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1. Introduction

Water pollution as a crucial issue demands appropriate policy and techniques to prevent
contamination of freshwater supplies and improve wastewater treatment. In recent years, the
growth of population and industrial and agricultural expansion have led to an excessive rise in
water consumption. The reports show there is wastewater discharge of about 1500 km? per year
[1, 2]. The presence of synthetic compounds in effluent is really harmful to the environment
and human health, even at trace levels, and it is required to eliminate these pollutants before

wastewater discharge.

Among a variety of kinds of synthetic dye-stuff, azo-dyes have a significant portion in effluents
while they have the least desirable consequences for surrounding ecosystems. These dyes are
mainly resistant to aerobic degradation and they may produce carcinogenic aromatic amines in

anaerobic conditions [3, 4].

Some conventional methods such as air stripping, extraction, ultrafiltration, and carbon
adsorption have been employed for the removal of azo-dyes from wastewater. However, these
techniques are non-destructive and they commonly transfer the pollutants from one phase to the
other without decomposing them [5, 6]. In recent years, advanced oxidation processes (AOPs)
have gained widespread application in degrading industrial wastewater due to their ability to
decompose dyes in aqueous solutions [7-9]. Among AOPs, electrochemical advanced oxidation
processes (EAOPs) are highly applicable for eliminating the dyes and oxidizing them during
the removal processes. These methods possess some advantages such as cost-effectiveness,
environmental friendliness, simplicity of operation, high removal efficiency, and prevention of

secondary wastewater treatment [8,10].

The efficiency of EAOPs greatly depends on the anode material because electrochemical
oxidation (EQO) reactions occur between the electrode surface and solution, especially the
production of °OH; therefore, the selection of the proper anode is a key factor in the remediation
of dye-containing wastewater. In 2022, Mahmoudian et al. fabricated a titanium electrode
coated with a nanocomposite of ZnO-multi-walled carbon nanotubes (ZnO-MWCNTs) by the
electrophoretic deposition (EPD) method and applied it for the remediation of a water solution
containing different dyes including Acid red 33 (AR33), Reactive orange 7 (RO7), Acid yellow
3 (AY3) and Malachite green (MQG) [8]. They investigated the performance of the constructed
Ti/nanoZnO-MWCNTs electrode in the EO processes of these dyes in a mixture, as a target for

wastewater.
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They monitored the EO reactions using a cost-effective and simple spectrophotometric
technique where the analysis of the data was impossible using univariate techniques due to the
signal overlapping of the dyes. To overcome this problem, they proposed a multivariate
calibration technique to find the concentration of each dye at the final time of the decolorization

process.

EAOPs are kinetic processes intrinsically, and the reaction rate constants of decolorization
reactions permit a chemist/chemical engineer to design, operate, control, and optimize the
reactors of the chemical industries. For instance, it could be checked if the process is in or out
of control. A kinetic process can be monitored spectroscopically, and there are special
multivariate resolution methods developed to estimate reaction rate constants and underlying
spectra [11-15]. Although most wastewaters are composed of different contaminants, to the best
of our knowledge, there is no report on the determination of simultaneous EO rate constants of

several dyes with severely overlapped signals, and it is a neglected issue in EAOPs systems.

2. Experimental
2.1. Electrochemical oxidation of the dyes Procedure

The batch electrolytic cell reported in [8] was applied in this study to conduct electrochemical
oxidation of the dyes. A mixture of the dyes was prepared in a 250 ml cylindrical glass reactor,
in which the concentrations of dyes were 25, 25, 10 and 10 mg L! for AR33, RO7, AY3 and
MG, respectively. The anode and cathode electrodes were a Ti/nanoZnO-MWCNT electrode
and a stainless-steel plate (dimensions: 3x3 cm; thickness: 1 mm). The solution was stirred
throughout the experiment to ensure efficient mass transfer. To monitor the decolorization
process, 3 ml of the sample was withdrawn from the cell at a given time and its spectrum was
obtained using a UV—Visible spectrophotometer with a 0.5 nm interval in the wavelength range
of 200—-800 nm. It was observed that the signals at wavelengths greater than 700 nm were not
significant; moreover, there were no significant changes in signals at wavelengths less than 220
nm. Therefore, the data were selected in the wavelength range of 220-700 nm for further
analysis. Indeed, a two-way data set was obtained at 966 wavelengths and 12 electro-oxidation

times from 0 to 80 min where no significant changes were observed in the signals.
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3. Theory

3.1. Classical Least Squares

The intentional objective in chemical systems is commonly the assessment of concentrations of
individual components (C) or the recognition of unknown spectral profiles (S) in mixture
solutions. The CLS model has the capability to calculate each C when S is known or vice versa.
This strategy is based on the following matrix equation:

X=CxST+R (1)
Where X is the prime raw data matrix with the mixed experimental information. In this way,
the columns in C and their corresponding rows in S” consist of pure concentration and spectral
profiles of the components involved in the data X, respectively, and R is the residual matrix.
When the pure spectral components are known, matrix C can be obtained based on the least
squares minimization of ||R||, written as follows [16]:

C=X(s")* 2

Where the sizes of the relevant matrices are X (IxJ), C (IxN), S (JxN), and E (IxJ); and I, J,
and N are the number of degradation times, wavelengths, and spectroscopically active

components, respectively.

3.2. Hard-Modelling Technique

The hard-modelling method is an iterative process and calculates the best set of independent
parameters in a defined model based on a least-squares algorithm. In this method, the goal is
minimizing the sum of squares (SSQ), which is a function of a chemical model and its

parameters [11, 12]:
SSQ=YiZr ;:Zrll(Rlz )=f (C, model, parameters) 3)

The parameters are linear and non-linear, attributed to the elements of each column vector in
matrix C and the kinetic constants involved in matrix C, respectively. It should be mentioned
that the linear parameters can efficiently be eliminated during the iteration process. Indeed, the
hard modelling strategy is a robust analysis technique because it fits a few number of
parameters, i.e., the non-linear ones. In this work, the Isgnonlin Matlab command, based on the
Newton-Gauss Levenberg Marquardt (NG/LM) algorithm, is used to conduct the fitting. During
the optimization, the concentration profiles of species are calculated by first-order kinetic

equations.
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Indeed, many chemical processes are of a first-order nature or can be at least experimentally
observed under pseudo-first-order conditions in which estimating the rate constants is not

dependent on initial concentrations [14, 15].

4. Results and Discussion

The time-spectral data of electrochemical oxidation of a synthetic dyes mixture are depicted in
Figure 1. To achieve the pure spectral profiles of the dyes, a standard solution of each dye (40
ppm) was prepared and its spectrum was recorded using a UV-Vis spectrophotometer at the
same wavelength range as in the electro-oxidation processes’ monitoring. It should be noted
that these obtained spectra are the same as their corresponding pure profiles in shape but

different in intensity.

1.6

220 320 420 520 620

Wavelength (nm)

Fig 1. Time-spectral data of in synthetic mixtures of dyes containing AR33 (25 mgL"), RO7 (25 mgL™), AY3
(10 mgL") and MG (10 mgL)

Given that, in a first-order reaction, the rate constant of the kinetic process can be estimated
when the initial concentration of analyte is unknown, all the recorded spectra of standard
solutions were normalized as illustrated in Fig. 2. Then the CLS model was applied to the data
under these normalized pure spectral profiles (S in Eq. (2)) to obtain the kinetic profiles of the
components; however, the profiles were not reliable, for example, there were not unimodal or
some of their values were negative, as we know, a negative value for the concentration of a

component is vague.
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Fig 2. Normalized pure spectral profiles of the dyes

As seen in Fig. 1, the signals of the components are severely overlapped in the wavelength
range of 220-400 nm and this part of the data possesses low information due to the lack of
selectivity. Thus, we omitted this part from the data and pure spectral profiles, and then the
CLS model was employed on the remaining data under the normalized pure spectral profiles.
The obtained concentration profiles have been illustrated in Fig. 3. To evaluate the ability of

CLS analysis, the standard deviation of residuals of data analysis (scis) was computed based on

the following equation:

I J 2
Zi:l z:j=1 ij

Seis = | TIg—v<))

“4)

Where Rjj is the element of the residual matrix R; and I, J and N are the same as in Equation

(2).
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Fig3. Normalized concentration profiles of the dyes obtained by CLS method ( Paint) and hard modelling

approach (Solid line)

The calculated scis was 0.0173, which confirms the unmodelled part of the data is attributed to

noise. To compute the rate constant of each dye decolorization (k), each kinetic profile was

k
analyzed by the hard modelling approach based on the postulated first-order reaction A — B

as follows:
A, = exp(— kt) (5)

Where the initial substrate is one, A is the concentration of the dye involved in a first-order
reaction at electro-oxidation time t and k is the rate constant of the decolorization. Fig. 3
overlays the obtained normalized concentration profiles by the CLS method and their
corresponding fitted profiles by the hard modelling approach. This figure reveals that the
obtained normalized concentration profiles by the CLS method match well with those of the
hard modelling approach. The estimated k values together with their corresponding standard
deviations have been reported in Table 1. This table compares the rate constants of the
degradation processes of the dyes and shows that MG is the most degradable component in this
system as its rate constant is significantly high. It seems the structure of the dye molecule could

be responsible for the degradation mechanism.
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Table 1. The estimated decolorization rate constants of the dyes by hard modeling method

Dyes k (min™)
AR33 (40.002)

o

AY3 (is.oégiig—‘*)
MG (fd?(?()7354)

5. Conclusion

The main focus of this work is the kinetic study of the electrochemical oxidation degradation
of a synthetic dyes mixture composed of AR33, RO7, AY3 and MG on a Ti/nanoZnO-
MWCNTs electrode at the optimal operational parameters including pH, current, and
electrolyte concentration with values, respectively. These simultaneous kinetic processes were
monitored spectrophotometrically at a wavelength range of 400-700 nm where the signals of
the components are highly overlapped, as it was not possible to obtain the kinetic profiles of
the analytes. Here, the classical least square method was proposed to overcome this problem.
Indeed, the multivariate analysis technique allows one to obtain the pure kinetic profiles of the
degraded dyes, all of which are the same as the real pure profiles in shape but different in
intensity.

To estimate the kinetic rate constant (k) of the degradation processes, the concentration profile
of each component was fitted by the hard modelling approach based on the NG/LM algorithm,
which computes both the k value and its standard deviation. The ks values were 0.0675 s,
0.0262s71,0.0168 s' and 0.0158 s! for MG, AR33, AY3 and RO7, respectively, revealing that
MG is the most degradable dye.
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