, the ARP and the KTRP are named geometric regularity properties, since they are depended to the tangent
cone of S at x̂.

Theorem 3.7. Let a convex-like C(T )-valued function f : H → C(T ) be given. If KTRP and ITP are satisfied at
x̂ ∈ S, then ARP holds at x̂.

Proof . According to Theorem 2.2, we have

d∗ ∈ {d ∈ H | ψ′(x̂; d) ≤ 0} ⇐⇒ ψ′(x̂; d∗) ≤ 0
⇐⇒ max

{
⟨ξ, d∗⟩ | ξ ∈ ∂ψ(x̂)

}
≤ 0

⇐⇒ ⟨ξ, d∗⟩ ≤ 0, ∀ξ ∈ ∂ψ(x̂)

⇐⇒ d∗ ∈ (∂ψ(x̂))
⊙
.



6

Thus,
{d ∈ H | ψ′(x̂; d) ≤ 0} = (∂ψ(x̂))

⊙
,

which, together with ITP and KTRP, yields ⋃
t∈T (x̂)

∂f(x̂)(t)

⊙

=

conv( ⋃
t∈T (x̂)

∂f(x̂)(t)

)⊙

⊆
(
∂ψ(x̂)

)⊙
=

{
d ∈ H | ψ′(x̂; d) ≤ 0

}
⊆ Γ(S, x̂),

as required. □

Now, we introduce some algebraic regularity properties, that are not depended to the tangent cone of S at x̂. For
a given x̂ ∈ S and a ε ≥ 0, put

Tε(x̂) := {t ∈ T | f(x̂)(t) ≥ −ε}.

Since f(x̂)(t) ≤ 0 for all t ∈ T , we have clearly T (x̂) = T0(x̂).

Definition 3.8. Let f : H → C(T ) be a convex-like C(T )-valued function and x̂ ∈ S. We say that f satisfies

� the Slater regularity property (SRP) when there is a Slater point, i.e., There exists x0 ∈ H such that

f(x0)(t) < 0, ∀t ∈ T.

� the strong Slater regularity property (SSRP) when there is a strong Slater point, i.e.,there exist x0 ∈ H
and ε > 0 such that

f(x0)(t) ≤ −ε, ∀t ∈ T.

� the local Slater regularity property (LSRP) at x̂ when ⋃
t∈T (x̂)

∂f(x̂)(t)

⊖

̸= ∅.

� the perturbed Mangasarian-Fromovitz regularity property (PMFRP) at x̂ if there exists d∗ ∈ H such that

inf
ε>0

sup

{
⟨ξ, d∗⟩ | ξ ∈

⋃
t∈Tε(x̂)

∂f(x̂)(t)

}
< 0.

In other words, PMFRP holds at x̂ if the following inequality holds for some d∗ ∈ H:

inf
ε>0

sup
t∈Tε(x̂)

f ′(x̂; d∗)(t) < 0,

where f ′(x̂; d∗)(t) denotes the directional derivative of the function f(·)(t) at x̂ in the direction d∗.

Theorem 3.9. Let a convex-like C(T )-valued function f : H → C(T ) be given. The following implications are
established among the regularity properties introduced in Definition 3.8 at x̂ ∈ S:

PMFRP
⇓

SSRP =⇒ SRP =⇒ LSRP.

Proof .

[SSRP =⇒ SRP]: It is a straightforward consequence of Definition 3.6.

[SRP =⇒ LSRP]: Assume that t ∈ T (x̂) and ξt ∈ ∂f(x̂)(t) are given. Let d := x0 − x̂, where x0 is the Slater point.
Then, by the definition of subdifferential we have

⟨ξt, d⟩ = ⟨ξt, x0 − x̂⟩ ≤
<0︷ ︸︸ ︷

f(x0)(t)−
=0︷ ︸︸ ︷

f(x̂)(t) < 0.
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So,

d ∈

 ⋃
t∈T (x̂)

∂f(x̂)(t)

⊖

,

as required.

[PMFRP =⇒ LSRP]: Assume that ε > 0 is such that

sup

{
⟨ξ, d∗⟩ | ξ ∈

⋃
t∈Tε(x̂)

∂f(x̂)(t)

}
< 0.

Since T (x̂) ⊆ Tε(x̂),  ⋃
t∈T (x̂)

∂f(x̂)(t)

 ⊆

 ⋃
t∈Tε(x̂)

∂f(x̂)(t)

 ,

and hence,

⟨ξ, d∗⟩ < 0, ∀ξ ∈
⋃

t∈Tε(x̂)

∂f(x̂)(t).

This means that

d∗ ∈

 ⋃
t∈T (x̂)

∂f(x̂)(t)

⊖

,

as required. □

The following example shows that the ITP is not implied by the defined geometric and algebraic regularity prop-
erties.

Example 3.10. Let H = R, T = N ∪ {0}, x̂ = 0, and

f(x)(t) =


2x, if t = 0,

x− 2
t+1 , if t ∈ {1, 3, 5, . . .},

3x− 2
t , if t ∈ {2, 4, 6, . . .}.

It is easy to see that

� S = Γ(S, x̂) = (−∞, 0], and hence N (S, x̂) = [0,+∞).

� T (x̂) = {0} , and hence
⋃

t∈T (x̂)

∂f(x̂)(t) = {2}. So

 ⋃
t∈T (x̂)

∂f(x̂)(t)

⊙

= (−∞, 0], and

 ⋃
t∈T (x̂)

∂f(x̂)(t)

⊖

= (−∞, 0).

� −1 is a strong Slater point.

� ψ(x) =

{
x, if x < 0,
3x, if x ≥ 0

, and hence

ψ′(x̂; d) =

 −1, if d < 0,
0, if d = 0,
3, if d > 0

, and ∂ψ(x̂) = [1, 3].
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� for d∗ = 1 and for all ε > 0 we have

sup

{
⟨ξ, d∗⟩ | ξ ∈

⋃
t∈Tε(x̂)

∂f(x̂)(t)

}
= sup

t∈Tε(x̂)

f ′(x̂; d∗)(t) = sup
t∈Tε(x̂)

⟨f ′(x̂)(t), d∗⟩ = sup {1, 2, 3} = 3.

Thus, SSRP, PMFRP, ARP, and KTRP hold at x̂ while ITP fails at that point.

Now, we present the implications among the introduced geometric and algebraic regularity properties.

Theorem 3.11. Suppose that f : H → C(T ) is a convex-like C(T )-valued function. If the LSRP and ITP hold at
x̂ ∈ S, then ARP holds at x̂.

Proof . Let d ∈

 ⋃
t∈T (x̂)

∂f(x̂)(t)

⊖

. Since

 ⋃
t∈T (x̂)

∂f(x̂)(t)

⊖

=

conv( ⋃
t∈T (x̂)

∂f(x̂)(t)

)⊖

,

the ITP leads to d ∈
(
∂ψ(x̂)

)⊖
. Hence, ⟨ξ, d⟩ < 0 for all ξ ∈ ∂ψ(x̂), and so ψ′(x̂; d) < 0. Consequently, there exists a

scalar δ > 0 such that ψ(x̂+ βd) < ψ(x̂) ≤ 0, for all β ∈ (0, δ]. Therefore, we have x̂+ βd ∈ S for all β ∈ (0, δ] , which
implies d ∈ D(S, x̂). We have thus proved the inclusion ⋃

t∈T (x̂)

∂f(x̂)(t)

⊖

⊆ D(S, x̂),

and hence  ⋃
t∈T (x̂)

∂f(x̂)(t)

⊙

=

 ⋃
t∈T (x̂)

∂f(x̂)(t)

⊖

⊆ D(S, x̂) = Γ(S, x̂).

The proof is complete. □

Theorem 3.12. Suppose that f : H → C(T ) is a convex-like C(T )-valued function. If the LSRP and ITP are satisfied
at x̂ ∈ S, then KTRP holds at x̂.

Proof . If d ∈

 ⋃
t∈T (x̂)

∂f(x̂)(t)

⊖

, by the same argument as in the proof of Theorem 3.11 we have ψ′(x̂; d̂) < 0, and

so {
d ∈ H | ψ′(x̂; d) < 0

}
̸= ∅.

If d̂ ∈
{
d ∈ H | ψ′(x̂; d) < 0

}
is given arbitrarily, then ψ′(x̂; d̂) < 0. By the same argument as in the proof of

Theorem 3.11, we obtain a δ > 0 such that x̂ + δd̂ ∈ S. Thus, regarding to the definition of subdifferential, for each
t ∈ T (x̂) and ξ ∈ ∂f(x̂)(t), we have

⟨ξ, δd̂⟩ = ⟨ξ, x̂+ δd̂− x̂) ≤ f(x̂+ δd̂)(t)− f(x̂)(t) = f(x̂+ δd̂)(t) ≤ 0.

Thus, ⟨ξ, d̂⟩ for all ξ ∈
⋃

t∈T (x̂)

∂f(x̂)(t), and hence d̂ ∈

 ⋃
t∈T (x̂)

∂f(x̂)(t)

⊙

. This means that

{d ∈ H | ψ′(x̂; d) < 0} ⊆

 ⋃
t∈T (x̂)

∂f(x̂)(t)

⊙

.
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This together with the continuity of ψ′(x̂; ·), implies that

{d ∈ H | ψ′(x̂; d) ≤ 0} = {d ∈ H | ψ′(x̂; d) < 0} ⊆

 ⋃
t∈T (x̂)

∂f(x̂)(t)

⊙

=

 ⋃
t∈T (x̂)

∂f(x̂)(t)

⊙

.

□

The following theorem presents some important results for convex-like C(T )-valued functions with compact T .

Theorem 3.13. Suppose that f : H → C(T ) is a convex-like C(T )-valued function and T is a compact space. If the
SRP is satisfied, then

(i) the ITP holds at all x̂ ∈ S.

(ii) cone

 ⋃
t∈T (x̂)

∂f(x̂)(t)

 is closed for all x̂ ∈ S.

Proof .

(i) It is [4, Pshenichnyi-Levin-Valadier theorem, p. 267] or [14, Theorem 2.4.18] (The compactness assumption of T
is essential).

(ii) Let x0 be the Slater point of f , i.e., f(x0)(t) < 0 for all t ∈ T . We claim that

0H /∈ conv

 ⋃
t∈T (x̂)

∂f(x̂)(t)

 . (3.5)

Assume on the contrary that (3.5) doed not hold. Owing to (2.1), there exist some finite set T∗ ⊆ T (x̂),
non-negative scalars α1, . . . , α|T∗|, and ξt ∈ ∂f(x̂)(t) as t ∈ {1, . . . , |T∗|}, such that

0H =

|T∗|∑
t=1

αtξt, and

|T∗|∑
t=1

αt = 1.

Thus, the definition of subdifferential implies that

0 = ⟨0H, x̂− x0⟩ =
〈 |T∗|∑

t=1

αtξt , x̂− x0

〉
=

|T∗|∑
t=1

αt⟨ξt, x̂− x0⟩ ≤
|T∗|∑
t=1

αt

( =0︷ ︸︸ ︷
f(x̂)(t)−

<0︷ ︸︸ ︷
f(x0)(t)

)
< 0.

This contradiction shows that (3.5) holds. On the other hand, according to [14, p. 97],
⋃

t∈T (x̂)

∂f(x̂)(t) is a

compact set. Owing to the Theorem 2.1, the proof is complete.

□

Thee following corollary collects Theorems 3.7, 3.9, 3.11, 3.12, and 3.13 in one diagram.

Corollary 3.14. Suppose that f : H → C(T ) is a convex-like C(T )-valued function and x̂ ∈ S. The implications of
the following diagram hold true at x̂, where the label (∗) besides an arrow stands for “the implication holds under the
assumption that T is compact”:

[KTRP ∧ ITP]
↑ ↘

SSRP −→ SRP
(∗)−→ [LSRP ∧ ITP] −→ ARP

↓ ↙
PMFRP −→ LSRP
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Example 3.15. Considering Example 3.10, we have cone
( ⋃

t∈T (x̂)

∂f(x̂)(t)
)
= [0,+∞). So, the converse of the fol-

lowing implications are not true, even when cone
( ⋃

t∈T (x̂)

∂f(x̂)(t)
)
is closed:

[LSRP ∧ ITP] =⇒ ARP, and [KTRP ∧ ITP] =⇒ ARP.

This example, also, shows that the compactness condition of T is necessary in the following implication

SRP
(∗)
=⇒ [LSRP ∧ ITP].

The following example shows that the closedness condition of cone
( ⋃

t∈T (x̂)

∂f(x̂)(t)
)
can not be ignored in Theorem

3.3.

Example 3.16. Let H = R2, T := N ∪ {0}, x̂ = (0, 0), and

f(x)(t) = sup
{
⟨x, y⟩ | y ∈ Bt

}
,

where the compact convex set Bt ⊆ R2 is defined as

Bt :=
{
(y1, y2) ∈ [0,+∞)× [0,+∞) | y21 + y22 − 2(1 + t)y2 ≤ 0

}
.

We can see that

� S = Γ(S, x̂) = (−∞, 0]× (−∞, 0] and hence N (S, x̂) = [0,+∞)× [0,+∞).

� T (x̂) = T and ∂f(x̂)(t) = Bt as t ∈ T . Hence,

cone
( ⋃

t∈T (x̂)

∂f(x̂)(t)
)
=

⋃
t∈T (x̂)

∂f(x̂)(t) =
{
x ∈ R2 | x1 ≥ 0, x2 > 0

}
∪
{
(0, 0)

}
.

So  ⋃
t∈T (x̂)

∂f(x̂)(t)

⊙

= (−∞, 0]× (−∞, 0], and

 ⋃
t∈T (x̂)

∂f(x̂)(t)

⊖

= ∅.

� ψ(x) = ψ′(x; d) = 0 for all x ∈ S and d ∈ S. So, ∂ψ(x̂) = S.

�

⋃
t∈Tε(x̂)

∂f(x̂)(t) =
(
R× (0,+∞)

)
∪
{
(0, 0)

}
for all ε > 0.

Therefore, KTRP and ARP hold at x̂ while the remaining regularity properties in Corollary 3.14 fail (as well as

ITP). Also, cone
( ⋃

t∈T (x̂)

∂f(x̂)(t)
)
is not closed and

N(S, x̂) ⊈ cone
( ⋃

t∈T (x̂)

∂f(x̂)(t)
)
.

Thus, (3.2) does not hold at x̂. Observe that

N(S, x̂) = cone
( ⋃

t∈T (x̂)

∂f(x̂)(t)
)
.
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