
Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE) 37

Abstract--Load forecasting is a key component of electric

utility operations and planning. Because of today's highly

developed electricity markets and rapidly growing power

systems, load forecasting is becoming an essential part of power

system operation scheduling. This paper proposes a new short-

term load forecasting model based on the large margin nearest

neighbor (LMNN) classification algorithm to improve

prediction accuracy. The accuracy of many classification

methods, such as k-nearest neighbor (k-NN), is significantly

influenced by the technique used to calculate sample distances.

The Mahalanobis distance is one of the most widely used

methods for calculating distance. Numerous techniques have

been used to enhance k-NN performance in recent years,

including LMNN. Our proposed approach aims to solve the local

optimum problem of LMNN, compute data similarities, and

optimize the cost function that establishes the distances between

instances. Before using gradient descent to determine the ideal

parameter values for the cost function, we employ a genetic

algorithm to shrink the size of the solution space. Additionally,

our method's forecasting errors are contrasted with those of the

BPNN and ARMA models. The comparative findings show how

well the recommended forecasting model performs in short-

term load forecasting.

Index Terms-- Short-Term Load Forecasting; Large Margin

Nearest Neighbor; Distance learning; Genetic Algorithm.

I. INTRODUCTION

o achieve specific accuracy requirements, power system

load forecasting refers to the study of or use of a

mathematical method to systematically process past and

future loads, accounting for significant system operational

features, capacity expansion decisions, environmental

factors, and social implications. Improving load forecasting

techniques helps with planned power management, which

helps with building reasonable power supply construction

plans, facilitating power improvement, and maximizing the

system's economic and social benefits. It also helps rationally

organize the grid operation mode and unit maintenance plan.

With more accuracy than long-term load forecasting,

short-term load forecasting is used to predict the power loads

in the upcoming months, weeks, or even days. Forecasting

accuracy is crucial in power demand management because it

directly affects operators' economic costs in the competitive

power market [1]. Short-term load forecasting data indicate

that not only can it optimize the combination of generator

sets, economical dispatching, and the calculation of power

flow for power generation, but it also ensures the financially

1. Department of Information Technology Management, Science and

Research Branch, Islamic Azad University, Tehran, Iran.
2. Department of Industrial Management, Science and Research Branch,

Islamic Azad University, Tehran, Iran.

secure operation of the power system [2].

Short-term load forecasting (STLF) is primarily conducted

using methods such as convolutional neural networks [3],

fuzzy time series [4], and genetic algorithms [5], among other

methods. Despite the widespread use of these techniques,

several issues remain. For instance, (1) forecasting is

complicated and simple mathematical formulas are not

sufficient enough to solve this problem; (2) external factors

such as weather conditions and consumer demands can lead

to a dynamic environment that makes load forecasting very

challenging; and (3) often models overfit or fall into local

optima. Therefore, it is crucial to develop more precise and

easier-to-understand models.

Short-term load forecasting is a crucial aspect of power

system operations, enabling grid operators to make informed

decisions regarding generation scheduling, demand response,

and system reliability. With the growing integration of

renewable energy sources and smart grid technologies, the

accuracy and efficiency of STLF have become increasingly

important. Over the past decade, significant advancements

have been made in this field, driven by developing novel

forecasting models, integrating big data analytics, and

applying machine learning techniques.

The k-nearest neighbor (k-NN) algorithm [6] is a helpful

tool that can be simply implemented for forecasting. It

should, therefore, be one of the first options when there is

little or no prior knowledge about the distribution data

because it is frequently used to solve nonlinear problems in

which the collected data do not always follow the linear

assumption. Furthermore, it effectively minimises the effects

of the variables on the experimental processes [7]. It makes

no assumptions about the collected data; however, it is

sensitive to outliers.

To capture uncertainty and reflect the range of electrical

load fluctuation, Dong et al. [8] proposed a deep learning

strategy based on k-NN to solve the high computational cost

due to the intricate network structure. The k-NN’s approach

is first used to find elements of previous electrical load time

series similar to the future values by measuring the distance

between the training and testing datasets. Then, for multi-

objective optimization, the second generation of the non-

dominated sorting genetic algorithm is used to determine the

maximum forecasting accuracy and the smallest category

number of k-nearest neighbors. The prediction intervals are

obtained using modified non-parameter kernel density

estimation based on the network's forecasting outcomes.

To implement LMNN for short-term load forecasting, the

3. Department of Industrial Management, Central Tehran Branch, Islamic

Azad University, Tehran, Iran.
• Corresponding author Email: toloie@gmail.com

Electrical Load Forecasting Using a Hybrid

Large Margin Nearest Neighbor Method

Alieh Ashoorzadeh 1 , Abbas Toloie Eshlaghy•2 and Mohammad Ali Afshar Kazemi3

T

mailto:mail:%20toloie@gmail.com

38 Volume 4, Number 1, May 2024

algorithm must first be trained on historical load data to

identify the underlying patterns and correlations. The model

can then predict the short-term load demand using the present

input attributes. With the help of this strategy, utilities will be

able to decide with confidence on resource allocation, energy

production, and grid stability shortly.

Like every forecasting technique, LMNN is not without its

pitfalls. The dynamic nature of power consumption patterns,

which are impacted by several variables, including the

holidays and unforeseen events, is one major difficulty. The

model must be modified for accurate forecasts to account for

these differences. Furthermore, there may be issues with data

availability and quality because erroneous or missing data

could make the model unreliable [9].

LMNN must be continuously improved to overcome the

obstacles and increase accuracy and reliability. This research

aims to improve the algorithm's ability to adjust to changing

load patterns by adding sophisticated features considering

other factors. Another important area of research is the

inclusion of real-time data streams, which makes forecasts

more resilient to unanticipated occurrences by enabling the

model to react quickly to abrupt changes in demand.

LMNN models can generate more reliable forecasts if the

input data is precise, comprehensive, and indicative of the

real load conditions. The production of comprehensive

datasets that represent a variety of scenarios is made possible

by cooperative efforts between utilities, research institutes,

and data suppliers. This allows the algorithm to generalize

effectively across a range of settings [10].

Deploying LMNN has broader goals than just improving

operations right away. LMNN's precise forecasting is

becoming increasingly important for utilities as they work to

incorporate renewable energy sources into the grid and

balance supply and demand. This is consistent with the larger

goal of decreasing environmental impact and fostering

sustainability. Through joint research, the energy industry

may overcome obstacles and improve its capabilities, paving

the way for more adaptable and robust short-term load

forecasting, ultimately contributing to a more sustainable and

efficient energy ecosystem.

A. Motivation and Contribution

Load forecasting plays a significant role in the planning

and operations of electric utilities. Because of the highly

developed electricity markets and the rapidly growing power

systems of the modern world, load forecasting is becoming

an essential part of power system operation scheduling. If the

load forecasting is accurate, there is a good possibility of

savings in control operations and decision-making, such as

dispatch, unit commitment, fuel allocation, power system

security assessment, and off-line analysis. Consequently,

improving the accuracy of short-term load forecasting has

always been the primary objective of load forecasting

research.

Our proposed approach seeks to solve the local optimum

problem of LMNN, optimizes the cost function that

determines the distances between instances, and introduces a

cost function to calculate the fitness value. Due to the issues

with the k-NN and LMNN methods, we first use the genetic

algorithm to narrow down the range of the solution space.

Then, we use gradient descent to determine the optimal value

of the parameter in the cost function. This allows us to

optimize the objective function in our method to obtain the

distance for the test data and more accurate results.

The main contribution of this paper lies in developing a

novel short-term load forecasting model that combines the

Large Margin Nearest Neighbor (LMNN) algorithm with a

hybrid optimization approach using genetic algorithms and

gradient descent. Key contributions include: (1) Proposing a

method that addresses limitations in traditional LMNN and k-

NN algorithms, such as sensitivity to local optima and

distance metric inefficiencies. (2) Incorporation of distance

learning in a way that the method optimizes the Mahalanobis

distance metric within LMNN to better classify and forecast

electricity loads, enhancing the algorithm's adaptability to

dynamic energy consumption patterns. (3) Improving

forecasting accuracy and demonstrating superior

performance in short-term load forecasting compared to

traditional methods like Autoregressive Moving Average

(ARMA) and Back-Propagation Neural Network (BPNN), as

evidenced by lower forecasting errors (e.g., RMSE, NMSE).

(4) Validating the forecasting model using real-world hourly

electricity load data from the National Electricity Market of

Australia, showing its utility in modern power systems.

The rest of this paper is structured as follows: a literature

review is in Section II. Materials and the proposed method

are discussed in Section III. Simulation results are shown and

discussed in Section IV. Finally, the conclusion is presented

in Section V.

II. LITREATURE REVIEW

Ashfaq and Javaid [11] addressed the problem of

forecasting electricity prices and loads by introducing an

improved new technique. Their upgraded technique

framework includes feature engineering and classification.

Feature selection and feature extraction are components of

feature engineering. For feature selection, Decision Tree

Regression (DTR) is employed. Redundancy in features is

removed through feature selection using Recursive Feature

Elimination (RFE). Singular Value Decomposition (SVD) is

used in feature extraction, the second step of feature

engineering, to minimize the dimensionality of features.

Forecasting and load prediction are the final steps. Two

current methods, k-NN and Multi-Layer Perceptron (MLP),

along with a new method called Enhanced k-NN (EKNN),

were utilized to forecast power load and pricing. The

accuracy of the suggested technique is superior to that of

MLP and k-NN.

The approach for Time Series Forecasting (TSF) based on

the k-Nearest Features in Time Series (KNFTS) and k-Nearest

Patterns in Time Series (KNPTS) algorithms, two variations

of the k-NN method was suggested by Gómez-Omella et al.

[12]. These algorithms are used to identify comparable

electricity usage patterns and then provide future forecasts,

while only a historical data set comprising the time and

energy consumption variables is used. Additionally, it

appears that using elastic similarity metrics like Dynamic

Time Warping (DTW) and Edit Distance for Real Sequences

(EDR) might be preferable to other error measurements.

A study by Marino, Amarasinghe, and Manic [13]

introduced a long short-term memory (LSTM) network for

STLF, demonstrating that LSTM outperforms traditional

neural networks by effectively capturing temporal

dependencies in load data. Their work highlighted the

importance of memory mechanisms in forecasting models,

particularly in handling non-linear and non-stationary time

series data. Similarly, Ryu, Noh, and Kim [14] compared

Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE) 39

various deep learning architectures, including convolutional

neural networks (CNNs) and gated recurrent units (GRUs),

concluding that hybrid models combining CNN and LSTM

layers provide superior forecasting performance due to their

ability to extract both spatial and temporal features from load

data.

Integrating external factors, such as weather conditions

and social events, into ML models has also been a focal point

in recent research. Kong et al. [15] proposed a hybrid model

that combines LSTM with attention mechanisms to focus on

relevant features in the input data selectively. This approach

significantly improves forecasting accuracy by dynamically

adjusting the importance of different inputs based on their

relevance to the prediction task. The study underscores the

potential of attention-based models in enhancing the

interpretability and performance of STLF models.

Ensemble methods, which combine multiple models to

improve forecasting accuracy, have seen considerable

adoption in STLF. These methods leverage the strengths of

individual models while mitigating their weaknesses, leading

to more robust predictions. For instance, Khwaja et al. [16]

proposed an ensemble framework that integrates support

vector regression (SVR), random forests (RF), and deep

learning models. Their approach demonstrated that ensemble

models consistently outperform single models across various

performance metrics, including mean absolute percentage

error (MAPE) and root mean square error (RMSE).

Another significant trend is the development of hybrid

models that combine different forecasting techniques to

capture diverse characteristics of load data. Bashir et al. [17]

introduced a hybrid model that integrates wavelet transform,

LSTM, and a time-varying seasonal model. Their study

showed that the hybrid model outperforms standalone models

by effectively decomposing the load data into different

frequency components, allowing each component to be

forecasted using the most suitable technique. This research

highlights the potential of hybrid models in addressing the

challenges posed by the complex and dynamic nature of load

data.

The proliferation of smart meters and the increasing

availability of high-frequency data have opened new avenues

for improving STLF. The use of big data analytics in STLF

has been explored by several researchers, focusing on

integrating large-scale datasets and developing real-time

forecasting models.

In a study by Li et al. [18], the authors utilized big data

analytics to process and analyze vast amounts of load and

weather data, demonstrating that real-time data integration

significantly enhances the accuracy of STLF. The study

employed a big data platform based on Apache Spark to

handle the computational demands of processing high-

frequency data, showcasing the feasibility of real-time load

forecasting in modern power systems. This research

emphasizes the importance of scalable and efficient data

processing frameworks in the era of big data.

Moreover, the role of feature selection and dimensionality

reduction techniques in handling large datasets has been a key

focus. Bezerra et al. [19] proposed a feature selection method

based on mutual information and principal component

analysis (PCA) to reduce the dimensionality of input data

while retaining the most informative features. Their approach

demonstrated that carefully selecting and transforming input

features leads to more accurate and computationally efficient

forecasting models.

Subbiah and Chinnappan [20] proposed RMR-HFS-

LSTM, a deep learning model combining Long Short-Term

Memory (LSTM) with hybrid feature selection, to improve

short-term load forecasting accuracy. Integrating filter

(RReliefF, mutual information) and wrapper (RFE) methods

reduces dimensionality and overfitting. Experiments on

European electricity data show that RMR-HFS-LSTM

outperforms MLP and RNN in MAPE and RMSE metrics.

Neeraj et al. [21] introduce the Singular Spectrum

Analysis-Long Short-Term Memory (SSA-LSTM) model for

electrical load forecasting, leveraging signal processing to

address the challenges of noisy and irregular data. SSA, a

signal processing technique, is used to filter out noise from

skewed load series, and the processed data is then used by the

LSTM model for accurate forecasting. Evaluated using five

datasets from the Australian Energy Market Operator

(AEMO), SSA-LSTM outperforms several state-of-the-art

models, including persistence, AR, ARMAX, SVR, RF,

ANN, DBN, and others, in terms of RMSE and MAPE for

both half-hourly and one-day ahead load forecasting.

Despite the advancements in STLF, several challenges

remain. One of the main challenges is handling uncertainty

and variability in load data, particularly with the increasing

penetration of renewable energy sources. To address this,

recent studies have explored probabilistic forecasting

methods that provide a range of possible outcomes rather than

a single-point estimate. For example, Jensen et al. [22]

proposed a probabilistic forecasting framework that

combines quantile regression with a deep learning model to

generate prediction intervals. This approach allows grid

operators to assess the uncertainty associated with load

forecasts and make more informed decisions.

Another challenge is the interpretability of complex

machine learning models. As models become more

sophisticated, understanding their decision-making process

becomes increasingly difficult. Recent research has focused

on developing interpretable models that balance accuracy

with transparency. For instance, Moon et al. [23] introduced

an interpretable neural network model that incorporates

explainability techniques such as SHAP (Shapley Additive

Explanations) values, enabling stakeholders to understand the

contribution of each input feature to the final forecast.

Research gaps that could be handled using a hybrid

method include:

Improving prediction accuracy with complex patterns:

load forecasting needs to handle complex patterns such as

seasonality, holidays, and unusual demand spikes. Simple k-

NN models may struggle with these intricate patterns,

especially if the data is sparse or noisy. LMNN can help by

optimizing the distance metric, focusing on finding relevant

neighbors even in complex, non-linear relationships. By

applying LMNN, the hybrid model can better capture

intricate demand patterns and improve forecasting accuracy.

Noise reduction and robustness: load forecasting data can

be noisy, with missing values or sensor errors. k-NN models

may be sensitive to noise, leading to inaccurate predictions.

LMNN's ability to learn a robust distance metric can reduce

the effect of noisy data by adjusting the space in which k-NN

operates. The hybrid model can better handle noise and

outliers, increasing the robustness of the forecasting model.

Handling non-linear relationships: load forecasting often

involves non-linear relationships between input features (e.g.

time of day and consumer behavior). k-NN is typically better

suited for linear relationships and can struggle with non-

40 Volume 4, Number 1, May 2024

linearities. LMNN can be used to learn a more flexible

distance metric that captures non-linear relationships between

the features. This hybrid method would allow the k-NN

algorithm to better handle complex, non-linear dependencies

in the data.

Adaptability to dynamic and evolving data: Load patterns can

evolve due to changes in consumer behavior, economic

conditions, or climate. Traditional k-NN models can struggle

to adapt to such dynamic changes without retraining the entire

model. By incorporating LMNN into the hybrid approach, the

model can more effectively adapt to changes in the

underlying distribution of the data, as LMNN adjusts the

distance metric based on new patterns in the data. This allows

the hybrid model to adjust and improve over time

dynamically.

In summary, short-term load forecasting has seen

significant advancements over the past five years, driven by

adopting machine learning and deep learning techniques,

developing ensemble and hybrid models, and integrating big

data analytics. However, challenges such as handling

uncertainty, improving model interpretability, and scaling to

real-time applications remain active research areas.

Continued efforts in these directions are essential for

enhancing the reliability and efficiency of STLF in modern

power systems.

III MATERIALS AND METHODS

A. The k-NN Algorithm

One popular method for classifying data is the k-NN

classification algorithm. One of the most fundamental

concepts in classification is used by the k-NN algorithm [24].

Based on supervised learning, this approach is among the

earliest for broad and non-parametric classification. This

strategy aims to find the closest k data available from the

training data. The new instance's distance from the training

instance set is first determined. Next, the matching class of

this instance is predicted by considering k members from the

new instance's closest neighbors. The sample size, the choice

of distance metric, and the value of k are the three main

variables that affect the k-NN algorithm's performance. The

choice of the distance metric significantly impacts the

algorithm's accuracy. One of the primary needs of the k-NN

method is the ability to measure the distance between two

data points. The objective of distance metric learning is to

derive the distance function (similarity) from the data such

that the logically similar data move toward each other while

the illogically similar data move away. Many learning

algorithms require a metric to calculate the distance or

similarity between objects. The distance between objects can

be determined using a variety of distance metrics, including

the Cosine, Manhattan, and Euclidean distances. However,

these metrics are not appropriate for every application, and a

more accurate metric can be obtained using the training data

[25]. Metric learning techniques have emerged as a result of

this. By using training data with concepts and meanings that

are comparable to one another, we want to determine the

distance function. Different data sets are kept apart from one

another. Metric learning techniques, like k-NN or k-means

clustering classification, are typically applied as pre-

processing for machine learning and pattern recognition

algorithms.

The k-NN algorithm consists of the following steps:

Step 1: Select the value of k.

Step 2: Calculate the distance of k number of neighbors.

Step 3: Sort distances in ascending order.

Step 4: Using the calculated distance, select the k closest

neighbors.

Step 5: Determine how many data items are in each

category among these k neighbors.

Step 6: Assign to the category where the neighbor count is

at its highest.

Fig. 1. The k-NN classifier.

The k-NN algorithm must determine how far the predicted

data point is from the known data point to choose the nearest

k labeled data, {𝑥1, 𝑥2, … , 𝑥𝑘}, where 𝑥1 stands for the known

point that is closest to the predicted point; 𝑥2 stands for the

known point that is the second closest to the predicted point,

and so on. Hence, the k-NN algorithm can be used as:

𝑠𝑖 =
1

𝑘
× ∑ 𝑠𝑥𝑗

𝑘

𝑗=1

 (1)

where 𝑠𝑖 is the ith predicted value and 𝑠𝑥𝑗
 is the predicted

value of the jth closest known point (𝑥𝑗). The k-NN classifier

is shown in Fig. 1.

B. Distance Learning Method and LMNN

Researchers have suggested several techniques to obtain

distance metric learning over the past few decades [26].

Replacing the Euclidian distance, which does not distinguish

between different data features, can significantly increase the

accuracy. There are linear methods and non-linear methods

for distance metric learning.

Assume a set of 𝑋 = {𝑥𝑖}∁𝑅𝑛 of data points, the general

Mahalanobis distance is as follows:

𝐷2(𝑥⃗𝑖 , 𝑥⃗𝑗) = (𝑥⃗𝑖 − 𝑥⃗𝑗)
𝑇

M(𝑥⃗𝑖 − 𝑥⃗𝑗) (2)

where M can be any positive matrix that is found by

optimization.

Mahalanobis distance is taught using the LMNN metric

learning method in the k-NN classifier [27]. This learning

method places a large distance between dissimilar data and its

k neighbors who share the same label. A group of k nearest

neighbors with the same label are considered the target data

in the LMNN method for the training data xi. It is necessary

that among the k nearest neighbors of the data xi, all labels are

different to carry out a successful k-NN classification. As a

result, when using the LMNN method, a zone is considered

for the data xi, which includes both the target data and a safety

margin. According to this definition, similar data placed in

this zone are hard to categorize and are regarded as noisy data.

The amount of noisy data in the LMNN learning method

needs to be reduced by the learning method.

C. Genetic Algorithm and Gradient Descent

Genetic algorithms [28] are evolutionary algorithms that

search and find optimal solutions. It searches a multi-

dimensional search space for the best answer. Genetic

algorithms produce a set that contains various solutions

instead of just one. Finding a suitable solution is more likely

when various points are considered. Every single one of them

is a vector in the multidimensional space. For problem-

Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE) 41

solving, genetic algorithms simulate an evolutionary

continuum in a computer environment. Unlike other

optimization methods, they develop a set of these structures

rather than just one structure for a given solution.

A gene includes each component of an individual. Genetic

algorithm processes on an evolutionary continuum to

determine the composition of the population as a whole. A

population of chromosomes that have been chosen at random

typically serves as the starting point for the genetic algorithm.

These chromosomes serve as models for potential solutions

to the problem. To simulate the natural reproduction and

mutation of species, it employs two main operators: crossover

and mutation. The fittest chromosomes are favored when

choosing which ones to combine and keep alive.

Gradient descent [29] is a general algorithm usually used

to find the optimal solution in an unconstrained multivariate

differentiable function. Gradient descent is not only used in

linear regression but can also be used in many machine

learning subjects. In general, this algorithm applies to infinite

parameters.

If we start from a point in the function, the fastest way to

reach the optimal point is to move along the path with the

greatest slope. The gradient of the function, which is the

partial derivatives of the function with respect to the variables

𝜃0, 𝜃1, … , 𝜃𝑛 indicates the greatest slope. Therefore, the

formulation of the problem is as follows:

We have a cost function 𝐽(𝜃0, 𝜃1, … , 𝜃𝑛) and we want to

minimize 𝜃0, 𝜃1, … , 𝜃𝑛. The algorithm starts with the initial

𝜃0, 𝜃1, … , 𝜃𝑛. The value of 𝜃0, 𝜃1, … , 𝜃𝑛 is changed towards

better results. The change of 𝜃0, 𝜃1, … , 𝜃𝑛 is proportional to

the partial derivatives of the cost function (𝜃0, 𝜃1, … , 𝜃𝑛).

Changing the value of 𝜃0, 𝜃1, … , 𝜃𝑛 continues until

𝐽(𝜃0, 𝜃1, … , 𝜃𝑛){𝜃𝑖: = 𝜃𝑖−∝∗ 𝜕 ∂𝜃𝑖⁄ 𝐽(𝜃0, 𝜃1, … , 𝜃𝑛)}

reaches the lowest point possible. The final solution may be

the local optimum point instead of the global optimum point.

In each iteration of the algorithm, the values of 𝜃0, 𝜃1, … , 𝜃𝑛

are updated simultaneously according to the partial

derivatives of the cost function with respect to the parameters.

α is called the learning rate and controls the length of steps

the algorithm takes in each iteration. Usually, its value is

between 0 and 1. If α is chosen to be very small, the

convergence happens later because the gradient descent

moves towards the minimum point with smaller steps. If α is

chosen large, the value of 𝐽(𝜃) may not decrease with each

iteration or it may not reach convergence. Often, the learning

rate is set at 0.1 [30].

D. Encoding Scheme

In the context of the STLF method using LMNN and GA,

an effective encoding scheme for representing potential

solutions is crucial. This encoding determines how candidate

solutions are structured and manipulated within the genetic

algorithm, directly influencing the optimization process and

the accuracy of the final forecast. Given the need to optimize

the transformation matrix L in the LMNN framework, the

chromosome representation must capture the essential

features of this matrix while allowing for efficient genetic

operations such as crossover and mutation.

The chromosome in this context represents a candidate

transformation matrix L, which plays a pivotal role in shaping

the feature space and influencing the accuracy of the nearest

neighbor calculations. For a dataset with d features, the

transformation matrix L is a d×d matrix. The matrix is

flattened into a single vector to represent this matrix within

the genetic algorithm. This vector then serves as the

chromosome, where each element corresponds to a specific

entry in the matrix L.

For example, consider a scenario where the input data has

three features d = 3. The transformation matrix L would be a

3×3 matrix with nine elements. This matrix is flattened into a

vector of length nine in the chromosome representation. The

vector is structured as {l11, l12, l13, l21, l22, l23, l31, l32, l33},

where each lij represents a specific entry in the matrix. This

encoding ensures that the entire structure of the

transformation matrix is captured in the chromosome,

allowing the genetic algorithm to explore the full space of

possible transformations.

Within the genetic algorithm, the chromosome undergoes

various operations that drive the optimization process.

Crossover is one of the primary mechanisms for generating

new candidate solutions by combining parts of two parent

chromosomes. In the context of this flattened matrix

representation, a single-point crossover might involve

selecting a point along the vector and swapping the

subsequent elements between two parent chromosomes.

Alternatively, a two-point crossover might involve selecting

two points and exchanging the genes between these points.

These crossover operations allow the genetic algorithm to

recombine different parts of the transformation matrices,

potentially leading to better-performing solutions.

Mutation is another critical operation that introduces

variability into the population, helping the algorithm avoid

local minima. In the context of this method, a uniform

mutation might involve randomly selecting a gene (an

element of the matrix L and altering its value within a

predefined range. This could mean adding or subtracting a

small, fixed amount. A more sophisticated approach might

involve Gaussian mutation, where a small, normally

distributed random value is added to a selected gene. This

type of mutation allows for subtle adjustments to the

transformation matrix, which can fine-tune the model's

performance.

The fitness of each chromosome, or candidate

transformation matrix, is evaluated based on how well it

minimizes the cost function defined in our method (equation

(6)). The cost function reflects the performance of the

transformation matrix in terms of how effectively it separates

different classes in the feature space, thus directly impacting

the load forecasting accuracy. Chromosomes that result in a

lower cost function value are deemed more fit and are more

likely to be selected for crossover and mutation in subsequent

generations.

It might be necessary to impose constraints during the

optimization process to ensure that the transformation matrix

remains numerically stable and does not lead to overfitting.

One common approach is regularizing the matrix L, perhaps

by normalizing its Frobenius norm. This constraint would

prevent the elements of L from becoming too large, which

could otherwise lead to instability in the model.

Regularization helps maintain a balance between model

complexity and generalization, ensuring that the final

solution performs well not only on the training data but also

on unseen test data.

In summary, the chromosome representation in this Short-

Term Load Forecasting method is a flattened vector of the

transformation matrix L, capturing all the essential elements

in a format suitable for genetic manipulation. The genetic

algorithm operates on these chromosomes through crossover

42 Volume 4, Number 1, May 2024

and mutation, exploring the space of potential solutions and

optimizing the transformation matrix to minimize the cost

function. This process is guided by fitness evaluation, with

constraints like normalization applied to ensure the stability

and effectiveness of the resulting model.

E. Proposed LMNN Classifier

Assuming a set of points x1, x2, x3,…,xn which labels are yi

(i=1,2,…,n). The goal is to learn a linear transformation L

leading to the following transformed distance:

𝐷2(𝑥⃗𝑖 , 𝑥⃗𝑗) = ‖L(𝑥⃗𝑖 − 𝑥⃗𝑗)‖
2

= (𝑥⃗𝑖 − 𝑥⃗𝑗)
𝑇

L𝑇L(𝑥⃗𝑖 − 𝑥⃗𝑗)
(3)

where L is a d×d matrix, and d is the dimension of the input

vector. For each input xi, k target neighbors are selected which

are k inputs with the same label as xi. The target neighbors

can be identified as the k nearest neighbor with the same label

as xi. Fig. 2 illustrates the LMNN algorithm.

Fig. 2. Illustration of Large Margin Nearest Neighbor algorithm.

There are two terms in our objective function for the

distance metric. The first term seeks to shorten the distance

between any given data and its immediate neighbors. In

contrast, the second term seeks to lengthen the distance

between any given data and all other data not belonging to the

same class.

These two terms compete because reducing the distance

between samples reduces the first part while increasing it

reduces the second. The large separation between each input

and its target neighbors is penalized in the cost function's first

section. The sum of squares of this distance is as follows

when the input space is transformed linearly:

𝜀1(L) = ∑‖L|𝑥⃗𝑖 − 𝑥⃗𝑗|‖

𝑗→𝑖

2

 (4)

where L is a d×d matrix d is the dimension of the input

vector, and 𝑥⃗𝑖 and 𝑥⃗𝑗 are inputs.

In the linear transformation of the input space, this

expression generates a pulling force that pulls the target's

surrounding neighbors toward it. The expression mentioned

above does not penalize the large distance between all of the

data bearing the same label, only the large distance between

the inputs and their target neighbors. The second case is being

penalized on purpose. Thus, the way that our method differs

from many other distance metric approaches is that it

penalizes great distances between neighbors.

The second part of the cost function penalizes the short

distance between data with different labels:

𝑡ℎ𝑒 𝜀2(L) = ∑ ∑(1 − 𝑦𝑖𝑙) [1

𝑙𝑖,𝑗→𝑖

+ ‖L(𝑥⃗𝑖 − 𝑥⃗𝑗)‖
2

− ‖L(𝑥⃗𝑖 − 𝑥⃗𝑙)‖2]
+

(5)

where   ()max 0,z z
+
= is the hinge loss. L is a d×d

matrix, and 𝑥⃗𝑖 and 𝑥⃗𝑗 are inputs. If yi=yl then yil=1, otherwise

yil=0;

The goal is to optimize the cost function to fine better

neighbors and determine the data class. Our cost function

becomes:

 𝑐𝑜𝑠𝑡(L, 𝑋) = (1 − 𝜇)𝜀1(L) + 𝜇𝜀2(L)

 = (1 − 𝜇) ∑‖L|𝑥⃗𝑖 − 𝑥⃗𝑗|‖

𝑗→𝑖

2

+ 𝜇 ∑ ∑(1 − 𝑦𝑖𝑙) [1

𝑙𝑖,𝑗→𝑖

+ ‖L(𝑥⃗𝑖 − 𝑥⃗𝑗)‖
2

− ‖L(𝑥⃗𝑖 − 𝑥⃗𝑙)‖2]
+

(6)

where the positive constant μ changes the importance of

those two terms.

LMNN uses semi-definite programming (SDP) to

transform the distance metric learning problem into a convex

problem [31]. The SDP is:

Minimize ∑ 𝜂𝑖𝑗

𝑖𝑗

(𝑥⃗𝑖 − 𝑥⃗𝑗)
𝑇

M(𝑥⃗𝑖 − 𝑥⃗𝑗)

+ 𝑐 ∑ 𝜂𝑖𝑗

𝑖𝑗

(1 − 𝑦⃗𝑖𝑙)𝜀𝑖𝑗𝑙
(7)

where M is the semi-definite matrix of the Mahalanobis

metric, c is the control variable and 𝜀𝑖𝑗𝑙is the slack variable

for hinge loss.

With conditions:

(𝑥⃗𝑖 − 𝑥⃗𝑙)𝑇M(𝑥⃗𝑖 − 𝑥⃗𝑙) − (𝑥⃗𝑖 − 𝑥⃗𝑗)
𝑇

M(𝑥⃗𝑖 − 𝑥⃗𝑗) ≥ 1 − 𝜀𝑖𝑗𝑙

𝜀𝑖𝑗𝑙 ≥ 0

M ≻ 0

Equation (6)'s cost function expressed in terms of L is not

convex. Elements of L employ the gradient descent approach

to minimize this function. However, this strategy is prone to

becoming stuck in local minima. The outcomes of this

gradient descent method typically rely on initial L estimates.

As a result, they might not be applied to many problems or

applications. In order to overcome this issue and optimize the

objective function for more accurate classification, first, we

use a genetic algorithm to find the global optimal range of the

objective function, and then by using the gradient descent

method, it is precisely determined by obtaining the optimal

point of the parameter L in the cost function.

The suggestion to increase the efficiency of the global

optimization methods is to combine the local optimization

methods with the global one, which has the advantage of

increasing the speed along with dodging local optima traps.

After L is obtained, the distance between the test data and the

neighboring points is determined to determine the similarity,

and it is calculated based on the type of neighbors of the data

set.

Our method can be summarized as follows: first, we

choose the appropriate k and divide the dataset into training

and test data. The cost function is defined using equation (6).

Then, using the genetic algorithm, Lg is optimized. The first

Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE) 43

step of the genetic algorithm is to find an initial population

and the rate of mutation and crossover. Until the end criterion

is met, parents are chosen, crossover and mutation are carried

out, a new generation of offspring is created, and their fitness

value is calculated. These steps are repeated until the semi-

optimum Lg is found. The optimum L is obtained by gradient

descent. Initially, learning rate α is defined, and L0=Lg is set.

Steps of gradient descent are repeated until optimum L is

found. Then, the distance between the test and all training

data is calculated using equation (3).

F. Short-Term Load Forecasting Based on LMNN

The specified implementation process includes the

following steps to create the short-term load forecasting

model based on the suggested LMNN algorithm: (1)

Choosing the value of k. The majority of the k nearest objects

for a sample (S) in its associated feature space belonged to a

particular category, and so did the sample. Then, based on the

traits of the objects in this category, the suitable nearest

neighbor parameter, k, is chosen. Because of these traits,

patterns of similar electricity consumption will undoubtedly

clump together in a particular area; (2) Building the output set

and sample set. Calculate the distance between the predicted

data point and the known data point based on the random

distribution (to ensure that all electricity consumptions are

considered, not just the local optima). The weight for each

predicted data point is then equal to 1/distance. Ultimately, it

would be possible to obtain the predicted value for each data

point. (3) Analysis of forecasting accuracy. The root mean

square error (RMSE) and the normalized mean square error

(NMSE) are used to assess the forecasting accuracy [32].

Equations (8) and (9) are used to calculate them, respectively.

The proposed model's reliability and accuracy would then be

further verified using the forecasting results computed by the

MATLAB simulation and the actual data values.

RMSE = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1
 (8)

NMSE =
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 (9)

where 𝑦𝑖 stands for the actual load value and 𝑦̂𝑖 stands for

the ith predicted load value. n is the total number of predicted

loads, and 𝑦̅ is the mean value of n actual load values. The

data are divided into two samples: a quarterly sample and a

monthly sample. In the quarterly sample, the first two months'

data serve as samples that predict the third month's load

values. In the monthly sample divided up by month, the data

from the first three weeks are used to forecast the last week's

load.

The flowchart of the algorithm is illustrated in Fig. 3, and

the pseudocode of our method is as follows:

Fig. 3. Flowchart of our proposed method

Pseudocode for Short-Term Load Forecasting using LMNN and Genetic Algorithm

Step 1: Initialize parameters

Initialize k # Number of nearest neighbors

Divide the dataset into training_data and test_data

Define cost function based on equation (6)

Step 2: Genetic Algorithm to optimize Lg

Initialize Genetic Algorithm parameters

Initialize population_size # Size of the population

Initialize mutation_rate # Rate of mutation

Initialize crossover_rate # Rate of crossover

Initialize max_generations # Maximum number of generations

Initialize Lg_population with random values

44 Volume 4, Number 1, May 2024

Step 3: Main Genetic Algorithm loop

for generation in range(max_generations):

 # Evaluate fitness of each individual in the population

 for each individual in Lg_population:

 Calculate fitness value of individual using cost function

 # Selection: Choose parents for crossover

 parents = Select parents from Lg_population based on fitness values

 # Crossover: Generate new offspring

 offspring_population = []

 while size of offspring_population < population_size:

 parent1, parent2 = Randomly select two parents from parents

 child1, child2 = Perform crossover on parent1 and parent2 with

probability crossover_rate

 offspring_population.append(child1)

 offspring_population.append(child2)

 # Mutation: Apply mutation to offspring

 for each offspring in offspring_population:

 Apply mutation to offspring with probability mutation_rate

 # Replace the old population with the new population

 Lg_population = offspring_population

 # Check termination condition (e.g., max generations or convergence)

 if termination_condition_is_met:

 break

Step 4: Obtain semi-optimum Lg

Lg = Best individual in the final Lg_population

Step 5: Gradient Descent to find the optimum L

Initialize learning_rate α

Set L0 = Lg

Initialize tolerance and max_iterations for gradient descent

Step 6: Main Gradient Descent loop

for iteration in range(max_iterations):

 # Calculate the gradient of the cost function with respect to L

 gradient = Calculate gradient of cost function at L0

 # Update L

 L_new = L0 - α * gradient

 # Check for convergence

 if |L_new - L0| < tolerance:

 break

 # Update L0 for the next iteration

 L0 = L_new

The optimal transformation matrix L is found

L_optimal = L_new

Step 7: Calculate the distance between test data and all training data using

equation (3)

for each test_point in test_data:

 distances = []

 for each training_point in training_data:

 distance = Calculate distance between test_point and training_point

using equation (3) and L_optimal

 distances.append(distance)

 # Sort distances to find the nearest neighbors

 nearest_neighbors = Sort distances and select the k nearest neighbors

Step 8: Use the nearest neighbors for Short-Term Load Forecasting

Forecast the load using the nearest neighbors' information

forecasted_load = Predict load based on nearest_neighbors

Here’s a detailed breakdown of the proposed algorithm:

Step 1: Data Preparation

Dataset Division: The dataset is divided into training and

test sets. The training set is used to train the model, while the

test set is used to evaluate its performance.

Step 2: Selection of k

Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE) 45

Choosing k: The value of k, which represents the number

of nearest neighbors to consider, is selected. This is a crucial

parameter that affects the performance of the k-NN algorithm.

Step 3: Cost Function Definition

Cost Function: A cost function evaluates the model's

performance. This function typically measures the error

between the predicted and actual values.

Step 4: Genetic Algorithm Optimization

Initial Population: The genetic algorithm starts with a

randomly generated population of potential solutions

(chromosomes), each representing a set of parameters for the

distance metric.

Fitness Evaluation: Each chromosome is evaluated based

on its fitness, which is determined by how well it minimizes

the cost function.

Selection, Crossover, and Mutation: The fittest

chromosomes are selected to create a new generation.

Crossover and mutation operators are applied to introduce

variability and explore new solutions.

Iteration: This process is repeated until a stopping criterion

is met, such as a maximum number of generations or

convergence of the population.

Step 5: Gradient Descent Optimization

Initial Parameters: The best parameters identified by the

genetic algorithm are used as the starting point for gradient

descent.

Learning Rate: A learning rate (α) is defined to control the

step size during optimization.

Parameter Update: The parameters are updated iteratively

using the gradient of the cost function until the optimal

parameters are found.

Step 6: Distance Calculation

Mahalanobis Distance: The optimized parameters are used

to calculate the Mahalanobis distance between the test data

and the training data. This distance metric accounts for the

correlations between different features, making it more

effective than traditional metrics like Euclidean distance.

Step 7: Classification and Forecasting

Classification: The algorithm is applied using the

optimized distance metric. The algorithm identifies the k

nearest neighbors of the test instance and assigns a category

based on the majority class among these neighbors.

Forecasting: The final output is the forecasted load value

based on the classification results.

IV. RESULTS and DISCUSSION

Simulations are implemented using MATLAB. The

learning rate is set to 0.1, and µ is set to 0.7. For the genetic

algorithm, the population size is 30, and the number of

generations is 250 through trial and error to balance accuracy

and speed. Crossover and mutation rates are set to 0.8 and

0.05, respectively. The selection type is a roulette wheel, the

crossover type is a random pair and random point, and the

mutation type is a random gene at a random chromosome.

The gradient descent stop threshold is set to 0.0001. The

hourly electricity load data were obtained from the

National Electricity Market of Australia for the entire 2021

calendar year. Load data encapsulates recurring patterns and

is independent of weather conditions, which might not always

be available or reliable.

A. Analysis for Different Values of k

Parameter k is a parameter for the LMNN algorithm that is

used to classify samples based on the category label that

occurs the most frequently among the k training samples

closest to the chosen data point. The classification accuracy

will decrease if the value of k is either too high or too low.

When the value of k is low, the model is more complex,

making it more likely to suffer from over-fitting, and the

errors rise as a result. On the other hand, if k has a large value,

the estimation errors would be reduced, but the errors would

also increase, and the training data points' distance from the

input data point would also impact the forecasting outcomes.

As a result, the value of k is frequently set to a low value in

general applications of the LMNN algorithm.

This study used different values to evaluate the

experimental findings and choose an appropriate value for k.

For instance, Tables I and II show, respectively, the

determined suitable values of k for monthly samples and

quarterly samples. Values above 3 have been shown to

degrade the results overall.

TABLE I
 Error Comparison for Various Values of k in Monthly Samples (Measured

in Megawatts).

Month
k=1 k=2 k=3

RMSE NMSE RMSE NMSE RMSE NMSE

1 981.26 0.45 673.93 0.21 918.19 0.47

2 422.13 0.09 394.30 0.08 475.55 0.14

3 1243.86 1.09 732.52 0.38 1038.65 0.87

4 477.60 0.23 500.94 0.25 536.77 0.29

5 399.31 0.14 477.57 0.20 487.05 0.20

6 347.79 0.06 264.86 0.03 375.29 0.07

7 657.47 0.37 673.81 0.39 726.12 0.45

8 1318.91 1.43 949.29 0.74 897.15 0.66

9 538.11 0.32 558.66 0.35 637.55 0.59

10 2204.65 1.04 2167.92 1.00 2166.19 0.99

11 395.15 0.12 368.92 0.09 264.19 0.05

12 1523.11 1.02 1272.35 0.71 1277.71 0.72

TABLE II
 Error Comparison for Various Values of k in Quarterly Samples (Measured

in Megawatts).

Season
k=1 k=2 k=3

RMSE NMSE RMSE NMSE RMSE NMSE

1 998.92 0.55 986.24 0.53 993.68 0.54

2 1648.50 0.64 1574.99 0.52 1677.41 0.59

3 572.34 0.17 636.54 0.21 755.07 0.29

4 1320.92 1.14 936.19 0.58 855.62 0.48

It shows that when k was set to 2, the error is reasonably small

for both cases.

The proposed LMNN model performed the forecasting

processes and the associated results. The load data were

obtained from the National Electricity Market of Australia for

the year 2021. The data for this paper were gathered by

dividing each day into three equal parts and averaging each.

The electricity forecasting value for one week (21 eight-hour

splits) obtained from the LMNN model is shown in Fig. 4.

46 Volume 4, Number 1, May 2024

January

February

March

April

May

June

July

August

Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE) 47

September

October

November

December

Fig. 4. Forecasting results for the last week of each month.

Fig. 4 demonstrates that overall, there is a reliable trend

between the actual data and the forecasted data. It shows that

the proposed LMNN model is appropriate for short-term

prediction despite some errors. Each day starts with the

lowest load at the first third of the day, which increases in the

middle of the day, and then comes back down at the last third

of the day while staying above the first third, which creates

repeated patterns in these fig.s.

B. Forecasting Results Comparison

The Autoregressive-Moving Average model [33] and the

Back-Propagation Neural Network model [34] were chosen

for comparison analysis to show the superiority of the

proposed model. Table III displays the results of the

comparison between models using root mean square error

(RMSE), normalized mean square error (NMSE), mean

absolute error (MAE), and mean absolute percentage error

(MAPE) [35].

Time series data analysis and forecasting are done

statistically using the Autoregressive Moving Average

(ARMA) model. It consists of moving average (MA) and

autoregression (AR). An observation in a time series and a

specific number of lagged observations (previous values) are

related to an autoregressive component. It suggests that the

series' current value is a linear combination of its earlier

values. The moving average component represents the

relationship between the current observation and the residual

errors from a moving average model applied to lag

observations. An ARMA model seeks to represent the

temporal dependencies in a time series dataset by merging

these two elements. Various time series data, including stock

prices, temperature variations, economic indicators, and

more, can be modeled and forecasted using ARMA models.

Backpropagation Neural Network (BPNN) is an artificial

neural network designed to learn and recognize patterns in

data. It comprises interconnected nodes arranged in layers,

allowing data to move from input to output nodes via hidden

layers. Using a training algorithm known as backpropagation,

BPNNs gradually minimize errors over several iterations by

adjusting the network's weights and biases in response to

variations between predicted and actual outputs. Because of

their feedforward network architecture, BPNNs can perform

well in various tasks like pattern recognition, regression, and

classification. Because of their capacity to represent intricate

relationships within data, they find applications in a wide

range of industries, including finance, healthcare, image and

speech recognition, and more. The number of layers was

chosen as 3 with 10 neurons, as recommended by the original

article. The Tansig and Logsig functions were also chosen for

the hidden and output layers, respectively, for the same

reason.

48 Volume 4, Number 1, May 2024

TABLE III

Comparison of Four Forecasting Models (LMNN, k-NN, ARMA, and BPNN). Unit: MW.

Month
LMNN k-NN

RMSE NMSE MAE MAPE (%) RMSE NMSE MAE MAPE (%)

1 649.91 0.38 1.15 4.29 946.28 0.43 1.30 6.58

2 379.60 0.71 1.35 3.88 407.08 0.09 1.84 6.33

3 706.40 0.33 1.09 3.97 1199.52 1.05 1.21 5.97

4 483.08 0.96 1.08 4.39 460.57 0.22 1.20 8.81

5 460.55 0.09 1.05 4.18 385.08 0.13 1.14 6.32

6 300.88 0.69 1.24 4.57 335.39 0.06 1.39 6.85

7 649.79 0.38 1.02 4.36 634.03 0.35 1.14 6.64

8 915.45 0.71 0.98 4.15 1271.89 1.38 1.03 7.33

9 538.74 0.33 0.94 3.94 518.92 0.31 1.05 5.91

10 2090.63 0.96 1.47 4.87 2126.05 1.00 1.64 7.72

11 355.77 0.09 1.22 4.45 381.06 0.11 1.36 9.17

12 1226.99 0.69 1.12 4.08 1468.80 0.99 1.15 6.12

Month
ARMA BPNN

RMSE NMSE MAE MAPE (%) RMSE NMSE MAE MAPE (%)

1 1116.87 0.42 1.45 16.87 2509.89 0.45 1.91 22.50

2 1083.87 0.61 1.36 15.47 2343.75 0.64 1.90 21.38

3 867.28 0.39 1.22 14.64 1899.53 0.63 1.49 18.72

4 808.59 0.38 1.13 14.20 2694.52 0.51 2.05 25.61

5 818.04 0.43 1.18 13.42 1397.62 1.05 1.23 14.28

6 1138.03 0.53 1.63 16.48 4405.28 0.54 3.36 33.77

7 835.01 0.52 1.19 12.34 1498.19 0.45 1.12 12.21

8 924.46 0.45 1.01 11.77 1565.69 0.64 1.30 14.92

9 725.88 0.40 1.01 12.44 1547.61 0.63 1.28 15.40

10 1730.04 0.39 1.85 99.91 3296.65 0.51 2.26 87.41

11 958.97 0.32 1.25 14.27 2612.32 1.05 1.76 19.50

12 1375.49 0.37 1.20 15.54 1651.78 0.54 1.25 17.91

V.CONCLUSION

This study built a new short-term load forecasting model

using the large margin nearest neighbor algorithm. This

proposed model was then used to perform the actual short-

term load forecasting task. It would be very beneficial to

suggest new load prediction techniques and enhance existing

ones. Conventional techniques frequently rely significantly

on the approach taken to determine how similar two samples

are. In fixing the LMNN's premature convergence issue and

refining the cost function to determine the separations

between data, we also introduced a cost function to compute

data similarities. The genetic algorithm was utilized to narrow

the solution space's range, and gradient descent was then

employed to determine the cost function's ideal parameter.

The following are a couple of findings: (1) It is evident that

the proposed LMNN model has higher forecasting accuracy

demonstrated via forecasting error comparison. (2) The

proposed model's ability to predict is superior to that of the

ARMA model and the BPNN model when compared. It can

better meet the development needs of today's grids and

control systems.

Innovations in our proposed approach include:

• Hybrid Optimization Approach: The integration of

genetic algorithms with gradient descent in the

LMNN model addresses the limitations of

traditional algorithms, improving adaptability and

performance.

• Distance Learning Enhancement: The optimization

of the Mahalanobis distance metric within LMNN

allows for better classification and forecasting of

electricity loads, accommodating dynamic

consumption patterns.

• Real-Time Data Integration: Utilization of data

analytics for processing load data enhances

forecasting accuracy, showcasing the feasibility of

real-time applications in modern power systems.

• Local Optima Avoidance: The combination of GA

and gradient descent helps avoid local optima traps,

ensuring a more reliable search for the best

parameters.

• Adaptability: The method is designed to adapt to

dynamic energy consumption patterns, making it

suitable for various modern power systems.

REFERENCES

[1] Ahmed and M. Khalid, “A review on the selected applications of

forecasting models in renewable power systems,” Renewable and
Sustainable Energy Reviews, vol. 100, pp. 9–21, Oct. 2018.

[2] O. Rubasinghe et al., “Highly accurate peak and valley prediction short-

term net load forecasting approach based on decomposition for power
systems with high PV penetration,” Applied Energy, vol. 333, p. 120641, Jan.

2023.

[3] S. H. Rafi, N. Nahid-Al-Masood, S. R. Deeba, and E. Hossain, “A Short-

Term load forecasting method using integrated CNN and LSTM network,”

IEEE Access, vol. 9, pp. 32436–32448, Jan. 2021.
[4] H. J. Sadaei, P. C. De Lima E Silva, F. G. Guimarães, and M. H. Lee,

“Short-term load forecasting by using a combined method of convolutional

neural networks and fuzzy time series,” Energy, vol. 175, pp. 365–377, Mar.
2019.

[5] P. Ray, S. K. Panda, and D. P. Mishra, “Short-Term load forecasting

using genetic algorithm,” in Advances in intelligent systems and computing,
2018, pp. 863–872.

[6] P. Cunningham and S. J. Delany, “K-Nearest Neighbour Classifiers - a

Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE) 49

tutorial,” ACM Computing Surveys, vol. 54, no. 6, pp. 1–25, Jul. 2021.
[7] F. Martínez, M. P. Frías, M. D. Pérez, and A. J. Rivera, “A methodology

for applying k-nearest neighbor to time series forecasting,” Artificial

Intelligence Review, vol. 52, no. 3, pp. 2019–2037, Nov. 2017.
[8] Y. Dong, X. Ma, and T. Fu, “Electrical load forecasting: A deep learning

approach based on K-nearest neighbors,” Applied Soft Computing, vol. 99,

p. 106900, Nov. 2020.
[9] S. Curteanu, F. Leon, A.-M. Mircea-Vicoveanu, and D. Logofătu,

“Regression Methods Based on Nearest Neighbors with Adaptive Distance

Metrics Applied to a Polymerization Process,” Mathematics, vol. 9, no. 5, p.
547, Mar. 2021.

[10] M. Zhang, H. Li, and X. Deng, “Inferential statistics and machine

learning models for Short-Term Wind Power Forecasting,” Energy
Engineering, vol. 119, no. 1, pp. 237–252, Nov. 2021.

[11] T. Ashfaq and N. Javaid, “Short-Term Electricity Load and Price

Forecasting using Enhanced KNN,” 2019 International Conference on
Frontiers of Information Technology (FIT), pp. 266–2665, Dec. 2019.

[12] M. Gómez-Omella, I. Esnaola-Gonzalez, S. Ferreiro, and B. Sierra, “k-

Nearest patterns for electrical demand forecasting in residential and small
commercial buildings,” Energy and Buildings, vol. 253, p. 111396, Aug.

2021.

[13] D. L. Marino, K. Amarasinghe, and M. Manic, “Building energy load
forecasting using Deep Neural Networks,” 42nd Annual Conference of the

IEEE Industrial Electronics Society, pp. 7046–7051, Oct. 2016.

[14] S. Ryu, J. Noh, and H. Kim, “Deep neural network based demand side
short term load forecasting,” Energies, vol. 10, no. 1, p. 3, Dec. 2016.

[15] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, “Short-

Term residential load forecasting based on LSTM Recurrent neural
network,” IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 841–851,

Sep. 2017.

[16] A. S. Khwaja, A. Anpalagan, M. Naeem, and B. Venkatesh, “Joint
bagged-boosted artificial neural networks: Using ensemble machine learning

to improve short-term electricity load forecasting,” Electric Power Systems

Research, vol. 179, p. 106080, Nov. 2019.
[17] T. Bashir, C. Haoyong, M. F. Tahir, and Z. Liqiang, “Short term

electricity load forecasting using hybrid prophet-LSTM model optimized by

BPNN,” Energy Reports, vol. 8, pp. 1678–1686, Jan. 2022.

[18] J. Li, S. Zhang, and Z. Yang, “A wind power forecasting method based

on optimized decomposition prediction and error correction,” Electric Power

Systems Research, vol. 208, p. 107886, Feb. 2022.
[19] F. E. Bezerra, F. Grassi, C. G. Dias, and F. H. Pereira, “A PCA-based

variable ranking and selection approach for electric energy load forecasting,”

International Journal of Energy Sector Management, vol. 16, no. 6, pp.
1172–1191, Feb. 2022.

[20] S. S. Subbiah and J. Chinnappan, “Deep learning based short term load

forecasting with hybrid feature selection,” Electric Power Systems Research,
vol. 210, Sep 2022.

[21] N. Neeraj, J. Mathew, M. Agarwal, and R. K. Behera, “Long short-term

memory-singular spectrum analysis-based model for electric load
forecasting,” Electrical Engineering, vol. 103, no. 2, pp. 1067-1082, Apr.

021.

[22] V. Jensen, F. M. Bianchi, and S. N. Anfinsen, “Ensemble conformalized
quantile regression for probabilistic time series forecasting,” IEEE

Transactions on Neural Networks and Learning Systems, pp. 1–12, Nov.

2022.
[23] J. Moon, S. Rho, and S. W. Baik, “Toward explainable electrical load

forecasting of buildings: A comparative study of tree-based ensemble

methods with Shapley values,” Sustainable Energy Technologies and
Assessments, vol. 54, p. 102888, Nov. 2022.

[24] W. Xing and Y. Bei, “Medical Health big data classification based on

KNN Classification Algorithm,” IEEE Access, vol. 8, pp. 28808–28819,
Nov. 2019.

[25] L. Wang, X. Liu, J. Yi, Y. Jiang, and C.-J. Hsieh, “Provably robust

metric learning,” Neural Information Processing Systems, vol. 33, pp.
19302–19313, Jan. 2020.

[26] L. Yang and R. Jin, “Distance metric learning: A comprehensive

survey,” Michigan State Universiy, 2006.
[27] S. R. Silva, T. Vieira, D. Martínez, and A. Paiva, “On novelty detection

for multi-class classification using non-linear metric learning,” Expert

Systems With Applications, vol. 167, p. 114193, Nov. 2020.
[28] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic

algorithm: past, present, and future,” Multimedia Tools and Applications,

vol. 80, no. 5, pp. 8091–8126, Oct. 2020.
[29] S. H. Haji and A. M. Abdulazeez, “Comparison of optimization

techniques based on gradient descent algorithm: A review,” PalArch's

Journal of Archaeology of Egypt/Egyptology, vol. 18, no. 4, pp. 2715-2743,
2021.

[30] K. Chandra, A. Xie, J. Ragan-Kelley, and E. Meijer, “Gradient Descent:

The Ultimate Optimizer,” arXiv.org, Sep. 2019.
[31] J. Zhang, Y. Chen, and Y. Zhai, “Zero-Shot classification based on word

vector enhancement and distance metric learning,” IEEE Access, vol. 8, pp.

102292–102302, Jan. 2020.
[32] T. O. Hodson, “Root-mean-square error (RMSE) or mean absolute error

(MAE): when to use them or not,” Geoscientific Model Development, vol.

15, no. 14, pp. 5481–5487, Jul. 2022, doi: 10.5194/gmd-15-5481-2022.
[33] J. Lu, J. Peng, J. Chen, and K. A. Sugeng, “Prediction method of

autoregressive moving average models for uncertain time series,”

International Journal of General Systems, vol. 49, no. 5, pp. 546–572, Apr.

2020.

[34] H. K. Yadav, Y. Pal, and M. M. Tripathi, “Short-term PV power

forecasting using empirical mode decomposition in integration with back-
propagation neural network,” Journal of Information and Optimization

Sciences, vol. 41, no. 1, pp. 25–37, Jan. 2020.

[35] D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of
determination R-squared is more informative than SMAPE, MAE, MAPE,

MSE and RMSE in regression analysis evaluation,” PeerJ Computer

Science, vol. 7, p. e623, Jul. 2021.

