Int. J. Nonlinear Anal. Appl. 16 (2025) 8, 121–134 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2024.32727.4871

Weighted composition operators on extended analytic Lipschitz algebras

Rezvan Barzegari, Davood Alimohammadi*

Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran

(Communicated by Madjid Eshaghi Gordji)

Abstract

In this paper, we study weighted composition operators on extended analytic Lipschitz algebras $\operatorname{Lip}_A(X, K, \alpha)$ where X is a compact plane set, K is a closed subset of X with nonempty interior and $0 < \alpha \leq 1$. We first give necessary conditions and sufficient conditions on a function $u \in \mathbb{C}^X$ and self-map φ of X for which $T = uc_{\varphi}$ to be a weighted composition operator on $\operatorname{Lip}_A(X, K, \alpha)$. We next give the necessary conditions for these operators to be compact and provide some sufficient conditions for the compactness of such operators.

Keywords: Extended analytic Lipschitz algebra, Analytic uniform algebra, Banach function algebra, Compact operator, Composition operator, Weighted composition operator 2020 MSC: 47B33, 47B37

1 Introduction and preliminaries

Let X be a nonempty set, \mathbb{C}^X denote the set of all complex-valued functions on X and A be a nonempty subset of \mathbb{C}^X . For each $u \in \mathbb{C}^X$ and every self-map φ of X, $f \to u \cdot (f \circ \varphi)$ defines a map from A to \mathbb{C}^X that denotes by uC_{φ} . A map $T : A \to \mathbb{C}^X$ is called a *weighted composition operator* on A if there exists a function $u \in \mathbb{C}^X$ and a self-map φ of X such that $u \cdot (f \circ \varphi) \in A$ for all $f \in A$ and $T = uC_{\varphi}$ on A. In the case where $u = 1_X$, the constant function with value 1 on X, the weighted composition operator uC_{φ} on A reduces to the composition operator C_{φ} . Clearly, every weighted composition operator on A is linear if A is a linear subspace of \mathbb{C}^X .

Let X be a compact Hausdorff space. We denote by C(X) the set of all complex-valued continuous functions on X. It is known that C(X) is a unital commutative Banach algebra with the uniform norm $|| \cdot ||$ defined by

$$||f||_X = \sup\{|f(x)| : x \in X\} \qquad (f \in C(X))$$

Let (X, d) be a metric space and $\alpha \in (0, 1]$. For each $f \in \mathbb{C}^X$ and every nonempty subset K of X, define

$$p_{(K,d^{\alpha})}(f) = \sup\left\{\frac{|f(x) - f(y)|}{d^{\alpha}(x,y)} : x, y \in X, x \neq y\right\}.$$

^{*}Corresponding author

Email addresses: r.barzegari.970 phd.araku.ac.ir (Rezvan Barzegari), d-alimohammadi@araku.ac.ir (Davood Alimohammadi)

We denote by $\operatorname{Lip}(X, d^{\alpha})$ the set of all bounded functions $f \in \mathbb{C}^X$ for which $p_{(X, d^{\alpha})} < \infty$. Then $\operatorname{Lip}(X, d^{\alpha})$ separates the points of X and $1_X \in \operatorname{Lip}(X, d^{\alpha})$. Furthermore, $\operatorname{Lip}(X, d^{\alpha})$ is a Banach algebra with the Lipschitz sum norm $\|\cdot\|_{\operatorname{Lip}(X, d^{\alpha})}$ defined by

$$||f||_{\operatorname{Lip}(X,d^{\alpha})} = ||f||_X + p_{(K,d^{\alpha})}(f) \qquad (f \in \operatorname{Lip}(X,d^{\alpha})).$$

These algebras are called *Lipschitz algebras* and were introduced by Sherbet in [14, 15]. Jiménez-Vargas and Villegas-Vallecillos characterized the structure of compact composition operators between Lip(X, d)-spaces in [10]. Weighted composition operators on Lip(X, d) studied in [1, 7, 9].

Let (X, d) be a compact metric space and let K be a nonempty closed subset of X. The set of all $f \in C(X)$ for which $f|_K \in \operatorname{Lip}(K, d^{\alpha})$ is denoted by $\operatorname{Lip}(X, K, d^{\alpha})$. It is clear that $\operatorname{Lip}(X, d^{\alpha})$ is a subset of $\operatorname{Lip}(X, K, d^{\alpha})$. In addition, $\operatorname{Lip}(X, K, d^{\alpha}) = \operatorname{Lip}(X, d^{\alpha})$ if K = X and $\operatorname{Lip}(X, d^{\alpha}) = C(X)$ if K is finite. It is known that $\operatorname{Lip}(X, K, d^{\alpha})$ is a Banach function algebra on (X, d) with the extended Lipschitz sum norm $\|\cdot\|_{\operatorname{Lip}(X, K, d^{\alpha})}$ defined by

$$||f||_{\operatorname{Lip}(X,K,d^{\alpha})} = ||f||_{X} + p_{(X,d^{\alpha})}(f) \qquad (f \in \operatorname{Lip}(X,K,d^{\alpha}))$$

These algebras are called *extended Lipschitz algebras* and were first introduced in [11]. Weighted composition operators on extended Lipschitz algebras studied in [6]. Some properties of extended Lipschitz algebras were investigated in [4, 12].

Let X be a compact plane set. For $\alpha \in (0,1]$, we write $\operatorname{Lip}(X,\alpha)$ instead of $\operatorname{Lip}(X,d^{\alpha})$ where d is the Euclidean metric on X. The *analytic Lipschitz algebra* of order α on X is denoted by $\operatorname{Lip}_A(X,\alpha)$ and defined by $\operatorname{Lip}_A(X,\alpha) = \operatorname{Lip}(X,\alpha) \cap A(X)$, where A(X) is the uniform function algebra of all continuous complex-valued functions on X which are analytic on int(X). It is known that $\operatorname{Lip}_A(X,\alpha)$ is a closed subalgebra of $\operatorname{Lip}(X,\alpha)$ and a Banach function algebra on X. Weighted composition operators on $\operatorname{Lip}_A(X,\alpha)$ studied by Amiri, Golbaharan and Mahyar in [5].

Let X be a compact plane set and K be a closed subset of X with nonempty interior. We denote by A(X, K) the set of all $f \in C(X)$ for which f is analytic on int(K). It is known that A(X, K) is a uniform function algebra on X. For $\alpha \in (0, 1]$, the *extended analytic Lipschitz algebra* on X of order α with respect to K is denoted by $\text{Lip}(X, K, \alpha)$ and defined by

$$\operatorname{Lip}_A(X, K, \alpha) = \operatorname{Lip}(X, K, \alpha) \cap A(X, K).$$

In fact, $f \in \text{Lip}_A(X, K, \alpha)$ if $f \in C(X)$, $f|_K \in \text{Lip}(K, \alpha)$ and f is analytic on int(K). It is clear that $\text{Lip}_A(X, K, \alpha) = \text{Lip}_A(X, \alpha)$ if K = X. Note that $\text{Lip}_A(X, K, \alpha)$ is a Banach function algebra on X with the extended Lipschitz sum norm $\|\cdot\|_{\text{Lip}(X,K,\alpha)}$. Compact unital homomorphisms between extended analytic Lipschitz algebras studied in [2]. Power compact and quasicompact unital endomorphisms of extended analytic Lipschitz algebras were investigated in [3].

Let X be a compact plane set, K be a closed subset of X with nonempty interior and B be a subalgebra of A(X, K) which is a Banach function algebra on X with an algebra norm. In section 2, we first give a necessary condition on a function $u \in \mathbb{C}^X$ and a self-map φ of X for which $T = uC_{\varphi} : B \to \mathbb{C}^X$ to be a weighted composition operator on B. In continue, we give some sufficient conditions on a function $u \in \mathbb{C}^X$ and a self-map φ of X for which $T = uC_{\varphi} : B \to \mathbb{C}^X$ to be a weighted composition operator on B. In continue, we give some sufficient conditions on a function $u \in \mathbb{C}^X$ and a self-map φ of X for which $T = uC_{\varphi} : \operatorname{Lip}_A(X, K, \alpha) \to \mathbb{C}^X$ to be a weighted composition operator on $\operatorname{Lip}_A(X, K, \alpha)$ for $\alpha \in (0, 1]$. In section 3, we first give some necessary and sufficient conditions for a weighted composition operators $T = uC_{\varphi}$ on extended analytic Lipschitz algebras $\operatorname{Lip}_A(X, K, \alpha)$ to be compact, where $\alpha \in (0, 1]$. Next, we give some another necessary conditions for a weighted composition operator $T = uC_{\varphi}$ on $\operatorname{Lip}_A(X, K, 1)$ to be compact. Our results extend som results in [5, 2].

2 Weighted composition operators

Let X be a compact plane set, K be a closed subset of X with nonempty interior and B be a subalgebra of A(X, K)which is a natural Banach function algebra on X under an algebra norm $\|\cdot\|$. It is interesting to know under which conditions on complex-valued function u on X and self-map φ of X, the map $T = uC_{\varphi} : B \to \mathbb{C}^X$ is a weighted composition operator on B. We first give a necessary condition on a complex-valued function u on X and a self-map $\varphi : X \to X$ for which $T = uC_{\varphi} : B \to \mathbb{C}^X$ be a weighted composition operator on B.

Theorem 2.1. Let X be a compact plane set, K be a closed subset of X with nonempty interior and B be a subalgebra of A(X, K) which is a Banach function algebra on X under an algebra norm. Let u be a complex-valued function on

 X, φ be a self-map on X and $T = uC_{\varphi} : B \to \mathbb{C}^X$ be a weighted composition operator on B. Then the following assertions hold:

(i) $u = T(1_X)$ and so $u \in B$.

(ii) T is a bounded linear operator.

(iii) If the cordinate function Z_X belongs to B, then $u\varphi = T(Z_X)$, $u\varphi \in B$, φ is continuous on coz(u) and analytic on $int(K) \cap coz(u)$.

(iv) If $B = \operatorname{Lip}_A(X, K, \alpha)$ for $\alpha \in (0, 1]$, then

$$\sup\left\{|u(z)|\frac{|\varphi(z)-\varphi(w)|}{|z-w|^{\alpha}}: z, w \in K, z \neq w\right\} \le M,$$

where $M = ||T||_{op}(\operatorname{diam}(\mathbf{X}))^{1-\alpha}((\operatorname{diam}(\mathbf{X}))^{\alpha} + 1).$

Proof.

(i) Since $1_X \in B$ and $T = uC_{\varphi}$ is a weighted composition operator on B, (i) holds.

(ii) Clearly, T is a linear operator on B. Assume that $\|\cdot\|$ is the given norm on B. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence in B with

$$\lim_{n \to \infty} f_n = 0_X \qquad (\text{in } (B, \|.\|)), \tag{2.1}$$

and $g \in B$ with

$$\lim_{n \to \infty} T(f_n) = g \qquad (\text{in } (B, \|.\|)).$$
(2.2)

We show that $g = 0_X$. Since $||h||_X \leq ||h||$ for all $h \in B$, according to (2.2) we deduce that $T(f_n)$ converges uniformly to g on X. This implies that

$$\lim_{n \to \infty} u(z) f_n(\varphi(z)) = g(z) \tag{2.3}$$

for all $z \in X$. According to (2.1), we deduce of that

$$\lim_{n \to \infty} f_n(\varphi(z)) = 0 \tag{2.4}$$

for all $z \in X$. By (i), $u \in B$. This implies that u is a bounded function on X. Therefore,

$$\lim_{n \to \infty} u(z) f_n(\varphi(z)) = 0 \tag{2.5}$$

for all $z \in X$ since (2.4) holds for all $z \in X$. According to (2.4) and (2.5) hold for all $z \in X$, we deduce that g = 0. Therefore, T is continuous by the closed graph theorem. Hence, (ii) holds.

(iii) Let $Z_X \in B$. It is clear that $u\varphi = T(Z_X)$ and so $u\varphi \in B$. Since $u, u\varphi \in B$, we deduce that $u, u\varphi \in C(X)$. This implies that φ is continuous on coz(u). According to $u, u\varphi \in B$ and $B \subseteq A(X, K)$, we deduce that $u, u\varphi$ are analytic on int(K). Therefore, φ is analytic on coz(u) \cap int(K).

(iv) Let $B = \text{Lip}_A(X, K, \alpha)$ for $\alpha \in (0, 1]$. Then B is a subalgebra of A(X, K) and a Banach function algebra on X under the algebra norm $\|\cdot\|_{\text{Lip}(X, K, \alpha)}$. Moreover, $Z_X \in B$. Take

$$M = ||T||_{op} (\operatorname{diam}(\mathbf{X}))^{1-\alpha} ((\operatorname{diam}(\mathbf{X}))^{\alpha} + 1).$$

For each $w \in X$, we define the function $f_w : X \to \mathbb{C}$ by

$$f_w = Z_X - \varphi(w) \mathbf{1}_X.$$

Clearly, $f_w \in B$, $||f_w||_X \leq \text{diam}(X)$ and $p_{K,\alpha}(f_w) \leq (\text{diam}(K))^{1-\alpha}$. Therefore, for each $z, w \in K$ with $z \neq w$ we get

$$|u(z)| \frac{|\varphi(z) - \varphi(w)|}{|z - w|^{\alpha}} \le ||T||_{op} (\operatorname{diam}(\mathbf{X}))^{1 - \alpha} ((\operatorname{diam}(\mathbf{X}))^{\alpha} + 1) = M$$

Since the above inequality holds for all $z, w \in K$ with $z \neq w$, we deduce that

$$\sup\left\{|u(z)|\frac{|\varphi(z)-\varphi(w)|}{|z-w|^{\alpha}}: z, w \in K, z \neq w\right\} \le M.$$

Hence, (iv) holds and the proof is complete. \Box

Here we give some sufficient conditions on complex-valued functions u on X and self-maps φ of X, that the map $T = uC_{\varphi} : B \to \mathbb{C}^X$ is a weighted composition operator on B.

Theorem 2.2. Let X be a compact plane set, K be a closed subset of X with nonempty interior and B be a subalgebra of A(X, K) which is a natural Banach function algebra on X under an algebra norm. Let $u \in B$ and $\varphi \in B$ with $\varphi(X) \subseteq int(K)$. Then $T = uC_{\varphi} : B \to \mathbb{C}^X$ is a weighted composition operator on B and $u = T(1_X)$. In addition, if $Z_X \in B$ then $uC_{\varphi} = T(Z_X)$ and $u\varphi \in B$.

Proof. By [2, Proposition 2.1], $f \circ \varphi \in B$ for all $f \in B$. This implies that $u \cdot (f \circ \varphi) \in B$ since $u \in B$. This implies that $T = uC_{\varphi}$ is a weighted composition operator on B. Therefore, the proof completes by parts (i) and (iii) of Theorem 2.1. \Box

We now give another sufficient condition on functions $u: X \to \mathbb{C}$ and self maps φ of X that the map $T = uC_{\varphi}$: $B \to \mathbb{C}^X$ is a weighted composition operator on B, where $B = \text{Lip}_A(X, K, \alpha)$ for $\alpha \in (0, 1]$.

Theorem 2.3. Let X be a compact plane set, K be a closed subset of X with nonempty interior and $B = \text{Lip}_A(X, K, \alpha)$ for $\alpha \in (0, 1]$. Let $u \in B$ and $\varphi \in \text{Lip}_A(X, K, 1)$ with $\varphi(X) \subseteq X$ and $\varphi(\text{int}(K)) \subseteq \text{int}(K)$. Then $T = uC_{\varphi} : B \to \mathbb{C}^X$ is a weighted composition operator on B.

Proof. Let $f \in B$. Then $f \in C(X)$ and f is analytic on int(K). Since $\varphi \in Lip_A(X, K, 1)$, we have $\varphi \in C(X)$ and φ is analytic on int(K). According to $\varphi(X) \subseteq X$ and $\varphi(int(K)) \subseteq int(K)$, we deduce that $f \circ \varphi$ is continuous on X and analytic on int(K). Thus $\varphi \in A(X, K)$.

Now, we show that $(f \circ \varphi)|_K \in \operatorname{Lip}(K, \alpha)$. Since $\varphi \in \operatorname{Lip}_A(X, K, 1)$, we deduce that $\varphi|_K \in \operatorname{Lip}(K, 1)$. If $z, w \in K$ with $\varphi(z) \neq \varphi(w)$, then

$$\frac{|(f \circ \varphi)(z) - (f \circ \varphi)(w)|}{|z - w|^{\alpha}} = \frac{|(f \circ \varphi)(z) - (f \circ \varphi)(w)|}{|\varphi(z) - \varphi(w)|^{\alpha}} \frac{|\varphi(z) - \varphi(w)|^{\alpha}}{|z - w|^{\alpha}}$$
$$\leq p_{K,\alpha}(f)(p_{K,\alpha}(\varphi))^{\alpha}.$$

If $z, w \in K$ with $z \neq w$ and $\varphi(z) = \varphi(w)$, then

$$\frac{|(f \circ \varphi)(z) - (f \circ \varphi)(w)|}{|\varphi(z) - \varphi(w)|^{\alpha}} = 0 \le p_{K,\alpha}(f)(p_{K,\alpha}(\varphi))^{\alpha}.$$

Therefore,

$$\frac{|(f \circ \varphi)(z) - (f \circ \varphi)(w)|}{|z - w|^{\alpha}} \le p_{K,\alpha}(f)(p_{K,\alpha}(\varphi))^{\alpha}.$$

for all $z, w \in K$ with $z \neq w$. This implies that $(f \circ \varphi)|_K \in \operatorname{Lip}(K, \alpha)$. Hence, $(f \circ \varphi) \in B$ and so $u \cdot (f \circ \varphi) \in B$ since $u \in B$. Therefore, $T = uC_{\varphi}$ is a weighted composition operator on B. \Box

Theorem 2.4. Let X be a compact plane set, K be a closed subset of X with nonempty interior and $B = \text{Lip}_A(X, K, \alpha)$ for $\alpha \in (0, 1]$. Suppose that $u \in B$, $\varphi \in A(X, K)$ with $\varphi(X) \subseteq X$, $\varphi(\text{int}(K)) \subseteq \text{int}(K)$ and

$$\sup\left\{|u(z)|\frac{|\varphi(z)-\varphi(w)|^{\alpha}}{|z-w|^{\alpha}}: z, w \in K, z \neq w\right\} < \infty.$$

Then $T = uC_{\varphi} : B \to \mathbb{C}^X$ is a weighted composition operator on B. In particular, if H is a nonempty compact subset of $K \cap \operatorname{coz}(u)$ then $\varphi|_H \in \operatorname{Lip}(H, \alpha)$.

Proof. Take

$$C = \sup \{ |u(z)| \frac{|\varphi(z) - \varphi(w)|^{\alpha}}{|z - w|^{\alpha}} : z, w \in K, z \neq w \}.$$

Then $C < \infty$. Let $f \in B$. Then $f \in C(X)$, $f|_K \in A(K)$ and $f|_K \in \text{Lip}(K, \alpha)$. Since $\varphi \in A(X, K)$, we have $\varphi \in C(X)$ and $\varphi|_K \in A(K)$. According to $f, \varphi \in C(X)$ and $\varphi(X) \subseteq X$, we deduce that $f \circ \varphi \in C(X)$. Therefore,

 $u \cdot (f \circ \varphi) \in C(X)$ since $u \in B \subseteq C(X)$. Since $\varphi|_K \in A(K)$, $\varphi(int(K)) \subseteq int(K)$ and $f|_K \in A(K)$, we deduce that $(f \circ \varphi)|_K \in A(K)$. Note that $u|_K \in A(K)$ since $u \in B$. Therefore, $T(f)|_K \in A(K)$.

We now show that $T(f)|_K \in \operatorname{Lip}(K, \alpha)$. If $z, w \in K$ with $\varphi(z) \neq \varphi(w)$, we have

$$\frac{|T(f)(z) - T(f)(w)|}{|z - w|^{\alpha}} = \frac{|u(z)f(\varphi(z)) - u(w)f(\varphi(w))|}{|z - w|^{\alpha}}$$

$$\leq \frac{|u(z)||\varphi(z) - \varphi(w)|^{\alpha}}{|z - w|^{\alpha}} \frac{|f(\varphi(z)) - f(\varphi(w))|}{|\varphi(z) - \varphi(w)|^{\alpha}} + \frac{|u(z) - u(w)|}{|z - w|^{\alpha}} |f(\varphi(z))|$$

$$\leq Cp_{K,\alpha}(f) + p_{K,\alpha}(u) ||f||_X.$$

If $z, w \in K$ with $z \neq w$ and $\varphi(z) = \varphi(w)$, then

$$\frac{|T(f)(z) - T(f)(w)|}{|z - w|^{\alpha}} = \frac{|u(z)f(\varphi(z)) - u(w)f(\varphi(w))|}{|z - w|^{\alpha}}$$
$$= \frac{|u(z) - u(w)|}{|z - w|^{\alpha}}|f(\varphi(z))|$$
$$\leq p_{K,\alpha}(u)||f||_{X}$$
$$\leq Cp_{K,\alpha}(f) + p_{K,\alpha}(u)||f||_{X}.$$

Therefore,

$$\frac{|T(f)(z) - T(f)(w)|}{|z - w|^{\alpha}} \le Cp_{K,\alpha}(f) + p_{K,\alpha}(u)||f||_X$$

for all $z, w \in K$ with $z \neq w$. This implies that $T(f)|_K \in \operatorname{Lip}(K, \alpha)$. According to $T(f) \in A(X, K)$ and $T(f)|_K \in \operatorname{Lip}(K, \alpha)$, we get $T(f) \in B$. Therefore, $T = uC_{\varphi}$ is a weighted composition operator on B.

By part (iv) of Theorem 2.1, we have

$$\sup\left\{|u(z)|\frac{|\varphi(z)-\varphi(w)|^{\alpha}}{|z-w|^{\alpha}}: z, w \in K, z \neq w\right\} \le M,$$

where $M = ||T||_{op}(\operatorname{diam}(X))^{1-\alpha}((\operatorname{diam}(X))^{\alpha}+1)$. Let H be a nonempty compact subset of $K \cap \operatorname{coz}(u)$. The continuity of u on H implies that there exists $z_0 \in H$ such that $|u(z_0)| \leq |u(z)|$ for all $z \in H$. Note that $|u(z_0)| > 0$ since H is a subset of $\operatorname{coz}(u)$. Let $z, w \in H$ with $z \neq w$. According to $H \subseteq K$, we have

$$\frac{|\varphi(z) - \varphi(w)|}{|z - w|^{\alpha}} \le \frac{1}{|u(z_0)|} |u(z)| \frac{|\varphi(z) - \varphi(w)|}{|z - w|^{\alpha}} \le \frac{M}{|u(z_0)|}.$$

Since the above inequality holds for all $z, w \in H$ with $z \neq w$, we deduce that $\varphi|_H \in \text{Lip}(H, \alpha)$. Hence, the proof is complete. \Box

The following example shows that the conditions $\varphi \in \text{Lip}_A(X, K, 1)$ in Theorem 2.3 and $\varphi \in A(X, K)$ in Theorem 2.4 do not necessary in general.

Example 2.5. Let $X = \overline{\mathbb{D}} = \{z \in \mathbb{C} : |z| \leq 1\}$ and $K = \overline{\mathbb{D}_r} = \{z \in \mathbb{C} : |z| \leq r\}$ where $0 < r \leq 1$. Assume that $\alpha \in (0, 1]$. Define the self-map φ of X by

$$\varphi(z) = \begin{cases} \frac{1}{2} & z = 0, \\ z & 0 < |z| \le r, \\ \frac{rz}{|z|} & r < |z| \le 1. \end{cases}$$

Then $\varphi(X) \subseteq X$ and $\varphi(\operatorname{int}(k)) \subseteq \operatorname{int}(k)$. In addition, φ is not continuous on X. Clearly, $u \in \operatorname{Lip}_A(X, K, \alpha)$. Therefore, $\varphi \notin A(X, K)$ and so $\varphi \notin \operatorname{Lip}_A(X, K, 1)$. Define the function $u : X \to \mathbb{C}$ by $u(z) = z, z \in X$. Clearly, $u \in \operatorname{Lip}_A(X, K, \alpha)$. We show that

$$\sup\left\{|u(z)|\frac{|\varphi(z) - \varphi(w)|^{\alpha}}{|z - w|^{\alpha}} : z, w \in K, z \neq w\right\} \le (\frac{3}{2})^{\alpha}.$$
(2.6)

If $z, w \in K \setminus \{0\}$ with $z \neq w$, then

$$|u(z)|\frac{|\varphi(z) - \varphi(w)|^{\alpha}}{|z - w|^{\alpha}} = |z|\frac{|z - w|^{\alpha}}{|z - w|^{\alpha}} = |z| \le r \le 1 \le (\frac{3}{2})^{\alpha}.$$

If z = 0 and $w \in K \setminus \{0\}$, then

$$|u(z)| \frac{|\varphi(z) - \varphi(w)|}{|z - w|^{\alpha}} = 0 \le (\frac{3}{2})^{\alpha}$$

If $z \in K \setminus \{0\}$ and w = 0, then

$$|u(z)|\frac{|\varphi(z)-\varphi(w)|^{\alpha}}{|z-w|^{\alpha}} = |z|\frac{|z-\frac{1}{2}|^{\alpha}}{|z-0|^{\alpha}} \le |z|^{1-\alpha}(|z|+\frac{1}{2})^{\alpha} \le (\frac{3}{2})^{\alpha}.$$

Hence, (2.6) holds. Now, we show that $T = uC_{\varphi} : \operatorname{Lip}(X, K, \alpha) \to \mathbb{C}^X$ is a weighted composition operator on $\operatorname{Lip}_A(X, K, \alpha)$. Let $f \in \operatorname{Lip}_A(X, K, \alpha)$. It is easy to see that

$$T(f)(z) = \begin{cases} zf(z) & z \in \mathbb{C}, |z| \le 1, \\ zf(\frac{rz}{|z|}) & z \in \mathbb{C}, r \le |z| \le 1. \end{cases}$$

This implies that $T(f) \in C(X)$, $T(f)|_K \in \text{Lip}(K, \alpha)$ and T(f) is analytic on $\text{int}(K) = \{z \in \mathbb{C} : |z| < r\}$. Therefore, $T(f) \in \text{Lip}_A(X, K, \alpha)$. It follows that $T = uC_{\varphi}$ is a weighted composition operator on $\text{Lip}(X, K, \alpha)$.

In the following example, we give compact plane sets X, a closed subset K of with nonempty interior, a self-map φ of X and a function $u \in \text{Lip}_A(X, K, \alpha)$ for $\alpha \in (0, 1]$ such that the map $T = uC_{\varphi}$ from $\text{Lip}_A(X, K, \alpha)$ into \mathbb{C}^X is a weighted composition operator on the algebra $\text{Lip}_A(X, K, \alpha)$ but φ is not a Lipschitz mapping of order $\alpha \in (\frac{1}{2}, 1]$ on $\text{coz}(\mathbf{u}) \cap \text{int}(\mathbf{K})$.

Example 2.6. Let $X = \overline{\mathbb{D}}$, $K = \overline{\mathbb{D}_{\delta}}$ where $0 < \delta \leq 1$ and $\alpha \in (0,1]$. Note that for each $z \in \overline{\mathbb{D}_{\delta}} \setminus \{-\delta\}$ we have $|\frac{\delta+z}{2}| \leq 1$ and $0 \leq \operatorname{Re}(\frac{\delta+z}{2}) \leq 1$ which implies that $\operatorname{Arg}(\frac{\delta+z}{2}) \in [-\frac{\pi}{2}, \frac{\pi}{2}]$. Define the map $\psi : \overline{\mathbb{D}_{\delta}} \to \mathbb{C}$ as follows. Let $\psi(z)$ be the principle value of $(\frac{\delta+z}{2})^{\frac{1}{2}}$ for $z \in \overline{\mathbb{D}_{\delta}} \setminus \{-\delta\}$ and let $\psi(-\delta) = 0$. Then ψ is continuous on $K = \overline{\mathbb{D}_{\delta}}$ and analytic on $\operatorname{int}(K) = \mathbb{D}_{\delta} = \{z \in \mathbb{C} : |z| < \delta\}$. By Tietze's extension theorem [13, Theorem 20.4], there exists a complex-valued continuous function φ on $X = \overline{\mathbb{D}}$ with $\varphi|_{\overline{\mathbb{D}_{\delta}}} = \psi$ on $\overline{\mathbb{D}_{\delta}} = K$ and $\|\varphi\|_{\overline{\mathbb{D}}} = \|\psi\|_{\overline{\mathbb{D}_{\delta}}}$. Therefore, φ is a self-map of $X = \overline{\mathbb{D}}$ which is continuous on $X = \overline{\mathbb{D}}$ and analytic on $\operatorname{int}(K) = \mathbb{D}_{\delta}$. Define the function $u : X \to \mathbb{C}$ by $u(z) = \delta + z, z \in X$. Clearly, $u \in \operatorname{Lip}_A(X, K, \alpha)$. We now show that

$$\sup\{|u(z)|\frac{|\varphi(z) - \varphi(w)|}{|z - w|^{\alpha}} : z, w \in K, z \neq w\} \le 2^{1 - \alpha},\tag{2.7}$$

for all $z, w \in K$ with $z \neq w$. To this aim, pick $z, w \in K$ with $z \neq w$. Let us distinguish following cases.

Case1. $z, w \in K \setminus \{-\delta\}$ and $z \neq w$. Assume that $r = |\frac{\delta+z}{2}|$ and $\rho = |\frac{\delta+w}{2}|$. Then $0 < r \le 1$, $0 < \rho \le 1$ and there exists $\theta, \eta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ such that

$$\frac{\delta+z}{2} = r e^{i\theta}, \qquad \frac{\delta+w}{2} = \rho e^{i\eta}.$$

Therefore,

$$\begin{split} |(\frac{\delta+z}{2})^{\frac{1}{2}} + (\frac{\delta+w}{2})^{\frac{1}{2}}|^2 &= |\sqrt{r}e^{i\theta} + \sqrt{\rho}e^{i\eta}|^2 \\ &= (\sqrt{r}\cos\frac{\theta}{2} + \sqrt{\rho}\cos\frac{\eta}{2})^2 + (\sqrt{r}\sin\frac{\theta}{2} + \sqrt{\rho}\sin\frac{\eta}{2})^2 \\ &= r + \rho + 2\sqrt{r\rho}\cos(\frac{\theta-\eta}{2}) \\ &\ge r. \end{split}$$

This implies that

$$\begin{split} |u(z)| \frac{|\varphi(z) - \varphi(w)|^{\alpha}}{|z - w|^{\alpha}} &= |\delta + z| \frac{\left| \left(\frac{\delta + z}{2}\right)^{\frac{1}{2}} - \left(\frac{\delta + w}{2}\right)^{\frac{1}{2}}\right|^{\alpha}}{|z - w|^{\alpha}} \\ &= |\delta + z| \frac{\left| \left(\frac{\delta + z}{2}\right)^{\frac{1}{2}} - \left(\frac{\delta + w}{2}\right)^{\frac{1}{2}}\right|^{\alpha}}{|(\delta + z) - (\delta + w)|^{\alpha}} \\ &= 2^{-\alpha} \frac{|\delta + z|}{|\left(\frac{\delta + z}{2}\right)^{\frac{1}{2}} + \left(\frac{\delta + w}{2}\right)^{\frac{1}{2}}|^{\alpha}} \\ &\leq \frac{2^{-\alpha} |\delta + z|}{r^{\frac{\alpha}{2}}} \\ &= \frac{2^{-\alpha} \cdot 2r}{r^{\frac{\alpha}{2}}} \\ &= 2^{1-\alpha} r^{\frac{2-\alpha}{2}} \\ &\leq 2^{1-\alpha}. \end{split}$$

Case 2. $z = -\delta$ and $w \in K \setminus \{-\delta\}$. Then

$$|u(z)|\frac{|\varphi(z) - \varphi(w)|^{\alpha}}{|z - w|^{\alpha}} = 0 \le 2^{1 - \alpha}.$$

Case 3. $z \in K \setminus \{-\delta\}$ and $w = -\delta$. Then

$$\begin{aligned} |u(z)| \frac{|\varphi(z) - \varphi(w)|^{\alpha}}{|z - w|^{\alpha}} &= |\delta + z| \frac{|(\frac{\delta + z}{2})^{\frac{1}{2}} - (\frac{-\delta + \delta}{2})^{\frac{1}{2}}|^{\alpha}}{|\delta + z|^{\alpha}} \\ &= \frac{|\delta + z|^{1 + \frac{\alpha}{2}}}{2^{\frac{\alpha}{2}}|\delta + z|^{\alpha}} \\ &= 2^{1 - \alpha} |\frac{\delta + z}{2}|^{1 - \frac{\alpha}{2}} \\ &\leq 2^{1 - \alpha}. \end{aligned}$$

Summarising, we have proved (2.7) holds for all $z, w \in K$ with $z \neq w$ and so

$$\sup\left\{|u(z)|\frac{|\varphi(z)-\varphi(w)|}{|z-w|^{\alpha}}: z, w \in K, z \neq w\right\} \le 2^{1-\alpha} < \infty.$$

Therefore, $T = uC_{\varphi} : \operatorname{Lip}_A(X, K, \alpha) \to \mathbb{C}^X$ is a weighted composition operator on $\operatorname{Lip}_A(X, K, \alpha)$ by Theorem 2.4. We now show that φ is not a Lipschitz mapping of order $\alpha \in (\frac{1}{2}, 1]$ on $\operatorname{coz}(\mathbf{u}) \cap \operatorname{int}(\mathbf{K})$. Note that

$$\operatorname{coz}(\mathbf{u}) \cap \operatorname{int}(\mathbf{K}) = \{-\delta\} \cap \{z \in \mathbb{C} : |z| < \delta\} = \{z \in \mathbb{C} : |z| < \delta\}.$$

Take $\alpha \in (\frac{1}{2}, 1]$. Then $-\delta + \frac{8}{n^2}, -\delta + \frac{2}{n^2} \in \cos(\mathbf{u}) \cap \operatorname{int}(\mathbf{K})$ and

$$\frac{|\varphi(-\delta+\frac{8}{n^2})-\varphi(-\delta+\frac{2}{n^2})|}{|(-\delta+\frac{8}{n^2})-(-\delta+\frac{2}{n^2})|^{\alpha}} = \frac{|(\frac{8}{2n^2})^{\frac{1}{2}}-(\frac{2}{2n^2})^{\frac{1}{2}}|}{|\frac{6}{n^2}|^{\alpha}} = \frac{n^{2\alpha-1}}{6^{\alpha}}$$

for all $n \in \mathbb{N}$. Therefore, φ is not a Lipschitz mapping of order α on $\operatorname{coz}(u) \cap \operatorname{int}(K)$.

3 Compact weighted composition operators

We first give a necessary condition for which a weighted composition operator on extended analytic Lipschitz algebras to be compact.

Theorem 3.1. Let X be a compact plane set, K be a closed subset of X with nonempty interior, u be a complexvalued function on X, φ be a self-map of X, $\alpha \in (0, 1]$ and $T = uC_{\varphi}$: $\operatorname{Lip}_A(X, K, \alpha) \to \mathbb{C}^X$ be a weighted composition operator on $\operatorname{Lip}_A(X, K, \alpha)$. If T is compact, then $\{T(f_n)\}_{n=1}^{\infty}$ converges to 0_X in $(\operatorname{Lip}_A(X, K, \alpha), \|\cdot\|_{\operatorname{Lip}(X, K, \alpha)})$ for each bounded sequence $\{f_n\}_{n=1}^{\infty}$ in $\operatorname{Lip}_A(X, K, \alpha)$ which converges uniformly to 0_X on X. **Proof**. Let $T = uC_{\varphi}$ be compact. Assume that $\{f_n\}_{n=1}^{\infty}$ is a bounded sequence in $(\text{Lip}_A(X, K, \alpha), \|\cdot\|_{\text{Lip}(X, K, \alpha)})$ which converges uniformly to 0_X on X. We show that

$$\lim_{n \to \infty} T(f_n) = 0_X \qquad (\text{in } (\text{Lip}_A(X, K, \alpha), \|\cdot\|_{\text{Lip}(X, K, \alpha)})).$$
(3.1)

Suppose that (3.1) does not hold. Then there exists $\varepsilon > 0$ and a strictly increasing function $q : \mathbb{N} \to \mathbb{N}$ such that

$$\|T(f_{q(j)})\|_{\operatorname{Lip}(X,K,\alpha)} \ge \varepsilon \tag{3.2}$$

for all $j \in \mathbb{N}$. Define the sequence $\{g_j\}_{j=1}^{\infty}$ in $\operatorname{Lip}_A(X, K, \alpha)$ by

$$g_j = f_{q(j)} \qquad (j \in \mathbb{N}).$$

Since $\{f_n\}_{n=1}^{\infty}$ converges uniformly to 0_X on X, we deduce that $\{g_j\}_{j=1}^{\infty}$ converges uniformly to 0_X on X. This implies that $\{g_j \circ \varphi\}_{j=1}^{\infty}$ converges uniformly to 0_X on X because φ is a self-map of X. Since $T = uC_{\varphi}$ is a weighted composition operator on $\operatorname{Lip}_A(X, K, \alpha)$, by part (i) of Theorem 2.1 we deduce that $u = T(1_X) \in \operatorname{Lip}_A(X, K, \alpha)$ and so u is a bounded complex-valued function on X. Therefore, $\{u \cdot (g_j \circ \varphi)\}_{j=1}^{\infty}$ converges uniformly to 0_X on X. Thus

$$\lim_{j \to \infty} \|T(g_j) - 0_X\|_X = 0.$$
(3.3)

According to the boundedness of $\{f_n\}_{n=1}^{\infty}$ in $\operatorname{Lip}_A(X, K, \alpha)$ with the norm $\|\cdot\|_{\operatorname{Lip}(X, K, \alpha)}$, we deduce that $\{g_j\}_{j=1}^{\infty}$ is a bounded sequence in $\operatorname{Lip}_A(X, K, \alpha)$ with the norm $\|\cdot\|_{\operatorname{Lip}(X, K, \alpha)}$. The compactness of $T : \operatorname{Lip}_A(X, K, \alpha) \to \operatorname{Lip}_A(X, K, \alpha)$ implies that there exists a strictly increasing function $r : \mathbb{N} \to \mathbb{N}$ and a function $g \in \operatorname{Lip}_A(X, K, \alpha)$ such that

$$\lim_{j \to \infty} \|T(g_{r(j)}) - g\|_{\text{Lip}(X, K, \alpha)} = 0.$$
(3.4)

According to $||h||_X \leq ||h||_{\operatorname{Lip}(X,K,\alpha)}$ for all $h \in \operatorname{Lip}_A(X,K,\alpha)$, by (3.4) we deduce that

$$\lim_{j \to \infty} \|T(g_{r(j)}) - g\|_X = 0.$$
(3.5)

Since $\{g_{r(j)}\}_{j=1}^{\infty}$ is a subsequence of $\{g_j\}_{j=1}^{\infty}$, by (3.3) we have

$$\lim_{j \to \infty} \|T(g_{r(j)}) - 0_X\|_X = 0.$$
(3.6)

According to (3.5) and (3.6), we get $g = 0_X$. Therefore, by (3.4) we have

$$\lim_{j \to \infty} \|T(g_{r(j)}) - 0_X\|_{\operatorname{Lip}(X,K,\alpha)} = 0$$

which implies that there exists $N \in \mathbb{N}$ such that

$$\|T(g_{r(N)})\|_{\operatorname{Lip}(X,K,\alpha)} < \varepsilon.$$
(3.7)

Since $r(N) \in \mathbb{N}$, $g_{r(N)} = f_{q(r(N))}$ and the inequality (3.2) holds for all $j \in \mathbb{N}$, we deduce that

$$||T(g_{r(N)})||_{\operatorname{Lip}(X,K,\alpha)} = ||T(f_{q(r(N))})||_{\operatorname{Lip}(X,K,\alpha)} \ge \varepsilon$$

which contradicts to (3.7). Therefore, (3.1) holds and so the proof is complete. \Box

Note that Theorem 3.1 is a generalization of the necessity part of [5, Corollary 2.1]. We now give a sufficient condition for which a weighted composition operator on extended analytic Lipschitz algebras to be compact.

Theorem 3.2. Let X be a compact plane set, K be a closed subset of X with nonempty interior, u be a complexvalued function on X, φ be a self-map of X with $\varphi(X) \subseteq K$ and $T = uC_{\varphi} : \operatorname{Lip}_A(X, K, \alpha) \to \mathbb{C}^X$ be a weighted composition operator on $\operatorname{Lip}_A(X, K, \alpha)$. Then T is compact if $\varphi(\operatorname{coz}(u)) \subseteq \operatorname{int}(K)$ and

$$\lim_{\substack{z,w\in K\\z\neq w\\|u(z)|\to 0}} |u(z)| \frac{|\varphi(z) - \varphi(w)|^{\alpha}}{|z-w|^{\alpha}} = 0.$$
(3.8)

Proof. Let $\varphi(\operatorname{coz}(u)) \subseteq \operatorname{int}(K)$ and (3.8) to be hold. To prove the compactness of $T = uC_{\varphi}$, let $\{f_n\}_{n=1}^{\infty}$ be a sequence in $\operatorname{Lip}_A(X, K, \alpha)$ with $\|f_n\|_{\operatorname{Lip}(X, K, \alpha)} \leq 1$. Then $\|f_n\|_X \leq 1$ and $p_{K,\alpha}(f_n) \leq 1$ for all $n \in \mathbb{N}$. According to $K \subseteq X$ and $\|f_n\|_X \leq 1$, we deduce that $\{f_n\}_{n=1}^{\infty}$ is uniformly bounded sequence on K. We claim that $\{f_n\}_{n=1}^{\infty}$ is equicontinuous on metric space (K, d). Let $\varepsilon > 0$ be given. Take $\delta = \varepsilon^{\frac{1}{\alpha}}$. Then $\delta > 0$ and $\delta^{\alpha} = \varepsilon$. Assume that $z, w \in K$ with $|z - w| < \delta$. According to $p_{K,\alpha}(f_n) \leq 1$ for all $n \in \mathbb{N}$, we have

$$|f_n(z) - f_n(w)| \le p_{K,\alpha}(f_n)|z - w|^{\alpha} \le |z - w|^{\alpha} \le \delta^{\alpha} = \epsilon$$

for all $n \in \mathbb{N}$. Hence, our claim is justified. By Arzela-Ascoli theorem, $\{f_n\}_{n=1}^{\infty}$ has a subsequence $\{f_{n_j}\}_{j=1}^{\infty}$ such that $\{f_{n_j}\}_{j=1}^{\infty}$ converges uniformly on K. According to $\varphi(X) \subseteq K$, we deduce that $\{f_{n_j} \circ \varphi\}_{j=1}^{\infty}$ converges uniformly on X. This implies that $\{f_{n_j} \circ \varphi\}_{j=1}^{\infty}$ is a Cauchy sequence in $(C(X), \|\cdot\|_X)$. According to $T = uC_{\varphi}$ is a weighted composition operator on $\operatorname{Lip}_A(X, K, \alpha)$, by part (i) of Theorem 2.1 we deduce that $u = T(1_X) \in \operatorname{Lip}_A(X, K, \alpha)$ and so u is bounded complex-valued function on X. Therefore, $\{T(f_{n_j})\}_{j=1}^{\infty}$ is a Cauchy sequence in $(C(X), \|\cdot\|_X)$. We claim that $\{T(f_{n_j})\}_{j=1}^{\infty}$ is a Cauchy sequence in $(Lip_A(X, K, \alpha), \|\cdot\|_{\operatorname{Lip}(X, K, \alpha)})$. Let $\varepsilon > 0$ be given. According to $\{T(f_{n_j})\}_{j=1}^{\infty}$ is a Cauchy sequence in $(C(X), \|\cdot\|_X)$, there exists $N_1 \in \mathbb{N}$ such that

$$\|u \cdot (f_{n_j} - f_{n_k}) \circ \varphi)\|_X < \frac{\varepsilon}{2},\tag{3.9}$$

for all $j, k \in \mathbb{N}$ with $j \geq N_1$ and $k \geq N_1$. By the definition of limit (3.8), there exists a $\delta > 0$ such that

$$|u(z)|\frac{|\varphi(z) - \varphi(w)|^{\alpha}}{|z - w|^{\alpha}} < \frac{\varepsilon}{4},$$
(3.10)

wherever $z, w \in K$ with $w \neq z$ and $|u(z)| < \delta$. Let $F_{\delta} = \{z \in K : |u(z)| \ge \delta\}$. By the continuity of u, we deduce that F_{δ} is a compact subset of $\operatorname{coz}(u)$. Since $T = uC_{\varphi}$ is a weighted composition operator on $\operatorname{Lip}_{A}(X, K, \alpha)$, the part (iii) of Theorem 2.1 implies that φ is continuous on $\operatorname{coz}(u)$. Therefore, $\varphi(F_{\delta})$ is a compact plane set. Since $\varphi(\operatorname{coz}(u)) \subseteq \operatorname{int}(K)$ and $\varphi(F_{\delta}) \subseteq \varphi(\operatorname{coz}(u))$, we get $\varphi(F_{\delta}) \subseteq \operatorname{int}(K)$. Take

$$C = \sup \{ |u(z)| \frac{|\varphi(z) - \varphi(w)|^{\alpha}}{|z - w|^{\alpha}} : z, w \in K, z \neq w \}.$$

According to T is a weighted composition operator on $\operatorname{Lip}_A(X, K, \alpha)$, part (iv) of Theorem 2.1 implies that $C < \infty$. Since $\{f_{n_j}\}_{n=1}^{\infty}$ is uniformly convergent on K and f_{n_j} is analytic on int(K) for all $j \in \mathbb{N}$, by Montel's theorem the sequences $\{f_{n_j}\}_{n=1}^{\infty}$ and $\{f'_{n_j}\}_{n=1}^{\infty}$ are uniformly convergent on the compact subsets of int(K). According to the compactness of K and $\varphi(K)$ in the complex plane \mathbb{C} , by using [8, Lemma 1.5] we deduce that there exist a finite union of uniformly regular sets in int(K) containing $\varphi(K)$, namely Y, and a positive constant C_0 such that for every analytic complex-valued function f on int(K) and any $z, w \in \varphi(K)$,

$$|f(z) - f(w)| \le C_0 |z - w| (||f||_Y + ||f'||_Y).$$
(3.11)

Since $\{f_{n_j}\}_{j=1}^{\infty}$ and $\{f'_{n_j}\}_{j=1}^{\infty}$ are uniformly convergent on Y and $\{f_{n_j}\}_{j=1}^{\infty}$ is uniformly convergent on K, there exist $N_2, N_3, N_4 \in \mathbb{N}$ such that

$$\|f_{n_j} - f_{n_k}\|_Y < \frac{\varepsilon}{8CC_0} \tag{3.12}$$

for all $j, k \in \mathbb{N}$ with $j \ge N_2$ and $k \ge N_2$,

$$\|f_{n_j}' - f_{n_k}'\|_Y < \frac{\varepsilon}{8CC_0}$$
(3.13)

for all $j, k \in \mathbb{N}$ with $j \ge N_3$ and $k \ge N_3$,

$$\|f_{n_j} - f_{n_k}\|_K < \frac{\varepsilon}{4p_{K,\alpha}(u) + 1}$$
(3.14)

for all $j, k \in \mathbb{N}$ with $j \ge N_4$ and $k \ge N_4$. Put $N = \max\{N_1, N_2, N_3, N_4\}$. Let $j, k \in \mathbb{N}$ with $j \ge N$ and $k \ge N$. Then (3.11), (3.12), (3.13) and (3.14) hold.

If $z, w \in K$ with $\varphi(z) \neq \varphi(w)$, then

$$\begin{aligned} \frac{|T(f_{n_j} - f_{n_k})(z) - T(f_{n_j} - f_{n_k})(w)|}{|z - w|^{\alpha}} &= \frac{|u(z)(f_{n_j}(\varphi(z)) - f_{n_k}(\varphi(z))) - u(w)(f_{n_j}(\varphi(w)) - f_{n_k}(\varphi(w)))|}{|z - w|^{\alpha}} \\ &\leq \frac{|u(z)||(f_{n_j} - f_{n_k})(\varphi(z)) - (f_{n_j} - f_{n_k})(\varphi(w))|}{|z - w|^{\alpha}} \\ &+ \frac{|u(z) - u(w)|}{|z - w|^{\alpha}}|(f_{n_j} - f_{n_k})(\varphi(w))| \\ &= |u(z)|\frac{|\varphi(z) - \varphi(w)|}{|z - w|^{\alpha}}\frac{|(f_{n_j} - f_{n_k})(\varphi(z)) - (f_{n_j} - f_{n_k})(\varphi(w))|}{|\varphi(z) - \varphi(w)|} \\ &+ \frac{|u(z) - u(w)|}{|z - w|^{\alpha}}|(f_{n_j} - f_{n_k})(\varphi(w))| \\ &\leq CC_0(\|f_{n_j} - f_{n_k}\|_Y + \|f_{n_j}' - f_{n_k}'\|_Y) + p_{K,\alpha}(u)\|f_{n_j} - f_{n_k}\|_K \\ &\leq CC_0(\frac{\varepsilon}{8CC_0} + \frac{\varepsilon}{8CC_0}) + p_{K,\alpha}(u)\frac{\varepsilon}{4p_{K,\alpha}(u) + 1} \\ &\leq \frac{\varepsilon}{8} + \frac{\varepsilon}{8} + \frac{\varepsilon}{4} \\ &= \frac{\varepsilon}{2}. \end{aligned}$$

If $z, w \in K$ with $z \neq w$ and $\varphi(z) = \varphi(w)$, then

$$\frac{|T(f_{n_j} - f_{n_k})(z) - T(f_{n_j} - f_{n_k})(w)|}{|z - w|^{\alpha}} = 0 < \frac{\varepsilon}{2}$$

Therefore,

$$\frac{T(f_{n_j} - f_{n_k})(z) - T(f_{n_j} - f_{n_k})(w)|}{|z - w|^{\alpha}} < \frac{\varepsilon}{2}$$

for all $z, w \in K$ with $z \neq w$. This implies that

$$p_{K,\alpha}(T(f_{n_j} - f_{n_k})) \le \frac{\varepsilon}{2}.$$
(3.15)

According to $j \ge N_1$ and $k \ge N_1$, by (3.9) we have

$$||T(f_{n_j} - f_{n_k})||_X < \frac{\varepsilon}{2}.$$
 (3.16)

By (3.15) and (3.16), we get

$$\|T(f_{n_j} - f_{n_k})\|_{\operatorname{Lip}(X, K, \alpha)} < \varepsilon.$$
(3.17)

According to (3.17) and the linearity of T, we deduce that

$$||T(f_{n_j}) - T(f_{n_k})||_{\operatorname{Lip}(X,K,\alpha)} < \varepsilon_1$$

Therefore, our claim is justified. Since $(\operatorname{Lip}(X, K, \alpha), \|\cdot\|_{\operatorname{Lip}(X, K, \alpha)})$ is a Banach space, we deduce that $\{T(f_{n_j})\}_{j=1}^{\infty}$ converges in $(\operatorname{Lip}(X, K, \alpha)$ with the norm $\|\cdot\|_{\operatorname{Lip}(X, K, \alpha)}$. Hence, T is compact and so the proof is complete. \Box

Note that Theorem 3.2 is a generalization of [5, Theorem 2.2]. We now give some necessary condition on a function $u \in \mathbb{C}^X$ and a self-map φ of X by omiting the condition $\varphi(X) \subseteq K$ that the weighted composition operator $T = uC_{\varphi}$ on $\operatorname{Lip}(X, K, 1)$ to be compact. We will need some preliminaries including angular derivatives.

Definition 3.3. Let $z_0 \in \mathbb{C}$, r > 0 and $\mathbb{D}(z_0, r) = \{z \in \mathbb{C} : |z - z_0| < r\}.$

(a) A sector in $\mathbb{D}(z_0, r)$ at a point $\omega \in \partial \mathbb{D}(z_0, r)$ is the region between two straight lines in $\mathbb{D}(z_0, r)$ that meet at ω and are symmetric about the radius to ω .

(b) If f is a complex-valued function on $\mathbb{D}(z_0, r)$ and $\omega \in \partial \mathbb{D}(z_0, r)$, then $\angle \lim_{z \to \omega} f(z) = L$ means $f(z) \to L$ as $z \to \omega$ through any sector at ω . When this happens, we say that L is *angular* (or *non-tangential*) *limit* of f at ω .

(c) An analytic function $\psi : \mathbb{D}(z_0, r) \to \mathbb{D}_{\rho}$ has an *angular derivation* at a point $\omega \in \mathbb{D}(z_0, r)$ if for some $\eta \in \partial \mathbb{D}_{\rho}$

$$\angle \lim_{z \to \omega} \frac{\eta - \psi(z)}{\omega - z} \tag{3.18}$$

exists (finitely). We call this limit the angular derivation of ψ at ω and denote it by $\angle \psi'(\omega)$.

Proposition 3.4 ([2, Proposition 2.10]). Let $z_0 \in \mathbb{C}$, r > 0, $K = \overline{\mathbb{D}(z_0, r)}$ and X be compact plane set with $K \subseteq X$. Suppose that $\omega \in \partial \mathbb{D}(z_0, r)$ and $\varphi \in \operatorname{Lip}_A(X, K, \alpha)$ is a nonconstant function with $|\varphi(c)| = \|\varphi\|_{\overline{\mathbb{D}(z_0, r)}}$. Then the angular derivative of φ at ω exists and is nonzero.

Definition 3.5. Let X be a plane set with $int(X) \neq \emptyset$ and $\partial X \neq \emptyset$.

(a) We say that X at $\omega \in \partial X$ has an *internal circular tangent* if there exists a disc D in the complex plane \mathbb{C} such that $\omega \in \partial X$ and $\overline{D} \setminus \{\omega\} \subseteq int(X)$.

(b) X is a called strongly accessible from the interior if it has an internal circular tangent at each point of its boundary. Such sets include the closed unit disc $\overline{\mathbb{D}}$ and $\overline{\mathbb{D}}(z_0, r) \setminus \bigcup_{k=1}^n \mathbb{D}(z_k, r_k)$, where closed discs $\mathbb{D}(z_k, r_k)$ are mutually disjoint in $\mathbb{D}(z_0, r)$.

(c) We say that X has a *peak boundary* with respect a family B of complex-valued bounded functions on X if for each $\zeta \in \partial X$ there exists a nonconstant function $h \in B$ such that $||h||_X = h(\zeta) = 1$.

Theorem 3.6. Suppose that X is a nonempty compact plane set such that int(X) is a connected set, X is the closure of int(X) and X has a peak boundary with respect to $\operatorname{Lip}_A(X, 1)$. Let u be a complex-valued function on X and K be a closed subset of X such that $int(K) \cap coz(u)$ is a nonempty connected set in \mathbb{C} , $int(K \cap \overline{coz(u)}) = int(K) \cap coz(u)$ and $K \cap coz(u)$ is strongly accessible from the interior. Let φ be a continuous self-map of X and $T = uC_{\varphi}$: $\operatorname{Lip}_A(X, K, 1) \to \mathbb{C}^X$ be a weighted composition operator on $\operatorname{Lip}_A(X, K, 1)$. If T is compact, then φ is constant on $K \cap coz(u)$ or $\varphi(K \cap coz(u)) \subseteq int(X)$.

Proof. Let $T = uC_{\varphi}$ be compact. Suppose that φ is not constant on $K \cap \operatorname{coz}(u)$. By part (iii) of Theorem 2.1, φ analytic on $\operatorname{int}(K) \cap \operatorname{coz}(u)$. According to the open mapping theorem in complex analysis, we deduce that $\varphi(\operatorname{int}(K) \cap \operatorname{coz}(u))$ is an open set in \mathbb{C} . This implies that

$$\varphi(\operatorname{int}(\mathbf{K}) \cap \operatorname{coz}(\mathbf{u})) \subseteq \operatorname{int}(\mathbf{X}), \tag{3.19}$$

since $\varphi(X) \subseteq X$. We prove that

$$\varphi(K \cap \operatorname{coz}(\mathbf{u})) \subseteq \operatorname{int}(\mathbf{X}). \tag{3.20}$$

Suppose that (3.20) does not hold. Then there exists $\zeta \in K \cap \operatorname{coz}(u)$ such that $\varphi(\zeta) \notin \operatorname{int}(X)$. According to (3.19), we get $\zeta \notin \operatorname{int}(X) \cap \operatorname{coz}(u)$. Since $\operatorname{int}(K \cap \operatorname{coz}(u)) = \operatorname{int}(K) \cap \operatorname{coz}(u)$, we deduce that $\zeta \notin \operatorname{int}(K \cap \operatorname{coz}(u))$. Therefore, $\zeta \in \partial(K \cap \operatorname{coz}(u))$ because $K \cap \operatorname{coz}(u)$ is a closed set in \mathbb{C} .

Since X is the closure of int(X) in \mathbb{C} , $\varphi(X) \subseteq X$ and $\varphi(\zeta) \notin \operatorname{int}(K)$, we deduce that $\varphi(\zeta) \in \partial(X)$. Therefore, there exists a nonconstant function $h \in \operatorname{Lip}_A(X, 1)$ with $\|h\|_X = h(\varphi(\zeta)) = 1$ because X has a peak boundary with respect to $\operatorname{Lip}_A(X, 1)$. Since $K \cap \operatorname{coz}(u)$ is strongly accessible from the interior and $\zeta \in \partial(K \cap \operatorname{coz}(u))$, there exists an open disc $D = \mathbb{D}(z_0, r)$ in \mathbb{C} such that $\zeta \in \partial D$ and $\overline{D} \setminus \{\zeta\}$ is a subset of $\operatorname{int}(K \cap \operatorname{coz}(u))$. Therefore, φ is analytic on D since $D \subseteq \overline{D} \setminus \{\zeta\}$ and $\overline{D} \setminus \{\zeta\} \subseteq \operatorname{int}(k \cap \operatorname{coz}(u)) = \operatorname{int}(K) \cap \operatorname{coz}(u)$. According to $\overline{D} \setminus \{\zeta\} \subseteq K \cap \operatorname{coz}(u)$, $\zeta \in K \cap \operatorname{coz}(u)$ and the compactness of \overline{D} , we deduce that \overline{D} is a compact subset of $K \cap \operatorname{coz}(u)$. Therefore, φ is a Lipschitz mapping of order 1 on \overline{D} . This implies that $h \circ \varphi$ is a Lipschitz mapping on \overline{D} . On the other hand, $h \circ \varphi \in C(X)$ since $\varphi : X \to \mathbb{C}$ is continuous on X, $\varphi(K) \subseteq X$ and $h \in C(X)$. Therefore, $h \circ \varphi \in \operatorname{Lip}_A(X, \overline{D}, 1)$. We claim that $h \circ \varphi$ is constant on D. Otherwise, by Proposition 3.4 we deduce that $\angle(h \circ \varphi)'(\zeta)$ exists and

$$\angle (h \circ \varphi)'(\zeta) \neq 0. \tag{3.21}$$

Let $n \in \mathbb{N}$. Define the function $f_n : X \to \mathbb{C}$ by

$$f_n(z) = \frac{h^n(z)}{n}$$
 $(z \in X).$ (3.22)

Then $f_n \in \operatorname{Lip}_A(X, K, 1)$ and

$$||f_n||_X = ||\frac{1}{n}h^n||_X = \frac{1}{n}(||h||_X)^n = \frac{1}{n}.$$
(3.23)

Moreover, for each $z, w \in K$ with $z \neq w$ we have

$$\frac{f_n(z) - f_n(w)|}{|z - w|} = \frac{|(h(z))^n - (h(w))^n|}{n|z - w|}$$
$$\leq \frac{|h(z) - h(w)|}{n|z - w|} n(||h||_X)^n$$
$$= \frac{|h(z) - h(w)|}{|z - w|}$$
$$= p_{K,1}(h)$$
$$\leq p_{X,1}(h).$$

Therefore,

$$p_{K,1}(f_n) \le p_{X,1}(h).$$
 (3.24)

According to (3.23) and (3.24), we get

$$||f_n||_{\operatorname{Lip}(X,K,1)} \le \frac{1}{n} + p_{X,1}(h) \le 1 + p_{X,1}(h).$$
 (3.25)

This implies that $\{f_n\}_{n=1}^{\infty}$ is a bounded sequence in $\operatorname{Lip}_A(X, K, 1)$ with the norm $\|\cdot\|_{\operatorname{Lip}(X, K, 1)}$. Since (3.23) hold for all $n \in \mathbb{N}$, we deduce that

$$\lim_{n \to \infty} \|f_n\|_X = 0 \tag{3.26}$$

and so $\{f_n\}_{n=1}^{\infty}$ converge uniformly to 0_X on X. Since $T = uC_{\varphi}$ is compact, by Theorem 3.1 we deduce that

$$\lim_{n \to \infty} T(f_n) = 0 \qquad (\text{in } (\text{Lip}_A(X, K, 1), \|\cdot\|_{\text{Lip}(X, K, 1)})).$$

This implies that

$$\lim_{n \to \infty} p_{K,1}(T(f_n)) = 0.$$
(3.27)

Let $n \in \mathbb{N}$. Assume that $z, w \in K$ with $z \neq w$. Then

$$\begin{aligned} |u(z)| \frac{|f_n(\varphi(z)) - f_n)(\varphi(w))|}{|z - w|} &= \frac{|u(z)f_n(\varphi(z)) - u(z)f_n)(\varphi(w))|}{|z - w|} \\ &\leq \frac{|u(z)f_n(\varphi(z)) - u(z)f_n)(\varphi(w))|}{|z - w|} + \frac{|u(z) - u(w)|}{|z - w|}|f_n(\varphi(w))| \\ &\leq p_{K,1}(T(f_n)) + p_{K,1}(u)||f_n||_X. \end{aligned}$$

Let $z \in K$ with $z \neq \zeta$. Since $\zeta \in K$, by the argument above, we have

$$|u(z)|\frac{f_n(\varphi(z)) - f_n(\varphi(\zeta))|}{z - \zeta} \le p_{K,1}(T(f_n)) + p_{K,1}(u) ||f_n||_X.$$

This implies that

$$\sup_{\substack{z \in K \\ z \neq \zeta}} |u(z)| \frac{|f_n(\varphi(z)) - f_n(\varphi(\zeta))|}{|z - \zeta|} \le p_{K,1}(T(f_n)) + p_{K,1}(u) ||f_n||_X.$$
(3.28)

Since (3.28) holds for all $n \in \mathbb{N}$, according to (3.27) and (3.26) we get

$$\lim_{n \to \infty} \sup \left\{ |u(z)| \frac{|f_n(\varphi(z)) - f_n(\varphi(\zeta))|}{|z - \zeta|} : z \in K, z \neq \zeta \right\} = 0.$$
(3.29)

Let $\varepsilon > 0$ be given. According to $\zeta \in \cos(u)$ and (3.29), there exists a natural number N such that

$$\sup\left\{|u(z)|\frac{|f_N(\varphi(z)) - f_N(\varphi(\zeta))|}{|z - \zeta|} : z \in K, z \neq \zeta\right\} < \frac{\varepsilon}{2}|u(\zeta)|$$

By the definition of f_N , we get

$$\sup\left\{|u(z)|\frac{|((h\circ\varphi)(z))^N - ((h\circ\varphi)(\zeta))^N|}{N|z-\zeta|} : z \in K, z \neq \zeta\right\} < \frac{\varepsilon}{2}|u(\zeta)|.$$
(3.30)

Let Γ be a sector in D at $\zeta \in \partial D$. According to (3.30), we have

$$\sup\left\{|u(z)|\frac{|((h\circ\varphi)(z))^N - ((h\circ\varphi)(\zeta))^N|}{N|z-\zeta|} : z\in\Gamma, z\neq\zeta\right\} < \frac{\varepsilon}{2}|u(\zeta)|.$$
(3.31)

Thus

$$\sup\left\{|u(z)|\frac{|((h\circ\varphi)(z))^N - ((h\circ\varphi)(\zeta))^N|}{N|z-\zeta|} : z\in\Gamma, z\neq\zeta\right\} < \frac{\varepsilon}{2}|u(\zeta)|.$$

According to the continuity of u and $h \circ \varphi$ at ζ , $(h \circ \varphi)(\zeta) = 1$ and the existence of $\angle (h \circ \varphi)'(\zeta)$, we deduce that

$$\lim_{\substack{z \to \zeta\\z \in \Gamma}} |u(z)| \frac{|((h \circ \varphi)(z))^N - ((h \circ \varphi)(\zeta))^N|}{N|z - \zeta|} = N|u(\zeta)||\angle (h \circ \varphi)'(\zeta)|.$$
(3.32)

By (3.31) and (3.32), we get

$$|\angle (h \circ \varphi)'(\zeta)| \le \frac{\varepsilon}{2} < \varepsilon.$$
(3.33)

Since (3.33) holds for each $\varepsilon > 0$, we conclude that $|\angle (h \circ \varphi)'(\zeta)| = 0$ which implies that $\angle (h \circ \varphi)'(\zeta) = 0$. This contradicts to (3.21). Hence, our claim is justified. Therefore, h is constant on $\varphi(D)$. Since φ is a nonconstant analytic function on the connected open set D, by the open mapping theorem in complex analysis we deduce that $\varphi(D)$ is a connected open set in \mathbb{C} .

According to $\varphi(D) \subseteq \operatorname{int}(K)$ and $\operatorname{int}(K)$ is a connected open set in \mathbb{C} , we conclude that h is constant on $\operatorname{int}(K)$. Therefore, h is constant on K since h is continuous on K and K is the closure of $\operatorname{int}(K)$. This contradicts to h is nonconstant on K. Therefore, (3.20) holds and so the proof is complete. \Box

Note that Theorem 3.6 is a generalization of [2, Theorem 2.14].

References

- D. Alimohammadi and S. Daneshmand, Weighted composition operators between Lipschitz algebras of complexvalued bounded functions, Caspian J. Math. Sci. 9 (2020), no. 1, 100–123.
- [2] D. Alimohammadi and M. Mayghani, Unital compact homomorphisms between extended analytic Lipschitz algebras, Abstract Appl. Anal. 2011 (2011), Article ID: 146758, 15 pages.
- [3] D. Alimohammadi and M. Mayghani, Unital power compact and quasicompact endomorphisms of extended analytic Lipschitz algebras, Int. J. Math. Anal. 6 (2012), no. 42, 2067–2082.
- [4] D. Alimohammadi and S. Moradi, Sufficient conditions for density in extended Lipschitz algebras, Caspian J. Math. Sci. 3 (2014), no. 1, 141–151.
- [5] S. Amiri, A. Golbaharan, and H. Mahyar, Weighted composition operators on Analytic Lipschitz spaces, Results Math. 73 (2022), no. 1, Article 46.
- [6] R. Bagheri and D. Alimohammadi, Weighted composition operators between extended Lipschitz algebras on compact metric spaces, Sahand Commu. Math. Anal. 17 (2020), no.3, 33–70.
- Sh. Behrouzi, A. Golbaharan, and H. Mahyar, Weighted composition operators between pointed Lipschitz spaces, Results Math. 77 (2022), no.4, Article 157.

- [8] F. Behrouzi and H. Mahyar, Compact endomorphisms of certain analytic Lipschitz algebras, Bull. Belg. Math. Soc. Simon Stevin 12 (2005), 301–312.
- [9] A. Golbaharan and H. Mahyar, Weighted composition operators on Lipschitz spaces, Houst. J. Math. 42 (2016), no. 3, 905–917.
- [10] A. Jiménez-Vargas and M. Villegas-Vallecillos, Compact composition operators on noncompact Lipschitz spaces, J. Math. Anal. Appl. 398 (2013), 221–229.
- [11] T.G. Honary and S. Moradi, On the maximal ideal space of extended analytic Lipschitz algebras, Q. Math. 30 (2007), 349–353.
- [12] M. Mayghani and D. Alimohammadi, The structure of ideals, point derivations, amenability and weak amenability of extended Lipschitz algebras, Int, J. Nonlinear Anal. Appl. 8 (2017), no. 1, 389–404.
- [13] W. Rudin, Real and Complex Analysis, McGraw-Hill, Third Edition, Singapore, 1987.
- [14] D.R. Sherbert, Banach algebras of Lipschitz functions, Pacific. J. Math. 13 (1963), 1387–1399.
- [15] D.R. Sherbert, The structure of ideals and point derivations of Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111 (1964), 240–272.