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Abstract

In this article, we introduce refinements of Young-type inequalities for scalars. We then extend these inequalities
to encompass versions based on Hilbert-Schmidt and trace norms. The results presented in this paper represent
refinements of the findings originally established by Nasiri and Shakoori[6].
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1 Introduction
Yang’s inequality states that for any a,b > 0 and 0 < v < 1, we have:
a’b' ™" <wva+ (1 —v)b, (1.1)

with equality if and only if a = b. When v = 1/2, Yang’s inequality transforms into the arithmetic-geometric mean
inequality:

Vab < a;b. (1.2)

Zhang and Wu [7] refined this inequality, introducing the Kantorovich constant, as follows:
2
va+ (1—v)b>rg (\f - \/E) + K(Vh,2)"a"b' Y, (1.3)
where a and b are non-negative, 0 < v <1, and h = %. The Kantorovich constant is defined as:

h+2)?
K(h,Q)Z%, h>0,
with rg = minv,1 — v and r; = min 2rg, 1 — 2ry. It is important to note that the Kantorovich constant satisfies the

following conditions:
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(i) K(1,2) =1.
(ii) K(h,2) = K(1/h,2).
(iii) K (h,2) is monotonically increasing on [1, 00) and monotonically decreasing on (0, 1].
Using inequality (1.3]), Nasiri and Shakoori in their article [6] derived refinements of Young’s inequality as follows:
Let a,b>0and 0 <v < 1.
(i) If 0 < v < 1/2, then:

via® + (1 —v)*0* > v*(a — b)* + rob (\/E - \/ﬁ)z + K(Vuh,2)" [(va)s' ], (1.4)

where 79 = min2v,1 — 2, h = ¢, and r; = min 2rg, 1 — 2rq.
(i) If 1/2 < v < 1, then:

via? + (1 —v)?? > (1 —v)*(a—b)* +ra (\f -/ (1 - y)b)2 + K <E7 2) [a”(l _ V)bl—u]2’ (1.5)

where rg = min2v — 1,2 — 2v, and r1 = min 2rg, 1 — 2rg.

In the realm of inequalities, a fascinating area of study involves the generalization of numerical inequalities into
matrix form or even for bounded linear operators on Hilbert spaces. The results obtained from such generalizations
often rely on unitary norms, particularly the Hilbert-Schmidt norm and the trace norm.

Let M, represent the space of n x n complex matrices, and let ||.| denote any unitarily invariant norm on M,,.
This implies that |[UAV|| = ||A]| for all A € M,, and for all unitary matrices U and V' € M,,.

For a matrix A = [a;;] € M,, the Hilbert-Schmidt norm (or Frobenius norm) and the trace norm of A are
respectively defined as follows:

1/2

Al = | D s3A) |, Al = si(A).
j=1 j=1

Here, the singular values of A are denoted as s1(A) > s2(A) > ... > s,(A). These singular values represent
the eigenvalues of the positive matrix || Al = (4*A)/2, arranged in decreasing order and repeated according to their
multiplicity.

It is crucial to emphasize that the Hilbert-Schmidt norm possesses the valuable property of unitary invariance,
making it exceptionally versatile in a wide range of mathematical applications. For a more in-depth understanding of
Young-type inequalities and their matrix versions, readers are encouraged to explore the works of Bhatia [I], Hu [2],
Wu and Zhao [4] and Zuo et al [5] as well as other relevant references. In a specific case, utilizing the inequalities
and (L.5), Nasiri and Shakoori [6] introduced the matrix version with the Hilbert-Schmidt norm, while Zhang and Wu
[7] obtained refinements of inequality (T.4).

In this paper, we first derive new refinements of the results of Nasiri and Shakoori in [6]. We then extend the
matrix form of these inequalities with the Hilbert-Schmidt norm and trace norm.

2 A Refinements of the Classical Young Inequality

We are about to present our key result, centered on refining the classical Young inequality (1.1). To begin, we
introduce the following theorem applicable to scalar values. These refinements extend the inequalities (2.1) and (2.2)
that were obtained by Nasiri and Shakoori in [G].

Theorem 2.1. Let a,b>0and 0 <v < 1.
(i) If 0 < v < 1/4, then
2 1 1 2 1 1 2
v2a® 4 (1 — v)?b? >1v%(a — b)* + 2vb (\/5 - \/Va) +4vb ((I/ab)Z — (l/a)§> + 7ob (b§ - (Vb3a)§)
+K (h%,z)” (va)2 b2, (2.1)

where 79 = min{1 — 8v,8v}, r1 = min{2ry,1 — 2o}, and h = 5*.
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(i) If 1/4 < v < 1/2, then
12b? >1v*(a — b)* + vb (\/I; — \/ﬁ)2 + (1 —4v)b ((uab)é — b%)z +rob ((Vab)% - (Z/bga)%)2

K (h%g)” (a”((1 = v)b)'=)?, (2.2)
where ro = min{2 — 8v,8v — 1}, 1 = min{2rg, 1 — 2r¢}, and h = 5*

(iii) If 1/2 < v < 3/4, then
V2a® + (1= )% >(1 —v)%(a — b) + (\/ﬁ_\f) (4v = 3)a (((1 = v)ab)* - %)2

+roa (((1- u)ab)% (- u)bai”)%) VK (hz) (a”((1 = v)b)' =),

v2a® + (1-v

where 79 = min{7 — 8v,8v — 6}, r; = min{2ry,1 — 2rg}, and h = (1:11/)6'

(iv) If 3/4 < v < 1, then
)2b2 2(1—V)2(a—b)2 (2—-2v)a (\/ﬁ—\f) (4—4v)a (((1—y)ab)é — %)2
+ra (a% —((1— u)ba3)%) +K (h%,z)” (a”((1 = v)b)'=)*, (2.4)

7}, 1 = min{2rg, 1 — 2r0}, and h = T

v2a® + (1-v

where 79 = min{8 — 8v, 8v —

Proof .
(i) Let 0 < v < 1/4. In this case, concerning inequality (2.1) from [

v)20? — v (a — b)? =b[(1 — 2v)b + 2v(va)]
>b [21/ (\/B - \/%)2 wy ((yab)% - b%)2
+ 7o (bé — (vb3a)® ) +K ((Vh)%ﬁ)rl b1_2”(1/a)2”}

x

7, Theorem 2.1], we have

via® 4 (1 —

[N

—b

W=

=2vb (b% - (Va)%)2 + 4vb ((Vab)

1 1 2 1
+rob (ba - (yb3a)§) + K (hE,2)"52 2% (va)?, (2.5)
where 19 = min{1 — 8v,8v}, 11 = min{2rq,1 — 2ro}, and h = ¥%. Therefore, theorem (i) is proved.
(i) If 1/4 <wv < 1/2, then
via® 4+ (1 — v)?b* — v*(a — b)? =b[(1 — 2v)b + 2v(va)]
2 N
>b [21/ (\/B - \/l/a) +(1—4) ((Vab)§ - b§>
+ 70 ((Vab)% — (vb3a)s ) +K (h%,Q)n b12”(1/a)2”}
1 1 2 1 1 2
—ovb (lﬁ - (ua)a) +(1—4v)b ((uab)§ - bf)
(2.6)

1 1 2 1
+ rob ((uab)z - (Vb3a)§> +K(hE,2) 02 (va)?,

where 79 = min{2 — 8v,8v — 1}, ry = min{2ry,1 — 27}, and h = 5*. Therefore, theorem (ii) is proved.



68

Shafiei, Feizi
(iii) For 1/2 < v < 3/4. In this case, due to inequality (2.3) from [[7], Theorem 2.1], we have

Va2 + (1 =)0 — (1 —v)%(a —b)? =a[(2v — 1)a+2(1 —v)((1 — v)b)]
>al(2 — 2v) (a%—((l—y)b)%) (4v — 2) ( (1-v) ab%—a%)
+ 70 (((1 —v)ab)® — ((1 —v)ba®)3 ) K(h%,2)"a® (1 - v)b)2=")]
1 1 2 1 1 2
—a(2 - 2v) ((ﬁ ((1— y)b)?) + (4v —2)a (((1 ~ V)ab)t — )
+ roa (((1 —v)ab)i — ((1— u)ba3)%)2 + K(h5,2)a®2((1 — v)b)20—)

(2.7)

NG

where ro = min{7 — 8v,8v — 6}, r; = min{2r¢,1 — 2r¢}, and h = iy Therefore, theorem (iii) is proved.
(iv) For 3/4 < v < 1, by inequality (2.4) from [7, Theorem 2.1], we have

V2 + (1) — (1 —v)%(a —b)? =a[(2v — 1)a+2(1 — v)((1 — v)b)]

a [(2 ~ ) (a% . y)b)%)2 44— 4v) (((1 ~v)ab)t — a%)2

+70 ((a)% —((1 = v)ba? é)2 + K(h3,2)"a® (1 — v)b)2—)
a2 =2) (o} = (1=0))) + (4= av)a (1= v)an)t —at)’
+ roa ((a)% —((1— y)ba?»)é) + K(hé’Q)nazu—1((1 B V)b)g(l_y)7
(2.8)

where g = min{8 — 8,8V — 7} and h = ﬁ. Thus, the proof of the theorem is complete
O

3 Refinements of the Matrix Version of Young’s Inequality

In this section, we will employ the inequalities obtained from (2.1)-(2.4) to introduce a series of matrix inequalities.
These inequalities will be presented in terms of the Hilbert-Schmidt norm (also known as the Frobenius norm) and
the trace norm.

Theorem 3.1. Let A, B, X € M, such that A and B are semidefinite positive matrices and 0 < v < 1
(i) If 0 < v < 1/4 then
2
)

2
ASXB%
2

1 2 1
[VAX + (1 — V)X B|? >1*|AX — XB|2 + 2v {V HAaXB% _+IXBIE —2v HAzXB%

2 2
+2u(1_y)HA%XB% +4u[ﬁHAiXB%
2 2

+ || XB|2 - 2vi

Atx s

+ 7o [|XB|§+1/}1 — s
2

L 15 2 r1,,2UV v 1-v||2
AXBI|| |+ Ky A" X B, (3.1)

L)k 2), 1<, <nj.
J

)

where 79 = min{1 — 8v,8v}, r; = min{2ry,1 — 2ry} and K = min {K ((
(ii) If 1/4 < v < 1/2 then

1 1 2 1
[VAX + (1 — V)X B2 >2|AX — XB|2 +2v [V HAEXB? _+IXBIE -2V HAzXB%

1 1 2 1 3 2 2 1 1 7 2
+2y(17u)HA2XBz +(174u)[ﬁHA4XB4 +IXB|2 - 20t |4t x BE
2
2
+70 [1/% AixBY| ot aixBE }+2u8K” v A x|, (3:2)
2
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where g = min{2 — 8v,8v — 1}, r; = min{2r¢,1 — 2ry} and K = min{K ((%)%,2) ,1<4,5 < n}
(iii) If 1/2 < v < 3/4 then
[VAX + (1= ) XBI3 >(1 - v AX - XB]3

(2 20) [(1 ) HA%XB% z FAX|E - 2vI—v HA%XBi

)

—|—(1—1/)%

2 2
+20(1 - v) HA%XB% +(4y—3)[\/1—uHA%XB%
2 2

2
Ai1XB1 AS X B%
2

+|AX|2 = 2(1 — v)3 ||AS X B3

2 1
2+7“0 l:(l—l/)2

)

5 2
—2(1-v)t ||[As X BT R (=) A X B : (3.3)
where ro = min{7 — 8v,8v — 6}, r; = min{2r¢,1 — 2r¢} and K = min{K (((1:\71/)%)%’2) , 1<4,5< n}
(iv) If 3/4 < v < 1 then
lvAX + (1 —v)XBIl; >(1 - v)*|AX — X B3
2 2
(2 2w) [(1 — ) HA%XB% FAX)2 - 2vI—v HA%XB% ]
2 2
1 1 2
+2v(1 —v) HA§XB§
2
z 1 2 2 1 15 1 2
Y7o |1—v) HASXBs FAX2 +2(1 - v)F HAwXBm
2 2
+ K" (1 - )2 || a4 X B (3.4)

where g = min{8 — 8v,8v — 7}, 1 = min{2rg,1 — 2ry} and K = min{K ((ﬁ)l 2) 1<i4,57< n}

Proof . Since A and B are semi-definite matrices, according to the spectral theorem, there exist unitary matrices U
and V and diagonal matrices Dy = diag(\;) and Do = diag(u;) with A;, u; > 0 such that:

A=UDU* and B=VDyV*.
To perform the calculations, we define Y = U* XV = [y;;]. In this case, we have:
VAX +(1—-v)XB=U|[v\ + (1 —v)u;) y;] V™,
ARXBE=U [0 )| v, ATXBY = U [0 () ]V
If0<v<1/4, by and the unitarily invariant property of ||.||2 (Hilbert-Schmidt norm), we have:

n

T v v —v 2 <
IWAX + (1 =)XBl; > K" 3 ()" (1) ™)+ Y0 i = 1) [yl

i,j=1 i,j=1
20 | 37 (002 wnd) il + 3 ()l —MZ( )T () 3)2%2}
i,7=1 i,7=1 i,j=1
il 32 (003 +WZ( Pt a4 3 (A ) bl
hy=1 ij=1
w3 (0020 )l + | 3 ol +fz( A)* (1) 5)2]
i,j=1 i,j=1 1,j=1

5 2 1 12 2
= V2|AX - XB|? +2v VHA2X32 +[|IX B — 2v
2

’AiXB%

2
)
2 2 2
+ou(1 —v) HA%XB% +4y[ﬁHAiXB% | XB|2 - 2vi |[AF xBF
2 2 2

1 7|2 1 1 15
AR XB3| —2u8 ||AT6 XBT6
2

+70 {HXBH% i z] + K™ | AV X B, (3.5)
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where g = min{l — 8v,8v}, r; = min{2r¢,1 — 21}, and K = min {K (VH—’\’)%,Q) ,1<id,5 < n} Thus, 1' is
proved. The proof of inequalities (3.2))-(3.4) is similar to that of inequality (3.1). O

Remark 3.2. Tt is clear that inequalities (3.1)-(3.4) are refinements of the inequalities (3.3) and (3.4) obtained by
Nasiri and Shakoori in [6].

In the end, we obtain refinements of the trace versions of Young-type inequalities. To do this, we rely on the
Cauchy-Schwarz inequality and the following lemma;:

Lemma 3.3. Let A, B € M, (C), then [I]

> si(AB) < si(A)s;(B).
Jj=1 j=1

For more details, please refer to the book by Bhatia in [IJ.

Theorem 3.4. Let A, B € M,,(C) such that A and B are semi-definite positive and 0 < v < 1. Then, we have the
following inequalities:

tr (124 + (1 - 0)B?) > K™ () [|A"B'[3] + 2 [ AI3 + | BI3 — 2] AB|\]

+2v V| ABll: + I1BI - 2vv (VAT VITBTL )|
2 1 7
S 4131~ 4y Lt /157

ik (3.62)

2

Y [ﬁHAiBZ

Sl

ASBS| —2us ||Ate B1

2
+ro 1515+ v 2

tr (2A? + (1= v)°B?) > K" () [|A"B'|3] + v [IIA]}3 + | BI} — 2| ABJ,]

+ 2 [unABHl + B3 - 2vv (JWJW)}

2 2 1 1 z
, PIBlz =203y [[Az[liy/ [ B2y
2

ot [ I
2 1

tr (A% + (1-0)?B%) > K™ (1 - v)*~ [ 4B~ 3] + (1 = v)? [||A|3 + | B} — 2| AB||]
+2v [V ABll: + |1BIE - 2v¥ (VAT VIET )|

2

114l - 2vT= u¢||A3||1¢|B||1}

j+ JA|12 —2(1 — y)i,/HA% K /HB% J
2 p
20— u)é\/HAlf

br (V247 (1 9)2B%) 2 K7 (1= )2 [|A°B'2] + (1~ v)? [JAJ3 + | BI3 — 2 ABI.]
3 1 2 1
+ (4 0) VI |4t 1l - 2vT = (B hatln )

+(1— 4v) [ﬁHAiBZ

2
+1/i AsBE

2

b |45 ik (3.6)

(2 2w) [(1 ) HA%B%

+ (dv — 3) [HAiBi

1

+ 70 [\/1 —VHA%B% Afph B} ] (3.6¢)
1

1

+(1-v)i

2
2

2 2

2
o [ﬁyHAzBi FIAR+ -t 4R 2 - »)¥|atip
2

] . (3.6d)

2 2

Here, rq is defined as min{1—8v, 8¢}, r; as min{2rp, 1—2rg}, and K is defined as min {K ((Vssjz‘((BA)) )§72> , 1<4,5< n}



New progress on refinements Young type inequalities

71

Proof . We shall prove the first inequality, and leave the second to the reader because the proof is very similar. If

0 < v < 1/4 then using Lemma and the inequality (2.1), we have:

tr (VA% + (1 —v)?B?)

where rg = min{l — 8v,8v}, r1 = min{2r,1 — 2ry}, and K = min {K ((
On the other hand, we have:

completes the proof of (3.6al).

tr (VA% + (1 —v)*B?)

Therefore, we have:

VAL + (1= v)?[|B]3

v2r(A%) + (1 — v)?tr(B?)

Z (V28?(A) +(1- V)QS?(B))

j=1
> K3 [5(A0)s(BY)) 402 | s2(4) + Y s2(B)
j=1 j=1 j=1
B 2
1 3
20 |1 si(A)s;(B)+ > sH(B) —2Vv | Y si(A)s!(B)
j=1 j=1 j=1
v [V 57 (A)s?(B)+ Y s3(B) —2vd | Y s (A)sF (B)
j=1 j=1 j=1
tro | D s3(B)+v1 Y si(A)sH(B)| —2wF Y sF(A)sf (B)
| j=1 j=1 j=1
> K™(v)* [|A"B|5] + v? [[IAIZ + | BI3 — 2l AB1]

+2v [V ABIly + 1BI - 2v (VIAT VBT )|

2 1 7
s+ 131 = 4y 14t /157
2

2] ’

vs;j(A)
s;(B)

v WHA%B%

Sl

ASBS| —2us ||Ate B1

2
+70 [|B||§ +vi ,

v*r(A?) + (1 — v)%tr(B?)
vIAJIZ + (1= v)?|| B3

K™ (v)* [[|A"B|I3] + v* [|Al13 + 1BI3 — 2||ABI|1]

+2v [V 4Bl + 1BI3 - 2vv (VAT VITBT )|
2 1 7
AL ERNC(FIRVEN

J

vy {ﬁHAiBi

ool

2
ARBE|| — 207 AT B
2

o [||B|§ ok

This completes the proof of (3.6a). The proofs of (3.6b)) and (3.6d|) are similar. [J
Obviously, inequalities (3.6al)-(3.6d)) are refinement of the well-known results in [7, Theorem 3.2].
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