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Abstract

In this manuscript, we introduce and study the concept of semi P -functions and their some algebraic properties. Also,
we compare the results obtained with both Hölder, Hölder-İşcan inequalities and power-mean, improved-power-mean
integral inequalities and show that the result obtained with Hölder-İşcan and improved power-mean inequalities give
a better approach than the others. Some applications to special means of real numbers are also given.
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1 Preliminaries and fundamentals

Let I ⊂ R be an interval. A function f : I ⊂ R → R is said to be convex if the inequality

f (tx+ (1− t)y) ≤ tf (x) + (1− t) f (y)

is valid for all x, y ∈ I and t ∈ [0, 1]. If this inequality reverses, then f is said to be concave on interval I ̸= ∅.
Convexity theory provides powerful principles and techniques to study a wide class of problems in both pure and
applied mathematics. See articles [4, 7, 12, 15, 16] and the references therein. Let f : I → R be a convex function.
Then the following inequalities hold

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f (a) + f(b)

2
(1.1)

for all a, b ∈ I with a < b. Both inequalities hold in the reversed direction if the function f is concave. This
double integral inequality is well known as the Hermite-Hadamard integral inequality [5]. Some refinements of the
Hermite-Hadamard integral inequality for convex functions have been obtained [3, 22].

In [4], Dragomir et al. gave the following definition and related Hermite-Hadamard integral inequalities as follow:

∗Corresponding author

Email addresses: mahirkadakal@gmail.com (Mahir Kadakal), imdati@yahoo.com (İmdat İşcan), huriyekadakal@hotmail.com (Huriye
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Definition 1.1. A nonnegative function f : I ⊆ R → R is said to be P -function if the inequality

f (tx+ (1− t) y) ≤ f (x) + f (y)

holds for all x, y ∈ I and t ∈ (0, 1).

Theorem 1.2. Let f ∈ P (I), a, b ∈ I with a < b and f ∈ L [a, b]. Then

f

(
a+ b

2

)
≤ 2

b− a

∫ b

a

f (x) dx ≤ 2 [f (a) + f (b)] . (1.2)

In [6], İşcan gave a refinement of the Hölder integral inequality as follows:

Theorem 1.3 (Hölder-İşcan integral inequality [6]). Let p > 1 and 1
p + 1

q = 1. If f and g are real functions

defined on interval [a, b] and if |f |p, |g|q are integrable functions on [a, b] then

∫ b

a

|f(x)g(x)| dx ≤ 1

b− a


(∫ b

a

(b− x) |f(x)|p dx

) 1
p
(∫ b

a

(b− x) |g(x)|q dx

) 1
q

+

(∫ b

a

(x− a) |f(x)|p dx

) 1
p
(∫ b

a

(x− a) |g(x)|q dx

) 1
q

 . (1.3)

For more information on the Hermite-Hadamard and Hölder-İşcan integral inequalities, readers can refer to refer-
ences [17, 18, 19, 20] and the references within these references. An refinement of power-mean integral inequality as
a different version of the Hölder-İşcan integral inequality can be given as follows:

Theorem 1.4 (Improved power-mean integral inequality [14]). Let q ≥ 1. If f and g are real functions defined
on interval [a, b] and if |f |, |f | |g|q are integrable functions on [a, b] then

∫ b

a

|f(x)g(x)| dx ≤ 1

b− a


(∫ b

a

(b− x) |f(x)| dx

)1− 1
q
(∫ b

a

(b− x) |f(x)| |g(x)|q dx

) 1
q

+

(∫ b

a

(x− a) |f(x)| dx

)1− 1
q
(∫ b

a

(x− a) |f(x)| |g(x)|q dx

) 1
q


2 The definition of semi P -function

The main purpose of this manuscript is to introduce the concept of semi P -function and establish some results
connected with the right-hand side of new inequalities similar to the Hermite-Hadamard integral inequality for semi
P -function.

In recent years, many function classes such as P-function, convex, quasi-convex, log-convex, AH-convex, s-convex
functions in the first and second sense and trigonometrically convex, etc. have been studied by many authors, and
integral inequalities belonging to these function classes have been studied in the literature (see [2, 4, 8, 9, 10, 11, 13, 15,
21]). There are many studies on the subject. In this section, a new function class, semi-P-function definition will be
given, and the relations of this function class with the above-mentioned function classes will also be given. Moreover,
we prove two Hermite-Hadamard type inequalities for the semi P -functions. Moreover, we obtain some refinements
of the Hermite-Hadamard inequality for functions whose first derivative in absolute value, raised to a certain power
which is greater than one, respectively at least one, is semi P -functions. Also, some applications to special means of
positive real numbers are also given.

Definition 2.1. A function f : I ⊂ R → R is called semi P -function if for all x, y ∈ I, and t ∈ [0, 1],

f (tx+ (1− t)y) ≤ (tx+ (1− t)y) [f (x) + f (y)] . (2.1)
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We will denote by SP (I) the class of all semi P -functions on interval I. We note that if the non-negative function
f : I ⊂ R → R is semi P -function then f(x) = f (tx+ (1− t)x) ≤ 2xf(x), for all x ∈ I, i.e. (2x− 1) f(x) ≥ 0, for all
x ∈ I. In this case, we can say that either ”x ≥ 1/2 and f(x) ≥ 0” or ”x ≤ 1/2 and f(x) ≤ 0”.

Example 2.2. The function f : [1,∞) → R, f(x) = x is a semi P -function.

Example 2.3. The function f : (−∞, 0] → R, f(x) = x is a semi P -function.

Example 2.4. The function f : [1,∞) → R, f(x) = ex is a semi P -function.

Example 2.5. For every c ∈ R (c ≥ 0), the function f :
[
1
2 ,∞

)
⊂ R → R, f(x) = c is a semi P -function.

Remark 2.6. If f : [1,∞) → [0,∞) is a convex function, then f is also semi P -function. Since t ≤ ta+(1−t)b, 1−t ≤
ta+ (1− t)b, for all a, b ∈ [1,∞) and t ∈ [0, 1] , we get

f (ta+ (1− t)b) ≤ tf(a) + (1− t)f(b) ≤ (ta+ (1− t)b) [f(a) + f(b)] .

Remark 2.7. If f : [1,∞) → [0,∞) is a P -function, then f is also a semi P -function. Since, 1 ≤ ta+ (1− t)b, for all
a, b ∈ [1,∞) and t ∈ [0, 1], we obtain

f (ta+ (1− t)b) ≤ f(a) + f(b) ≤ (ta+ (1− t)b) [f(a) + f(b)] .

Remark 2.8. If f : [1,∞) → [0,∞) is a quasi convex function, then f is also a semi P -function. Since, f(a) ≤
(ta+ (1− t)b) f(a), f(b) ≤ (ta+ (1− t)b) f(b), for all a, b ∈ [1,∞) and t ∈ [0, 1] , we write

f (ta+ (1− t)b) ≤ max {f(a), f(b)} ≤ (ta+ (1− t)b) [f(a) + f(b)] .

Remark 2.9. Let f : [1,∞) → [0,∞) be a nonnegative and s ∈ (0, 1]. If f is a s-convex function in the first sense,
then f is also a semi P -function. Since, ts ≤ 1 ≤ ta+ (1− t)b and 1− ts ≤ 1 ≤ ta+ (1− t)b, for all a, b ∈ [1,∞) and
t ∈ [0, 1], we get

f (ta+ (1− t)b) ≤ tsf(a) + (1− ts)f(b) = (ta+ (1− t)b) [f(a) + f(b)] .

Remark 2.10. Let f : [1,∞) → [0,∞) be a nonnegative and s ∈ (0, 1]. If f is a s-convex function in the second
sense, then f is also a semi P -function. Since, ts ≤ 1 ≤ ta+(1− t)b and (1− t)

s ≤ 1 ≤ ta+(1− t)b, for all a, b ∈ [1,∞)
and t ∈ [0, 1], we have

f (ta+ (1− t)b) ≤ tsf(a) + (1− t)sf(b) = (ta+ (1− t)b) [f(a) + f(b)] .

Remark 2.11. If f : [1,∞) → (0,∞] is a trigonometrically convex function, then f is also a semi P -function. Since,
sin πt

2 ≤ 1, cos πt
2 ≤ 1 and 1 ≤ ta+ (1− t)b, for all a, b ∈ [1,∞) and t ∈ [0, 1] , we can write

f (ta+ (1− t)b) ≤ sin
πt

2
f(a) + cos

πt

2
f(b) ≤ f(a) + f(b) = (ta+ (1− t)b) [f(a) + f(b)] .

Remark 2.12. If f : [1,∞) → (0,∞] is a log-convex (i.e. arithmetic geometric (AG) convex) function, then f is also
a semi P -function. Since, t ≤ ta+ (1− t)b, 1− t ≤ ta+ (1− t)b, for a, b ∈ [1,∞) and t ∈ [0, 1] , we can write

f (ta+ (1− t)b) ≤ [f(a)]
t
[f(b)]

1−t ≤ (ta+ (1− t)b) [f(a) + f(b)] .

Remark 2.13. If f : [1,∞) → (0,∞] is an arithmetic harmonic (AH) convex function, then f is also a semi P -
function. Since, t ≤ ta+ (1− t)b, 1− t ≤ ta+ (1− t)b, for a, b ∈ [1,∞) and t ∈ [0, 1] , we can write

f (ta+ (1− t)b) ≤ f(a)f(b)

tf(b) + (1− t)f(a)
≤ (ta+ (1− t)b) [f(a) + f(b)] .



4 Kadakal, İşcan. Kadakal

Theorem 2.14. Let f, g : I ⊂ R → R. If f and g are semi P -functions, then f+g is a semi P -function, c ∈ R (c ≥ 0),
cf is a semi P -function.

Proof . Let f, g be semi P -functions, then

(f + g) (ta+ (1− t)b) = (ta+ (1− t)b) [f(a) + g(a)] + (ta+ (1− t)b) [f(b) + g(b)]

= (ta+ (1− t)b) (f + g) (a) + (ta+ (1− t)b) (f + g) (b),

for all a, b ∈ I and t ∈ [0, 1] . Let f be semi P -function and c ∈ R (c ≥ 0), then

(cf) (ta+ (1− t)b) ≤ (ta+ (1− t)b) [(cf) (a) + (cf) (b)] ,

for all a, b ∈ I and t ∈ [0, 1] . □

Theorem 2.15. Let fα : I ⊂ [0,∞) → R be an arbitrary family of semi P -functions and let f(x) = supα fα(x). If
J = {u ∈ I : f(u) < ∞} is nonempty, then J is an interval and f is a semi P -function on J .

Proof . Let t ∈ [0, 1] and a, b ∈ J be arbitrary. Then

f (ta+ (1− t)b) = sup
α

fα (ta+ (1− t)b)

≤ sup
α

[(ta+ (1− t)b) fα(a) + (ta+ (1− t)b) fα(b)]

≤ (ta+ (1− t)b) sup
α

fα(a) + (ta+ (1− t)b) sup
α

fα(b)

= (ta+ (1− t)b) [f(a) + f(b)] < ∞.

This shows simultaneously that J is an interval, since it contains every point between any two of its points, and that
f is a semi P -function on J . This completes the proof of theorem. □

3 Hermite-Hadamard integral inequality for semi P -functions

The goal of this manuscript is to establish some inequalities of Hermite-Hadamard type integral inequality for semi
P -functions. In this section, we will denote by L [a, b] the space of (Lebesgue) integrable functions on interval [a, b] .

Theorem 3.1. Let f : I ⊂ R → R be a semi P -function. If a < b and f ∈ L [a, b], then the following Hermite-
Hadamard type inequalities hold:

1

a+ b
f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ (a+ b)
f (a) + f(b)

2
. (3.1)

Proof . From the property of the semi P -function of f , we obtain

f

(
a+ b

2

)
= f

(
1

2
[ta+ (1− t)b] +

1

2
[(1− t)a+ tb]

)
=

a+ b

2
[f (ta+ (1− t)b) + f ((1− t)a+ tb)] .

By taking integral in the last inequality with respect to t ∈ [0, 1], we deduce that

f

(
a+ b

2

)
≤ a+ b

2

[∫ 1

0

f (ta+ (1− t)b) dt+

∫ 1

0

f ((1− t)a+ tb) dt

]
=

a+ b

b− a

∫ b

a

f(x)dx.

By using the property of the semi P -function f , if the variable is changed as x = ta+ (1− t)b, then

1

b− a

∫ b

a

f(x)dx =

∫ 1

0

(ta+ (1− t)b) [f(a) + f(b)] dt = (a+ b)

[
f(a) + f(b)

2

]
.

This completes the proof of theorem. □
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4 Some new inequalities for the semi P -functions

The main purpose of this section is to establish new estimates that refine Hermite-Hadamard integral inequality
for functions whose first derivative in absolute value, raised to a certain power which is greater than one, respectively
at least one, is semi P -function. In this section, for shortness, we will denote by A(a, b) the arithmetic mean of real
numbers a and b. Dragomir and Agarwal [1] used the following lemma:

Lemma 4.1. Let f : I◦ ⊆ R → R be differentiable mapping on I◦, a, b ∈ I◦ with a < b. If f ′ ∈ L [a, b], then the
following equality holds:

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx =
b− a

2

∫ 1

0

(1− 2t)f ′ (ta+ (1− t)b) dt

Theorem 4.2. Let f : I → R be a differentiable function on I◦, a, b ∈ I◦ with a < b and assume that f ′ ∈ L [a, b]. If
|f ′| is a semi P -function on interval [a, b], then the following inequality holds∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a

2
A (a, b)A (|f ′(a)| , |f ′(b)|) . (4.1)

Proof . Using Lemma 4.1 and the inequality

|f ′ (ta+ (1− t)b)| ≤ (ta+ (1− t)b) [|f ′(a)|+ |f ′(b)|] ,

we get∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a

2

∫ 1

0

|1− 2t| ((ta+ (1− t)b) [|f ′(a)|+ |f ′(b)|]) dt

≤ b− a

2

(
[|f ′(a)|+ |f ′(b)|]

∫ 1

0

|1− 2t| (ta+ (1− t)b) dt

)
=

b− a

2
A (a, b)A (|f ′(a)| , |f ′(b)|)

where
∫ 1

0
|1− 2t| (ta+ (1− t)b) dt = a+b

4 and A is the arithmetic mean. This completes the proof of theorem. □

Theorem 4.3. Let f : I → R be a differentiable function on I◦, a, b ∈ I◦ with a < b, q > 1, 1
p + 1

q = 1 and assume

that f ′ ∈ L [a, b]. If |f ′|q is a semi P -function on interval [a, b], then the following inequality holds∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ (b− a)

(
1

2 (p+ 1)

) 1
p

A
1
q (a, b)A

1
q
(
|f ′(a)|q , |f ′(b)|q

)
(4.2)

Proof . Using Lemma 4.1, Hölder’s integral inequality and the following inequality

|f ′ (ta+ (1− t)b)|q ≤ (ta+ (1− t)b)
[
|f ′(a)|q + |f ′(b)|q

]
which is the semi P -function of |f ′|q, we have∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a

2

∫ 1

0

|1− 2t| |f ′ (ta+ (1− t)b)| dt

≤ b− a

2

(∫ 1

0

|1− 2t|p dt
) 1

p
(∫ 1

0

|f ′ (ta+ (1− t)b)|q dt
) 1

q

= (b− a)

(
1

2 (p+ 1)

) 1
p

A
1
q (a, b)A

1
q
(
|f ′(a)|q , |f ′(b)|q

)
,

where
∫ 1

0
|1− 2t|p dt = 1

p+1 and A is the arithmetic mean. This completes the proof of theorem. □
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Theorem 4.4. Let f : I → R be a differentiable function on I◦, a, b ∈ I◦ with a < b, q ≥ 1 and assume that
f ′ ∈ L [a, b]. If |f ′|q is a semi P -function on the interval [a, b], then the following inequality holds∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ (b− a)

(
1

2

)2− 1
q

A
1
q (a, b)A

1
q
(
|f ′ (a)|q , |f ′ (b)|q

)
. (4.3)

Proof . Assume first that q > 1. From Lemma 4.1, Hölder integral inequality and the property of the semi P -function
of the function |f ′|q, we get∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a

2

(∫ 1

0

|1− 2t| dt
)1− 1

q
(∫ 1

0

|1− 2t| |f ′ (ta+ (1− t)b)|q dt
) 1

q

≤ b− a

2

(
1

2

)1− 1
q
∫ 1

0

|1− 2t| (ta+ (1− t)b)
[
|f ′(a)|q + |f ′(b)|q

]
dt

= (b− a)

(
1

2

)2− 1
q

A
1
q (a, b)A

1
q
(
|f ′ (a)|q , |f ′ (b)|q

)
,

where
∫ 1

0
|1− 2t|dt = 1

2 . For q = 1 we use the estimates from the proof of Theorem 4.2, which also follow step by
step the above estimates. This completes the proof of theorem. □

Corollary 4.5. Under the assumption of Theorem 4.4 with q = 1, we get the conclusion of Theorem 4.2.∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a

2
A (a, b)A (|f ′ (a)| , |f ′ (b)|) .

Now, we will prove the Theorem 4.3 by using Hölder-İşcan integral inequality. Then we will show that the result
we have obtained in this theorem gives a better approach than that obtained in the Theorem 4.3.

Theorem 4.6. Let f : I → R be a differentiable function on I◦, a, b ∈ I◦ with a < b, q > 1, 1
p + 1

q = 1 and assume

that f ′ ∈ L [a, b]. If |f ′|q is a semi P -function on interval [a, b], then the following inequality holds∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a

2

(
1

2 (p+ 1)

) 1
p

A
1
q
(
|f ′(a)|q , |f ′(b)|q

) [(a+ 2b

3

) 1
q

+

(
2a+ b

3

) 1
q

]
. (4.4)

Proof . Using Lemma 4.1, Hölder-İşcan integral inequality and the following inequality |f ′ (ta+ (1− t)b)|q ≤
(ta+ (1− t)b)

[
|f ′(a)|q + |f ′(b)|q

]
which is the semi P -function of |f ′|q, we obtain∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤b− a

2

(∫ 1

0

(1− t) |1− 2t|p dt
) 1

p
(∫ 1

0

(1− t) |f ′ (ta+ (1− t)b)|q dt
) 1

q

+
b− a

2

(∫ 1

0

t |1− 2t|p dt
) 1

p
(∫ 1

0

t |f ′ (ta+ (1− t)b)|q dt
) 1

q

≤b− a

2

(∫ 1

0

(1− t) |1− 2t|p dt
) 1

p
(∫ 1

0

(1− t) (ta+ (1− t)b)
[
|f ′(a)|q + |f ′(b)|q

]
dt

) 1
q

+
b− a

2

(∫ 1

0

t |1− 2t|p dt
) 1

p
(∫ 1

0

t (ta+ (1− t)b)
[
|f ′(a)|q + |f ′(b)|q

]
dt

) 1
q

=
b− a

2

(
1

2 (p+ 1)

) 1
p

A
1
q
(
|f ′(a)|q , |f ′(b)|q

) [(a+ 2b

3

) 1
q

+

(
2a+ b

3

) 1
q

]
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where, ∫ 1

0

(1− t) |1− 2t|p dt =
∫ 1

0

t |1− 2t|p dt = 1

2 (p+ 1)
,∫ 1

0

(1− t) (ta+ (1− t)b) dt =
a+ 2b

6
,∫ 1

0

t (ta+ (1− t)b) dt =
2a+ b

6
.

This completes the proof of theorem. □

Remark 4.7. The inequality (4.4) gives better results than the inequality (4.2). Let us show that

b− a

2

(
1

2 (p+ 1)

) 1
p

A
1
q
(
|f ′(a)|q , |f ′(b)|q

) [(a+ 2b

3

) 1
q

+

(
2a+ b

3

) 1
q

]

≤ (b− a)

(
1

2 (p+ 1)

) 1
p

A
1
q (a, b)A

1
q
(
|f ′(a)|q , |f ′(b)|q

)
.

Using concavity of the function h : [0,∞) → R, h(x) = xλ, 0 < λ ≤ 1 by sample calculation we get

b− a

2

(
1

2 (p+ 1)

) 1
p

A
1
q
(
|f ′(a)|q , |f ′(b)|q

) [(a+ 2b

3

) 1
q

+

(
2a+ b

3

) 1
q

]

≤ b− a

2

(
1

2 (p+ 1)

) 1
p

A
1
q
(
|f ′(a)|q , |f ′(b)|q

)
2

[
1

2

(
a+ 2b

3

)
+

1

2

(
2a+ b

3

)] 1
q

= (b− a)

(
1

2 (p+ 1)

) 1
p

A
1
q
(
|f ′(a)|q , |f ′(b)|q

)
A

1
q (a, b)

which is the required.

Theorem 4.8. Let f : I → R be a differentiable function on I◦, a, b ∈ I◦ with a < b, q ≥ 1 and assume that
f ′ ∈ L [a, b]. If |f ′|q is a semi P -function on the interval [a, b], then the following inequality holds∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ (b− a)

(
1

2

)3− 2
q

A
1
q
(
|f ′(a)|q , |f ′(b)|q

) [(a+ 3b

8

) 1
q

+

(
3a+ b

8

) 1
q

]
.(4.5)

Proof . Assume first that q > 1. Using the Lemma 4.1, improved power-mean inequality and the property of the
semi P -function of |f ′|q, we get∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤b− a

2

(∫ 1

0

(1− t) |1− 2t| dt
)1− 1

q
(∫ 1

0

(1− t) |1− 2t| |f ′ (ta+ (1− t)b)|q dt
) 1

q

+
b− a

2

(∫ 1

0

t |1− 2t| dt
)1− 1

q
(∫ 1

0

t |1− 2t| (ta+ (1− t)b) dt

) 1
q

≤b− a

2

(
1

4

)1− 1
q
([

|f ′(a)|q + |f ′(b)|q
] ∫ 1

0

(1− t) |1− 2t| (ta+ (1− t)b) dt

) 1
q

+
b− a

2

(
1

4

)1− 1
q
([

|f ′(a)|q + |f ′(b)|q
] ∫ 1

0

t |1− 2t| (ta+ (1− t)b) dt

) 1
q

=
b− a

2

(
1

2

)2− 2
q

A
1
q
(
|f ′(a)|q , |f ′(b)|q

) [(a+ 3b

8

) 1
q

+

(
3a+ b

8

) 1
q

]
,
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where ∫ 1

0

(1− t) |1− 2t| dt =
∫ 1

0

t |1− 2t| dt = 1

4
,∫ 1

0

(1− t) |1− 2t| (ta+ (1− t)b) dt =
a+ 3b

16
,∫ 1

0

t |1− 2t| (ta+ (1− t)b) dt =
3a+ b

16
.

For q = 1 we use the estimates from the proof of Theorem 4.2, which also follow step by step the above estimates.
This completes the proof of theorem. □

Remark 4.9. The inequality (4.5) gives better result than the inequality (4.3). Let us show that

(b− a)

(
1

2

)3− 2
q

A
1
q
(
|f ′(a)|q , |f ′(b)|q

) [(a+ 3b

8

) 1
q

+

(
3a+ b

8

) 1
q

]

≤ (b− a)

(
1

2

)2− 1
q

A
1
q (a, b)A

1
q
(
|f ′ (a)|q , |f ′ (b)|q

)
.

If we use the concavity of the function h : [0,∞) → R, h(x) = xλ, 0 < λ ≤ 1, we get

(b− a)

(
1

2

)3− 2
q

A
1
q
(
|f ′(a)|q , |f ′(b)|q

) [(a+ 3b

8

) 1
q

+

(
3a+ b

8

) 1
q

]

≤ 2 (b− a)

(
1

2

)3− 2
q

A
1
q
(
|f ′(a)|q , |f ′(b)|q

) [1
2

(
a+ 3b

8

)
+

1

2

(
3a+ b

8

)] 1
q

= (b− a)

(
1

2

)2− 2
q

A
1
q
(
|f ′(a)|q , |f ′(b)|q

) [1
2

(
a+ b

2

)] 1
q

=
b− a

2

(
1

2

)2− 1
q

A
1
q (a, b)A

1
q
(
|f ′(a)|q , |f ′(b)|q

)
,

which completes the proof of remark.

5 Applications for special means

Throughout this section, for shortness, the following notations will be used for special means of two nonnegative
numbers a, b with b > a:

1. The arithmetic mean

A := A(a, b) =
a+ b

2
, a, b ≥ 0,

2. The geometric mean
G := G(a, b) =

√
ab, a, b ≥ 0

3. The harmonic mean

H := H(a, b) =
2ab

a+ b
, a, b > 0,

4. The logarithmic mean

L := L(a, b) =

{
b−a

ln b−ln a , a ̸= b

a, a = b
; a, b > 0
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5. The p-logarithmic mean

Lp := Lp(a, b) =


(

bp+1−ap+1

(p+1)(b−a)

) 1
p

, a ̸= b, p ∈ R\ {−1, 0}
a, a = b

; a, b > 0.

6. The identric mean

I := I(a, b) =
1

e

(
bb

aa

) 1
b−a

, a, b > 0,

These means are often used in numerical approximation and in other areas. However, the following simple rela-
tionships are known in the literature: H ≤ G ≤ L ≤ I ≤ A. It is also known that Lp is monotonically increasing over
p ∈ R, denoting L0 = I and L−1 = L.

Proposition 5.1. Let a, b ∈ [1,∞) with a < b and n ∈ (−∞, 0) ∪ [1,∞) \ {−1}. Then, the following inequalities are
obtained:

An(a, b)

2A(a, b)
≤ Ln

n(a, b) ≤ 2A(a, b)A(an, bn).

Proof . The assertion follows from the inequalities (3.1) for the function

f(x) = xn, x ∈ [1,∞) .

□

Proposition 5.2. Let a, b ∈ [1,∞) with a < b . Then, the following inequalities are obtained:

A−1(a, b)

2A(a, b)
≤ L−1(a, b) ≤ 2A(a, b)H−1(a, b).

Proof . The assertion follows from the inequalities (3.1) for the function f(x) = x−1, x ∈ [1,∞) □
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