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Abstract

In this article, we study the uniqueness of higher order difference-differential polynomial ∆u
c f(z) and meromor-

phic(entire) functions with weights l ≥ 2, l = 1 and l = 0. We obtained the results which generalize and extend
due to [2, 13].
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1 Introduction, Definitions and Main Results

Nevanlinna theory is a branch of complex analysis that deals with the value distribution of meromorphic functions.
Rolf Nevanlinna developed it in the early 20th century and provides powerful tools to study the behaviour of mero-
morphic functions, particularly about their zeros, poles, and growth rates. Nevanlinna’s theory provides a deep and
rigorous framework for understanding the complex behaviour of meromorphic functions, making it an essential study
area in complex analysis.

For the elementary definitions and standard notations of the Nevanlinna value distribution theory such as T (r, f),

N(r, f), N
(
r, 1

f

)
, m(r, f) etc see Hayman [5]. The uniqueness theory of meromorphic functions focuses on the criteria

that allow for the existence of essentially only one function that meets these conditions. It demonstrated that any
non-constant meromorphic function may be uniquely defined by five values, i.e., if two non-constant meromorphic
functions f and g take the same five values at the same locations, then f ≡ g.

Let f and g be two non-constant meromorphic functions defined in the open complex plane and S(r, f) denote any
quantity satisfying S(r, f) = o(T (r, f)) as r → +∞ possibly outside a set I with finite linear measure. A meromorphic
function a(z) is called a small function concerning f(z) if T (r, a) = S(r, f). For a ∈ C∪ {∞}, if f(z)− a and g(z)− a
assume the same zeros with the same multiplicities, then we say that f(z) and g(z) share the value a CM (counting
multiplicity). If f(z) − a and g(z) − a assume the same zeros ignoring the multiplicities, then we say that f(z) and
g(z) share the value a IM (ignoring multiplicity).

Definition 1.1. [5] The order ρ(f) and hyper-order ρ2(f) of a meromorphic function f(z) are defined as,

ρ(f) = lim
r→∞

log T (r, f)

log r

∗Corresponding author
Email addresses: harinapw@gmail.com (Harina P. Waghamore), meghamm@bub.ernet.in (Megha M. Manakame)

Received: May 2024 Accepted: July 2024

http://dx.doi.org/10.22075/ijnaa.2024.34302.5121


2 Waghamore, Manakame

and

ρ2(f) = lim
r→∞

log log T (r, f)

log r
.

Definition 1.2. [8] For a positive integer p, we denote by Np

(
r, 1

f−a

)
the counting function of a-points of f , where

an a-point of multiplicity m is counted m times if m ≤ p and p times if m > p.

Definition 1.3. [8] Let f and g share the value a IM. We denote by N∗(r, a; f, g) the reduced counting function of
those a-points of f whose multiplicities differ from the multiplicities of the corresponding a-points of g.
Clearly, N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) + NL(r, a; g), where NL(r, a; f) denotes the
counting function of those 1-points of f and g, when two meromorphic functions f and g share the value 1 IM and z0
is a 1-point of f of order p, and a 1-point of g of order q, such that q < p.

Definition 1.4. [7] For a complex number a ∈ C∪ {∞}, we denote by Ek(a, f) the set of all a-points of f where an
a-point with multiplicity m is counted m times if m ≤ k and k+1 times if m > k. For a complex number a ∈ C∪{∞},
such that Ek(a, f) = Ek(a, g), then we say that f and g share the value a with weight k.

The definition implies that if f, g share value a with weight k, then z0 is a zero of f − a with multiplicity m(≤ k)
if and only if it is a zero of g − a with multiplicity m(≤ k) and z0 is a zero of f − a with multiplicity m(> k) if and
only if it is a zero of g − a with multiplicity n(> k), where m is not necessarily equal to n. We write f, g share (a, k)
to mean that f, g share the value a with wieght k. Clearly if f, g share (a, k) then f, g share (a, p) for all integers p,
0 ≤ p < k. Also we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a,∞) respectively.

Definition 1.5. [12] For a meromorphic function f , let us denote its difference operator ∆u
c f by,

∆u
c f(z) = ∆u−1

c (∆cf(z)) =

u∑
r=0

(−1)r
(
u

r

)
f(z + (u− r)c),

where c ∈ C, u(≥ 2) ∈ N, 0 ≤ r ≤ u.

We can see that ∆cf(z) = f(z + c) − f(z). recently, there has been a surge in interest in difference analogues
of Nevanlinna’s theory, with numerous works concentrating on the uniqueness and value distribution of difference
polynomials of whole or meromorphic functions. In 2010, Qi et al. [11] proved the following uniqueness theorem
regarding shift operator.

Theorem A.[11] Let f and g be transcendental entire functions of finite order, let c be a non-zero complex constant
and let n ≥ 6 be an integer. If fn(z)f(z + c) and gn(z)g(z + c) share z CM, then f(z) ≡ tg(z) for a constant t
satisfying tn+1 = 1.

In 2015, Y. Liu et al. [10] obtained the following results.

Theorem B. [10] Let c ∈ C\{0}, f(z) and g(z) be two transcendental meromorphic functions with finite order and
n ≥ 14, k ≥ 3 be two positive integers. If Ek(1, f

nf(z + c)) = Ek(1, g
ng(z + c)), then f(z) = t1g(z) or f(z)g(z) = t2,

for some constants t1 and t2 that satisfy tn+1
1 = 1 and tn+1

2 = 1.

Theorem C. [10] Let c ∈ C\{0}, f(z) and g(z) be two transcendental meromorphic functions with finite order and
n ≥ 16 be an positive integer. If E2(1, f

nf(z + c)) = E2(1, g
ng(z + c)), then f(z) = t1g(z) or f(z)g(z) = t2, for some

constants t1 and t2 that satisfy tn+1
1 = 1 and tn+1

2 = 1.

Theorem D. [10] Let c ∈ C\{0}, f(z) and g(z) be two transcendental meromorphic functions with finite order and
n ≥ 22 be an positive integer. If E1(1, f

nf(z + c)) = E1(1, g
ng(z + c)), then f(z) = t1g(z) or f(z)g(z) = t2, for some

constants t1 and t2 that satisfy tn+1
1 = 1 and tn+1

2 = 1.

In 2018, Banerjee and Majumder [2] considered transcedental entire functions of finite order and difference -
differential polynomial of the form [fn∆cf(z)]

(k) obtained following results.

Theorem E.[2] Let f(z) be a transcendental entire function of finite order such that ∆cf(z) ̸≡ 0 and α(z) be a
small function with respect to f(z). If n ≥ k + 2, then the difference-differential polynomial [fn∆cf(z)]

(k) − α(z) has
infinitely many zeros.

Theorem F.[2] Let f(z) and g(z) be transcendental entire functions of finite order and n, k be two positive integers.
Suppose that c is a non-zero complex constant such that ∆cf(z) ̸≡ 0 and ∆cg(z) ̸≡ 0. Let [fn∆cf(z)]

(k) and
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[gn∆cg(z)]
(k) share (1, k1) and one of the following conditions holds:

(i) k1 ≥ 2 and n > 2k + 5;
(ii) k1 = 1 and n > 5k

2 + 6;
(iii) k1 = 0 and n > 5k + 11.

Then one of the following conclusions holds:

(1) fn∆cf(z) ≡ gn∆cg(z);

(2) f(z) = c1e
az and g(z) = c2e

−az, where a, c1 and c2 are non-zero constants such that
(−1)k(c1c2)

n+1[(n+ 1)a]2k(2− eac − e−ac) = 1.

In 2022, Waghamore and Naveenkumar S. H.[13] considered the value distribution of difference - differential poly-
nomials and obtained following results.

Theorem G.[13] Let f and g be two transcendental meromorphic functions of finite order, and let c ∈ C. If
El(1, [f

n∆cf ]
(k))=El(1, [g

n∆cg]
(k)) and l,m, n are integers satisfying one of the following conditions:

(1) l ≥ 2 and n > 5k + 19;
(2) l = 1 and n > 6k + 21;
(3) l = 0 and n > 11k + 31.

Then one of the following conclusions holds:
(i) f(z) ≡ tg(z) for a constant t with tn+1 = 1;
(ii) f(z) = c1e

az and g(z) = c2e
−az, where a, c1 and c2 are non-zero constants such that

(−1)k(c1c2)
n+1[(n+ 1)a]2k(2− eac − e−ac) = 1.

Let P (z) = amzm + am−1z
m−1 + ... + a0 is a non-zero polynomial of degree m and Γ0 = m1 +m2, where m1 is

the number of the simple zeros of P (z) and m2 is the number of multiple zeros of P (z). Here, we used the idea of
weighted sharing values to extend the above results

Now, it will be interesting to study what happens to Theorem G when we consider a more generalized form
of the difference operator ∆u

c f instead of ∆cf(z), by considering the difference-differential polynomial of the form
fnP (f)∆u

c f and obtained the following results.

Theorem 1.6. Let f(z) and g(z) be any two transcendental meromorphic functions of finite order. Let l,m, n and
u are positive integers and c ∈ C. If El(1, [f

nP (f)∆u
c f ]

(k)) = El(1, [g
nP (g)∆u

c g]
(k)) then it satisfying one of the

following conditions:

(I) l ≥ 2 and n > 7u+ ku−m+ 3k + 2Γ0 + 10;

(II) l = 1 and n > 8u+ 3ku
2 + 4k + 5Γ0−2m

2 + 23
2 ;

(III) l = 0 and n > 13u+ 4ku+ 9k + 5Γ0 −m+ 19.

Then one of the following conclusions holds:

(i) [fn(z)P (f)∆u
c f(z)]

(k) · [gn(z)P (g)∆u
c g(z)]

(k) ≡ a2(z);

(ii) f ≡ tg for a constant t with td = 1, where d = GCD{k ∈ (n+m+1, ..., n+m+1− i, ..., n+1) : ak−n−1 ̸= 0};
(iii) f and g satisfy algebraic equation R(f, g) ≡ 0, where

R(ω1, ω2) = ωn
1 (z)P (ω1)∆

u
cω1(z)− ωn

2 (z)P (ω2)∆
u
cω2(z).

Corollary 1.7. Let f(z) and g(z) be any two transcendental meromorphic functions of finite order. Let l,m, n and
u are positive integers and c ∈ C. If El(1, [f

n∆u
c f ]

(k)) = El(1, [g
n∆u

c g]
(k)) then it satisfying one of the following

conditions.
(i) l ≥ 2 and n > 7u+ ku+ 3k + 10;
(ii) l = 1 and n > 8u+ 3ku

2 + 4k + 23
2 ;

(iii) l = 0 and n > 13u+ 4ku+ 9k + 19.

Then one of the conclusions of Theorem 1.6 holds.

Theorem 1.8. Let f(z) and g(z) be any two transcendental entire functions of finite order. Let l,m, n and u are
positive integers and c ∈ C. If El(1, [f

nP (f)∆u
c f ]

(k)) = El(1, [g
nP (g)∆u

c g]
(k)) then it satisfying one of the following

conditions:
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(i) l ≥ 2 and n > 2k + 4 + 2Γ0 −m;
(ii) l = 1 and n > 1

2 [5k + 9 + 5Γ0 − 2m];
(iii) l = 0 and n > 5k + 7 + 5Γ0 −m.

Then one of the conclusions of Theorem 1.6 holds.

2 Preliminaries

In this section we provide all the necessary Lemmas required to prove our theorems. Let us define,

H =

(
F ′′

F ′ − 2F ′

F − 1

)
−
(
G′′

G′ − 2G′

G− 1

)
. (2.1)

Lemma 2.1. [3] Let f(z) be a non-constant meromorphic function of finite order, Then

T (r, f(z + c)) = T (r, f) + S(r, f).

Lemma 2.2. [6] Let f(z) be a non-constant meromorphic function of finite order and c ∈ C. Then

N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f),

N (r, 0; f(z + c)) ≤ N (r, 0; f) + S(r, f).

Lemma 2.3. [3] Let f(z) be a non-constant meromorphic function of finite order and c ∈ C, we have

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= S(r, f).

Lemma 2.4. [7] Let f and g be two non-constant meromorphic functions. If E2(1;F ) = E2(1;G) then one of the
following cases holds:

(i) T (r) ≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) + S(r),

(ii) F = G,

(iii) FG = 1, where T (r) = max{T (r, F ), T (r,G)} and S(r) = o{T (r)}.

Lemma 2.5. [1] Let F and G be two non-constant meromorphic functions. If E1(1;F ) = E1(1;G) and H ̸≡ 0, then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) +
1

2
N(r, 0;F ) +

1

2
N(r,∞;F ) + S(r, F ) + S(r,G).

The same inequality holds for T (r,G).

Lemma 2.6. [1] Let F and G be two non-constant meromorphic functions sharing 1 IM and H ̸≡ 0. Then

T (r, F ) ≤N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) + 2N(r, 0;F ) +N(r, 0;G)

+ 2N(r,∞;F ) +N(r,∞;G) + S(r, F ) + S(r,G)

The same inequality holds for T (r,G).

Lemma 2.7. [14] Let f(z) be a non-constant meromorphic function and let a0(z), a1(z),...,an(z)(̸≡ 0) be small
functions with respect to f . Then

T (r, anf
n + an−1f

n−1 + · · ·+ a1f + a0) = nT (r, f) + S(r, f).

Lemma 2.8. [9] Let f(z) be a non-constant meromorphic function and p, k be positive integers. Then,

T (r, f (k)) ≤ T (r, f) + kN(r, f) + S(r, f),

Np

(
r,

1

f (k)

)
≤ T (r, f (k))− T (r, f) +Np+k

(
r,

1

f

)
+ S(r, f),

Np

(
r,

1

f (k)

)
≤ Np+k

(
r,

1

f

)
+ kN(r, f) + S(r, f).
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Lemma 2.9. [15] Let f(z) and g(z) be two non-constant meromorphic functions. Then

N

(
r,
f

g

)
−N

(
r,

g

f

)
= N(r, f) +N

(
r,
1

g

)
−N(r, g)−N

(
r,

1

f

)
.

Lemma 2.10. Let f(z) be a transcendental meromorphic function of finite order, c ∈ C\{0} be finite complex
constants and n ∈ N and let F1(z) = fn(z)P (f)∆u

c f(z), where n, m and u are positive integers. Then

(n+m− u)T (r, f) + S(r, f) ≤ T (r, F1).

Proof . From Lemmas 2.1, 2.2, 2.3 and 2.7, we obtain

(n+m+ 1)T (r, f) + S(r, f) = T (r, fn+1P (f)) + S(r, f)

≤ T

(
r,
f(z) · F1

∆u
c f

)
+ S(r, f)

≤ T (r, F1) + T

(
r,
∆u

c f

f(z)

)
+ S(r, f)

≤ T (r, F1) +m

(
r,
∆u

c f

f(z)

)
+N

(
r,
∆u

c f

f(z)

)
+ S(r, f)

≤ T (r, F1) +N

(
r,

∑u
r=0(−1)r

(
u
r

)
f(z + (u− r)c)

f(z)

)
+ S(r, f)

≤ T (r, F1) +N

(
r,

∑u−1
r=0 (−1)r

(
u
r

)
f(z + (u− r)c)

f(z)

)
+N

(
r, (−1)r

f(z)

f(z)

)
+ S(r, f)

≤ T (r, F1) +N

(
r,

1

f(z)

)
+

u−1∑
r=0

N(r, f(z + (u− r)c)) + S(r, f)

≤ T (r, F1) + T (r, f) + uN(r, f) + S(r, f)

≤ T (r, F1) + (u+ 1)T (r, f) + S(r, f).

Therefore, we have (n+m− u)T (r, f) + S(r, f) ≤ T (r, F1). This completes the proof of Lemma 2.10. □

Lemma 2.11. [4] Let f(z) be a transcendental entire function of finite order, c ∈ C\{0} be finite complex constants
and n ∈ N. Let Φ(z) = fn(z)P (f)∆u

c f(z), where ∆u
c f(z) ̸≡ 0. Then, we have

(n+m)T (r, f) ≤ T (r,Φ)−N

(
r,

1

∆u
c f(z)

)
+ S(r, f).

Proof . Using the same arguments as in [4, Lemma 2.7], we can quickly obtain Lemma 2.11 □

3 Proof of Theorems

3.1 Proof of Theorem 1.6.

Let F (z) = [fn(z)P (f)∆u
c f(z)]

(k), G(z) = [gn(z)P (g)∆u
c g(z)]

(k), F1(z) = [fn(z)P (f)∆u
c f(z)] and G1(z) =

[gn(z)P (g)∆u
c g(z)], where F and G are transcendental meromorphic functions satisfying El(1;F ) = El(1;G). By

using Lemma 2.8

N2(r, 0;F ) ≤N2(r, 0; (F1)
(k)) + S(r, f),

≤T (r, (F1)
(k))− T (r, F1) +Nk+2(r, 0;F1) + S(r, f),

≤T (r, F )− (n+m− u)T (r, f) +Nk+2(r, 0;F1) + S(r, f).

From this we get,

(n+m− u)T (r, f) ≤ T (r, F )−N2(r, 0;F ) +Nk+2(r, 0;F1) + S(r, f). (3.1)
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Again, from Lemma 2.8 we have

N2(r, 0;F ) ≤N2(r, 0; (F1)
(k)) + S(r, f)

≤kN(r,∞;F1) +Nk+2(r, 0;F1) + S(r, f). (3.2)

We now discuss the following three cases separately.

Case 1. Let l ≥ 2. Suppose that, if possible, that (i) of Lemma 2.4 holds. Then using (3.2), we obtain (3.1)

(n+m− u)T (r, f) ≤N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) +Nk+2(r, 0;F1) + S(r, f) + S(r, g)

≤Nk+2(r, 0;F1) +Nk+2(r, 0;G1) + kN(r,∞;G1) + 2N(r,∞;F1)

+ 2N(r,∞;G1) + S(r, f) + S(r, g).

Then,

(n+m− u)T (r, f) ≤ (2u+ 2 + k + Γ0 + u+ 3)T (r, f) + (k + Γ0 + u+ 3 + ku+ k + 2u+ 2)T (r, g) (3.3)

+ S(r, f) + S(r, g)

Similarly,

(n+m− u)T (r, g) ≤ (2u+ 2 + k + Γ0 + u+ 3)T (r, g) + (k + Γ0 + u+ 3 + ku+ k + 2u+ 2)T (r, f) (3.4)

+ S(r, f) + S(r, g).

Combining (3.3) and (3.4) we obtain,

(n+m− u)[T (r, f) + T (r, g)] ≤ [6u+ ku+ 2Γ0 + 3k + 10][T (r, f) + T (r, g)] + S(r, f) + S(r, g),

contradicting the fact that n > 7u + ku −m + 3k + 2Γ0 + 10. Therefore, by Lemma 2.4, we have either FG = 1 or
F = G. We assume that F ≡ G, then

[fnP (f)∆u
c f ]

(k) ≡ [gnP (g)∆u
c g]

(k).

Integrating for k times, we get
[fnP (f)∆u

c f ] ≡ [gnP (g)∆u
c g] + p(z),

where p(z) is a polynomial of degree atmost k − 1. If p(z) ̸≡ 0, above equation can be written as

fnP (f)∆u
c f

p(z)
=

gnP (g)∆u
c g

p(z)
+ 1.

By the Nevanlinna’s Second Fundamental Theorem and Lemma 2.10, we have

(n+m− u)T (r, f) ≤T

(
r,
fnP (f)∆u

c f

p(z)

)
≤N

(
r,
fnP (f)∆u

c f

p(z)

)
+N

(
r,

p(z)

fnP (f)∆u
c f

)
+N

(
r,

p(z)

gnP (g)∆u
c g

)
+ S(r, f),

which implies,
(n+m− u)T (r, f) ≤ (2u+ Γ0 + 3)T (r, f) + (Γ0 + u+ 2)T (r, g) + S(r, f).

Similarly, we have

(n+m− u)T (r, g) ≤ (2u+ Γ0 + 3)T (r, g) + (Γ0 + u+ 2)T (r, f) + S(r, g).

Now, by combining the above two inequalities, we have

(n+m− 4u− 2Γ0 − 5) ≤ S(r, f) + S(r, g),
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which is a contradiction to n > 7u+ ku−m+ 3k + 2Γ0 + 10. Thus, we have p(z) ≡ 0 and hence

fnP (f)∆u
c f ≡ gnP (g)∆u

c g. (3.5)

Let h = f
g , we consider the following two subcases.

Subcase 1.1. Suppose h is non-constant then f and g will be a solution of the algebraic equation R(f, g) ≡ 0,
with R(w1, w2) = wn

1P (w1)∆
u
cw1 − wn

2P (w2)∆
u
cw2. This is the conclusion (iii) of Theorem 1.6.

Subcase 1.2. If h is constant, then substituting f = gh in (3.5), we get

fnP (f)[f(z + uc)− uf(z + (u− 1)c) +
u(u− 1)

2
f(z + (u− 2)c) + · · ·+ (−1)u−1uf(z + c) + (−1)uf(z)]

=gnP (g)[g(z + uc)− ug(z + (u− 1)c) +
u(u− 1)

2
g(z + (u− 2)c) + · · ·+ (−1)u−1ug(z + c) + (−1)ug(z)].

This implies,

[gn+m(hn+m+1 − 1) + am−1g
n+m−1(hn+m − 1) + · · ·+ a1g

n+1(hn+2 − 1)

+ gn(hn+1 − 1)]g(z + uc) + [gn+m(hn+m+1 − 1) + am−1g
n+m−1(hn+m − 1)

+ · · ·+ a1g
n+1(hn+2 − 1) + gn(hn+1 − 1)](−1)ug(z + (u− 1)c)+

...

+ [gn+m(hn+m+1 − 1) + am−1g
n+m−1(hn+m − 1) + · · ·+ a1g

n+1(hn+2 − 1)

+ gn(hn+1 − 1)](−1)ug(z) = 0.

Therefore, we get

[gn+m(hn+m+1 − 1) + am−1g
n+m−1(hn+m − 1) + · · ·+ gn(hn+1 − 1)]∆u

c g = 0,

which implies hd = 1, where d = GCD{k ∈ (n+m+1, ..., n+m+1− i, ..., n+1) : ak−n−1 ̸= 0}. Thus f ≡ tg, where
t is a constant with td = 1. This is the conclusion (ii) of Theorem 1.6.

Case 2. Let l = 1 and H ̸≡ 0. Using Lemma 2.5 and (3.2), we obtain from (3.1)

(n+m− u)T (r, f) ≤ N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) +
1

2
N(r, 0;F )

+
1

2
N(r,∞;F ) +Nk+2(r, 0;F1) + S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +Nk+2(r, 0;G1) + kN(r,∞;G1) + 2N(r,∞;F1)

+ 2N(r,∞;G1) +
1

2

[
Nk+1(r, 0;F1) + kN(r, F1)

]
+

1

2
N(r, F1) + S(r, f) + S(r, g).

Then

(n+m− u)T (r, f) ≤ 1

2
[8u+ 4k + 3Γ0 + ku+ 13]T (r, f) + [2k + ku+ 3u+ Γ0 + 5]T (r, g) + S(r, f) + S(r, g). (3.6)

Similarly,

(n+m− u)T (r, g) ≤ 1

2
[8u+ 4k + 3Γ0 + ku+ 13]T (r, g) + [2k + ku+ 3u+ Γ0 + 5]T (r, f) + S(r, f) + S(r, g). (3.7)

Now, by combining the above two inequalities (3.6) and (3.7), we have

(n+m− u)[T (r, f) + T (r, g)] ≤ 1

2
[8k + 3ku+ 14u+ 5Γ0 + 23] [T (r, f) + T (r, g)] + S(r, f) + S(r, g),
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contradicting the fact that n > 8u+ 3ku
2 + 4k + 5Γ0−2m

2 + 23
2 . We now assume that H ≡ 0. Then(F ′′

F ′ − 2F ′

F − 1

)
−
(G′′

G′ − 2G′

G− 1

)
= 0.

Integrating both sides of the above equality twice we get,

1

F − 1
=

A

G− 1
+B, (3.8)

where A(̸= 0) and B are constants. From (3.8) it is obvious that F,G share the value 1 CM and so they share (1, 2).
Hence we have n > 7u+ ku−m+ 3k + 2Γ0 + 10. Now we discuss the following three subcases.

Subcase 2.1. Let B ̸= 0 and A = B then from (3.8), we get

1

F − 1
=

BG

G− 1
. (3.9)

If B = −1, then from (3.9), we obtain FG = 1 i.e

[fnP (f)∆u
c f ]

(k) · [gnP (g)∆u
c g]

(k) = a2(z),

which is one of the conclusion of Theorem 1.6. If B ̸= −1, from (3.9), we have

1

F
=

(
BG

(1 +B)G− 1

)
and so N

(
r, 1

1+B ;G
)
= N(r, 0;F ). Now from the Second Fundamental Theorem and Lemma 2.8, we have

T (r,G) ≤ N(r, 0;G) +N

(
r,

1

1 +B
;G

)
+N(r,∞;G) + S(r,G)

≤ N(r, 0;F ) +N(r, 0;G) +N(r,∞;G) + S(r,G)

≤ Nk+1(r, 0;F1) + T (r,G) +Nk+1(r, 0;G1) + kN(r, F1)− T (r,G1) +N(r,G1) + S(r,G).

This gives,

(n+m− u)T (r, g) ≤ (2k + ku+ u+ 2 + Γ0)T (r, f) + (k + 2u+ Γ0 + 3)T (r, g) + S(r, g). (3.10)

Similarly,

(n+m− u)T (r, f) ≤ (2k + ku+ u+ 2 + Γ0)T (r, g) + (k + 2u+ Γ0 + 3)T (r, f) + S(r, f). (3.11)

By combining (3.10) and (3.11), we obtain

(n+m− 4u− 3k − 5− 2Γ0 − ku) ≤ S(r, f) + S(r, g). (3.12)

This is contradiction to n > 7u+ ku−m+ 3k + 2Γ0 + 10.

Subcase 2.2. Let B ̸= 0 and A ̸= B. Then from (3.8) we obtain that

F =

(
(B + 1)G− (B −A+ 1)

BG+ (A−B)

)
and therefore

N

(
r,
B −A+ 1

B + 1
;G

)
= N(r, 0;F ).

Proceeding similarly as in Subcase 2.1, we can get a contradiction.

Subcase 2.3. Let B = 0 and A ̸= 0. Then from (3.8) we get F =
(
G+A−1

A

)
and G = AF − (A− 1). If A ̸= 1, we

have N
(
r, A−1

A ;F
)
=N(r, 0;G) and N(r, 1− A;G) = N(r, 0;F ). Proceeding similarly as in Subcase 2.1, we can get a

contradiction.Thus A = 1 and then F = G. Now the result follows from proof of Case 1.
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Case 3. Let l = 0 and H ̸≡ 0. Using Lemma 2.6, then using (3.2), we obtain (3.1)

(n+m− u)T (r, f) ≤N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) + 2N(r, 0;F ) +N(r, 0;G)

+Nk+2(r, 0;F1) + 2N(r,∞;F ) +N(r,∞;G) + S(r, f) + S(r, g)

≤Nk+2

(
r,

1

F1

)
+ 2N(r, F ) +Nk+2

(
r,

1

G1

)
+ kN(r,G1) + 2N(r,G)

+ 2

[
N

(
r,

1

F

)
+N(r, F )

]
+N

(
r,

1

G

)
+N(r,G) + S(r, F ) + S(r,G).

Thus,

(n+m− u)T (r, f) ≤[7u+ 5k + 3Γ0 + 2ku+ 11]T (r, f) + [4k + 2ku+ 5u+ 2Γ0 + 8]T (r, g)

+ S(r, f) + S(r, g). (3.13)

Similarly,

(n+m− u)T (r, g) ≤[7u+ 5k + 3Γ0 + 2ku+ 11]T (r, g) + [4k + 2ku+ 5u+ 2Γ0 + 8]T (r, f)

+ S(r, f) + S(r, g). (3.14)

Now, by combining the above two inequalities (3.13) and (3.14), we have

(n+m− u)[T (r, f) + T (r, g)] ≤ [9k + 4ku+ 12u+ 5Γ0 + 19][T (r, f) + T (r, g)] + S(r, f) + S(r, g),

contradicting the fact that n > 13u+ 4ku+ 9k+ 5Γ0 −m+ 19. Proceeding in a similar manner for H ≡ 0, as in Case
2, the result follows. This completes the proof of Theorem 1.6.

3.2 Proof of Theorem 1.8.

Theorem 1.8 can be proved in a similar manner as Theorem 1.6, by using Lemma 2.11 and taking N(r, f) =
N(r, f) = S(r, f). This completes the proof of Theorem 1.8.

We can pose the following open questions for further research.

1. Can the condition for n in Theorem 1.6 be still reduced?

2. What happens if we replace F = [fn(z)P (f)∆u
c f(z)]

(k) in Theorem 1.6, by F = [fn(z)Pm(f(qz + c))H(f)]

where P (z) is a polynomial of finite degree ’m’ and H[f ] =
∏k

j=1 f
(j)(z).
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