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In this study, kinetic electro-oxidations of four dyes were simultaneously 

evaluated on a Ti/ZnO-multi-walled carbon nanotubes anode. The mixture of 

dyes includes acid red 33 (AR33), reactive orange 7 (RO7), acid yellow 3 

(AY3) and malachite green (MG). The kinetic processes were monitored 

spectrophotometrically. Time-spectral data were analyzed in the time range of 

0 to 80 min and wavelength range of 220-700 nm which suffers from signal 

overlapping of components. To obtain the kinetic degradation profiles of the 

components, the whole data set was resolved by the classical least squares 

method as a reliable method for analysis of data in which there are no selective 

responses for the analytes. Then, the kinetic rate constant of each dye 

decolorization together with its uncertainty was estimated by applying a hard 

modelling approach. The obtained rate constants were 0.0675 s⁻¹, 0.0262 s⁻¹, 

0.0168 s⁻¹ and 0.0158 s⁻¹ for MG, AR33, AY3 and RO7, respectively, revealing 

that MG is the most degradable dye. 

 

Keywords: 

Signal overlapping; 

Multivariate analysis; 

Electro-oxidation process; 

Azo dyes; 

Kinetic processes. 

© 2025. Progress in Engineering Thermodynamics and Kinetics Journal published by Semnan University Press. 

 

 

 

 

 

https://jpetk.semnan.ac.ir/
mailto:sajjadi@sutech.ac.ir
https://doi.org/10.22075/jpetk.2024.30499.1014


Sajjadi / Progress in Engineering Thermodynamics and Kinetics Journal, 1 (2025) 152 - 161 

153 

1. Introduction 

Water pollution as a crucial issue demands appropriate policy and techniques to prevent 

contamination of freshwater supplies and improve wastewater treatment. In recent years, the 

growth of population and industrial and agricultural expansion have led to an excessive rise in 

water consumption. The reports show there is wastewater discharge of about 1500 km³ per year 

[1, 2]. The presence of synthetic compounds in effluent is really harmful to the environment 

and human health, even at trace levels, and it is required to eliminate these pollutants before 

wastewater discharge.  

Among a variety of kinds of synthetic dye-stuff, azo-dyes have a significant portion in effluents 

while they have the least desirable consequences for surrounding ecosystems. These dyes are 

mainly resistant to aerobic degradation and they may produce carcinogenic aromatic amines in 

anaerobic conditions [3, 4].  

Some conventional methods such as air stripping, extraction, ultrafiltration, and carbon 

adsorption have been employed for the removal of azo-dyes from wastewater. However, these 

techniques are non-destructive and they commonly transfer the pollutants from one phase to the 

other without decomposing them [5, 6]. In recent years, advanced oxidation processes (AOPs) 

have gained widespread application in degrading industrial wastewater due to their ability to 

decompose dyes in aqueous solutions [7-9]. Among AOPs, electrochemical advanced oxidation 

processes (EAOPs) are highly applicable for eliminating the dyes and oxidizing them during 

the removal processes. These methods possess some advantages such as cost-effectiveness, 

environmental friendliness, simplicity of operation, high removal efficiency, and prevention of 

secondary wastewater treatment [8,10].  

The efficiency of EAOPs greatly depends on the anode material because electrochemical 

oxidation (EO) reactions occur between the electrode surface and solution, especially the 

production of °OH; therefore, the selection of the proper anode is a key factor in the remediation 

of dye-containing wastewater. In 2022, Mahmoudian et al. fabricated a titanium electrode 

coated with a nanocomposite of ZnO-multi-walled carbon nanotubes (ZnO-MWCNTs) by the 

electrophoretic deposition (EPD) method and applied it for the remediation of a water solution 

containing different dyes including Acid red 33 (AR33), Reactive orange 7 (RO7), Acid yellow 

3 (AY3) and Malachite green (MG) [8]. They investigated the performance of the constructed 

Ti/nanoZnO-MWCNTs electrode in the EO processes of these dyes in a mixture, as a target for 

wastewater.  
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They monitored the EO reactions using a cost-effective and simple spectrophotometric 

technique where the analysis of the data was impossible using univariate techniques due to the 

signal overlapping of the dyes. To overcome this problem, they proposed a multivariate 

calibration technique to find the concentration of each dye at the final time of the decolorization 

process.   

EAOPs are kinetic processes intrinsically, and the reaction rate constants of decolorization 

reactions permit a chemist/chemical engineer to design, operate, control, and optimize the 

reactors of the chemical industries. For instance, it could be checked if the process is in or out 

of control. A kinetic process can be monitored spectroscopically, and there are special 

multivariate resolution methods developed to estimate reaction rate constants and underlying 

spectra [11-15]. Although most wastewaters are composed of different contaminants, to the best 

of our knowledge, there is no report on the determination of simultaneous EO rate constants of 

several dyes with severely overlapped signals, and it is a neglected issue in EAOPs systems. 

2. Experimental 

2.1.  Electrochemical oxidation of the dyes Procedure 

The batch electrolytic cell reported in [8] was applied in this study to conduct electrochemical 

oxidation of the dyes. A mixture of the dyes was prepared in a 250 ml cylindrical glass reactor, 

in which the concentrations of dyes were 25, 25, 10 and 10 mg L⁻¹ for AR33, RO7, AY3 and 

MG, respectively. The anode and cathode electrodes were a Ti/nanoZnO-MWCNT electrode 

and a stainless-steel plate (dimensions: 3×3 cm; thickness: 1 mm). The solution was stirred 

throughout the experiment to ensure efficient mass transfer. To monitor the decolorization 

process, 3 ml of the sample was withdrawn from the cell at a given time and its spectrum was 

obtained using a UV–Visible spectrophotometer with a 0.5 nm interval in the wavelength range 

of 200–800 nm. It was observed that the signals at wavelengths greater than 700 nm were not 

significant; moreover, there were no significant changes in signals at wavelengths less than 220 

nm. Therefore, the data were selected in the wavelength range of 220-700 nm for further 

analysis. Indeed, a two-way data set was obtained at 966 wavelengths and 12 electro-oxidation 

times from 0 to 80 min where no significant changes were observed in the signals. 
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3. Theory 

3.1. Classical Least Squares 

The intentional objective in chemical systems is commonly the assessment of concentrations of 

individual components (C) or the recognition of unknown spectral profiles (S) in mixture 

solutions. The CLS model has the capability to calculate each C when S is known or vice versa. 

This strategy is based on the following matrix equation: 

𝑿 = 𝑪 × 𝑺𝑻 + 𝑹                                                                                                                   (1)                                                  

Where X is the prime raw data matrix with the mixed experimental information. In this way, 

the columns in C and their corresponding rows in Sᵀ consist of pure concentration and spectral 

profiles of the components involved in the data X, respectively, and R is the residual matrix. 

When the pure spectral components are known, matrix C can be obtained based on the least 

squares minimization of ‖𝑅‖, written as follows [16]: 

   C=X(𝐒𝑇)+                                                                                                                         (2) 

 Where the sizes of the relevant matrices are X (I×J), C (I×N), S (J×N), and E (I×J); and I, J, 

and N are the number of degradation times, wavelengths, and spectroscopically active 

components, respectively. 

 

3.2. Hard-Modelling Technique 

The hard-modelling method is an iterative process and calculates the best set of independent 

parameters in a defined model based on a least-squares algorithm. In this method, the goal is 

minimizing the sum of squares (SSQ), which is a function of a chemical model and its 

parameters [11, 12]: 

SSQ= ∑ ∑ (𝑅𝑖,𝑗
2 )𝑖=𝑛

𝑗=1
𝑖=𝑚
𝑖=1 =f (C, model, parameters)                                                                 (3) 

The parameters are linear and non-linear, attributed to the elements of each column vector in 

matrix C and the kinetic constants involved in matrix C, respectively. It should be mentioned 

that the linear parameters can efficiently be eliminated during the iteration process. Indeed, the 

hard modelling strategy is a robust analysis technique because it fits a few number of 

parameters, i.e., the non-linear ones. In this work, the lsqnonlin Matlab command, based on the 

Newton-Gauss Levenberg Marquardt (NG/LM) algorithm, is used to conduct the fitting. During 

the optimization, the concentration profiles of species are calculated by first-order kinetic 

equations.  
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Indeed, many chemical processes are of a first-order nature or can be at least experimentally 

observed under pseudo-first-order conditions in which estimating the rate constants is not 

dependent on initial concentrations [14, 15]. 

4. Results and Discussion 

The time-spectral data of electrochemical oxidation of a synthetic dyes mixture are depicted in 

Figure 1. To achieve the pure spectral profiles of the dyes, a standard solution of each dye (40 

ppm) was prepared and its spectrum was recorded using a UV-Vis spectrophotometer at the 

same wavelength range as in the electro-oxidation processes’ monitoring. It should be noted 

that these obtained spectra are the same as their corresponding pure profiles in shape but 

different in intensity.   

 

Fig 1. Time-spectral data of in synthetic mixtures of dyes containing AR33 (25 mgL-1), RO7 (25 mgL-1), AY3 

(10 mgL-1) and MG (10 mgL-1) 

 

Given that, in a first-order reaction, the rate constant of the kinetic process can be estimated 

when the initial concentration of analyte is unknown, all the recorded spectra of standard 

solutions were normalized as illustrated in Fig. 2. Then the CLS model was applied to the data 

under these normalized pure spectral profiles (S in Eq. (2)) to obtain the kinetic profiles of the 

components; however, the profiles were not reliable, for example, there were not unimodal or 

some of their values were negative, as we know, a negative value for the concentration of a 

component is vague. 
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Fig 2. Normalized pure spectral profiles of the dyes 

As seen in Fig. 1, the signals of the components are severely overlapped in the wavelength 

range of 220-400 nm and this part of the data possesses low information due to the lack of 

selectivity. Thus, we omitted this part from the data and pure spectral profiles, and then the 

CLS model was employed on the remaining data under the normalized pure spectral profiles. 

The obtained concentration profiles have been illustrated in Fig. 3. To evaluate the ability of 

CLS analysis, the standard deviation of residuals of data analysis (scls) was computed based on 

the following equation: 

𝑠𝑐𝑙𝑠 = √
∑ ∑ R𝑖𝑗

2𝐽
𝑗=1

𝐼
𝑖=1

𝐼×𝐽−(𝑁×𝐽)
                                                                                                         (4) 

Where Rij is the element of the residual matrix R; and I, J and N are the same as in Equation 

(2).   
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Fig3. Normalized concentration profiles of the dyes obtained by CLS method ( Paint) and hard modelling 

approach (Solid line) 

The calculated scls was 0.0173, which confirms the unmodelled part of the data is attributed to 

noise. To compute the rate constant of each dye decolorization (k), each kinetic profile was 

analyzed by the hard modelling approach based on the postulated first-order reaction 𝐴
 𝑘 
→   𝐵 

as follows: 

𝐴𝑡 = 𝑒𝑥𝑝( − 𝑘𝑡)                                                                                                                      (5) 

Where the initial substrate is one, At is the concentration of the dye involved in a first-order 

reaction at electro-oxidation time t and k is the rate constant of the decolorization. Fig. 3 

overlays the obtained normalized concentration profiles by the CLS method and their 

corresponding fitted profiles by the hard modelling approach. This figure reveals that the 

obtained normalized concentration profiles by the CLS method match well with those of the 

hard modelling approach. The estimated k values together with their corresponding standard 

deviations have been reported in Table 1. This table compares the rate constants of the 

degradation processes of the dyes and shows that MG is the most degradable component in this 

system as its rate constant is significantly high. It seems the structure of the dye molecule could 

be responsible for the degradation mechanism.  
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Table 1. The estimated decolorization rate constants of the dyes by hard modeling method 
 

       Dyes                                    k (min-1) 

AR33 
0.0262 

 (±0.002) 

RO7 
0.0158 

(±4.95×10−4) 

AY3 
0.0168 

(±8.94×10−4) 

MG 
0.0675 

(±0.0034) 

  

 

5. Conclusion 

The main focus of this work is the kinetic study of the electrochemical oxidation degradation 

of a synthetic dyes mixture composed of AR33, RO7, AY3 and MG on a Ti/nanoZnO-

MWCNTs electrode at the optimal operational parameters including pH, current, and 

electrolyte concentration with values, respectively. These simultaneous kinetic processes were 

monitored spectrophotometrically at a wavelength range of 400-700 nm where the signals of 

the components are highly overlapped, as it was not possible to obtain the kinetic profiles of 

the analytes. Here, the classical least square method was proposed to overcome this problem. 

Indeed, the multivariate analysis technique allows one to obtain the pure kinetic profiles of the 

degraded dyes, all of which are the same as the real pure profiles in shape but different in 

intensity.  

To estimate the kinetic rate constant (k) of the degradation processes, the concentration profile 

of each component was fitted by the hard modelling approach based on the NG/LM algorithm, 

which computes both the k value and its standard deviation. The ks values were 0.0675 s⁻¹, 

0.0262 s⁻¹, 0.0168 s⁻¹ and 0.0158 s⁻¹ for MG, AR33, AY3 and RO7, respectively, revealing that 

MG is the most degradable dye. 
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