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Abstract

Any optimum design requires adequate skill and experience. Overall, having a multitude of variables in a design
makes manual optimization fairly difficult or even unattainable. Importantly, due to the paucity of resources and
the existence of competitive space, one can only implement and accomplish high-throughput plans, thereby making
it crucial to profit from optimization methods. In this research, the objective function was the structure’s weight,
which was supposed to be directly correlated with its cost. Design models were optimized separately, investigated,
and compared using genetic algorithm (GA), LRFD, and ASD analyses with W sections for frames. The cross-section
of beams and columns were studied as design variables, and the constraints specified in the Iranian National Building
Code (Part 10) were considered design constraints. Ultimately, the graphs for GA and stress ratio in each condition
of LRFD and ASD for the W sections were obtained and compared, followed by analyzing and comparing the stress
ratio in SAP2000.
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1 Introduction

Researchers and engineers attempt to enhance and advance their novel ideas using optimization methods. Here,
optimization means evaluating a variety of aspects of an initial idea and then employing the data to improve that
idea. Accordingly, optimization algorithms aim to find a satisfactory solution that best complies with the constraints
and requirements of the problem. There may be a multitude of solutions for a given problem. Thus, to compare the
solutions and choose the optimal answer to that problem, we need to define a function termed the objective function
or the cost function, where choosing this function depends on the nature of the concerned problem. Metaheuristic
algorithms (MHAs) are algorithms whose design is inspired by nature, physics, and humans. These algorithms are
extensively used to solve many optimization problems. MHAs are often used in tandem with other algorithms to
attain the optimal solution or to escape local optima. Since MHAs have been widely overlooked by researchers in
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optimizing steel structures, the role of this algorithm in optimizing these structures needs to be further evaluated in
future studies.

Genetic Algorithm (GA) is an optimization heuristic that works based on the principles of natural selection.
Engineers and designers have constantly aimed at optimizing structures by reflecting the existing conditions and
limitations or the constraint functions. Hence, the designing phase is a decision-making process and is opposite to
the structural analysis phase which covers no selection. Though experience is at the center of proper decision-making,
optimization techniques offer a systematic framework for making suitable decisions based on logical principles. In a
2010 study, Kaveh et al. were concerned with the optimal design of 2-D steel frames with the improved ant colony
optimization algorithm (ACO) [8]. Elsewhere, Kaveh et al. [10] studied the optimal design of 2-D moment steel frames
with ACO and GA [10]. Sadik et al. [19] worked with the harmony search algorithm (HSA) to minimize the costs of
3-D steel frames with semi-rigid connections [19].

In a 2011 study, Kripakaran et al. operated with GA to optimize steel frames with two different methods [13].
Togan employed teaching-learning-based optimization (TLBO) algorithms to minimize the weight of 2-D steel frames
[22]. Sadik et al. [19] used PSO, GO, and HSA algorithms to optimize 2-D steel frames based on load and resistance
factor design (LRFD) [3]. In a 2012 study, Kaveh et al. worked with the charged system search optimization algorithm
(CSSOA) to minimize the weight of 2-D and 3-D frames [11].

Kaveh et al. [23] proposed an optimal design of 2-D frames using CSSOA and improved HAS algorithms [12].
Kociecki et al. [14] employed the two-phase GA to optimize 3-D free-form steel space-frame roof structures. These
structures were two among all 13 train stations where the members were influenced by torsion and moment and axial
loads. Using GA, they reduced the weight of these two structures by 12 and 7%, respectively [14]. Kaveh et al. [9]
used CSSOA to optimize 2-D steel frames with semi-rigid connections [9]. Kao et al. [7] first designed several different
buildings and then employed the obtained data to model a neural network that can predict the structure’s behavior
under design loads. Ultimately, they optimized the weight of this approximate model using evolutionary algorithms
(EAs) [7]. In a 2014 study, Narimani et al. worked with optimization-based MHAs to minimize the weight of 2-D and
3-D steel frames [15]. Gholizadeh [5] optimized the study buildings using the modified firefly algorithm (MFA) [5].
Phan et al. [18] worked with GA to optimize cold-formed steel portal frames for stressed skin action. They reduced
the weight of consumed materials by 53% with the help of GA [18]. Afzali et al. [1] operated optimization algorithms
to minimize the weight of 2-D steel frames [1]. In a 2018 review, Ekici et al. explored the use of collective and
evolutionary intelligence algorithms in functional computing architecture. After the literature review, they proposed
various statistical (e.g., the type of algorithms) and classified approaches in terms of sustainability, cost, performance,
and structure. Ultimately, they reported sustainability as a factor that is at the attention center of most studies [4].
Khalafi et al. [6] obtained optimization codes in MATLAB and worked with OpenSees for nonlinear static analyses.
They reported that the BAT algorithm (BA) has a much higher convergence speed and yields an accurate optimal
solution with a lower optimal weight value [6]. Bahreyni Pour et al. [2] employed GA to minimize the weight of
steel moment frames [2]. Sepehari Manesh et al [20] worked with GA to reduce the weight of space-frame structures
based on reliability constraints [20]. Sojoodizadeh et al. [21] employed a modified PSO algorithm (MPSO) to solve
four truss optimization problems, including a 2-D truss with 14 members, a 2-D truss with 17 members, a 3-D truss
with 71 members, and a 3-D truss with 27 members. They found that MPSO outperforms other algorithms in solving
optimization problems [16].

GA is widely used to optimize moment frames. This algorithm is an EA and works based on intelligent searching.
The present study uses GA to find the minimum cost and minimum displacement of the structure and then compares
LRFD and ASD methods with W sections for optimization outcomes. The study implies some constraints on LRFD
and ASD design methods according to the Iranian National Building Code (Part 10).

Notably, steel structures are optimized with a variety of algorithms, but the present study compares LRFD and
ASD methods for their optimization efficiency.

2 Optimizations

2.1 Definition of the objective function

In this research, the objective function was the weight of the structure, which is directly correlated with the
structure’s cost. Thus, the structure’s cost was calculated based on the profile weight parameter.

The design variables intended in this research were the dimensions of the cross-section of the frame’s beams and
columns. Importantly, this study reflects constraints and items specified in Standard 2800 and the Iranian National
Building Code (Part 10), such as stress and displacement. The beams were subjected to the bending moment and
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the columns were under the synergistic effect of bending moment and axial force. The constraints of the optimization
model were the design criteria based on the analytical criteria of LRFD and ASD.

Minimize F = f(cost) (2.1)

f(cost) ∝ Weight (2.2)

2.2 Penalty function

The objective function should be defined to allow satisfying all constraints such as the stresses in each of the
elements and lateral displacements. It further should cover constraints imposed on the deformation of the structure.
For best functioning, the columns of the lower stories should be of larger dimensions than those of the upper stories.
Other constraints specified in the building codes need to be further reflected. In case of failure to satisfy these
constraints, the objective (cost) functions will be penalized. This method simplifies the objective function and further
allows to apply required constraints to increase the structure’s cost or displacement, thereby automatically preventing
the choice of penalized answers as the optimal solution. A multitude of methods have so far been proposed regarding
the penalty function. However, the penalty function in this study is as follows:

Ci = αiVi (2.3)

ϕ =

n∑
i=1

Ci (2.4)

where (Ci) is the penalty function for each constraint, (αi) is the penalty factor for each constraint, (Vi) is the amount
of penalty for each constraint, and (∅) is the total of penalties applied. The penalty factor is obtained by trial and
error and according to the model and takes a unique for each structure.

3 GA

GAs are a group of search and optimization methods inspired by the principles of natural selection and genet-
ics. These algorithms imitate the theory of natural evolution to find optimal solutions to complex problems. This
evolutionary algorithm searches among a population of candidate solutions called chromosomes or individuals.

This algorithm randomly generates a number of solutions for the problem where each of these solutions is called a
“chromosome” and the set of attempted (generated) solutions are called the “population”. After the random population
was generated, GA investigates all the chromosomes based on the merit function. Indeed, GA employs a variety of
methods such as combination and mutation to select the most qualified individuals to make the next generation made
up of better individuals. The combination operator selects some individuals in the population and combines them
to integrate their characteristics and allow them to generate better offspring for the next generation. Likewise, the
mutation operator selects a number of individuals and then alters some of their characteristics to upgrade the chosen
individual to a better (improved) individual.

The number of individuals selected for combination and/or mutation will depend on the type of problem and the
size of the population. Similarly, the method of choosing individuals for combination and mutation is a key factor
to consider. The sought-after methods for choosing the best individuals are the roulette wheel, tournament selection,
and random methods, which can be performed by trial and error according to the type of problem. For the problem
concerned here, the roulette wheel outperforms other methods. GAs are usually run as a computer simulator in which
the population of candidate solutions (i.e., chromosomes) for an optimization problem results in a better solution for
the problem.

According to the regulatory constraints, this study introduces some cross-sections for beams and columns, where
GA tries to possibly minimize the cost by choosing the best sections.

4 Regulatory constraints

The Iranian National Building Code (Part 10) has defined some constraints for the resistance of each of the
elements, positioning of the elements, and examining the stress in each element.
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In this study, the constraints set to the resistance of the columns are investigated based on the synergistic effect
of the axial force and flexural moment of the same column. Indeed, when tensile or compressive axial force and the
flexural moment in the study column exceed the values specified in the building codes and the stress ratio is greater
than one, the column will be penalized. The equations are as follows:

A) If
Pr

ϕcPn
≥ 0.2

Then,
Pr

ϕcPn
+

8

9
(

Mrx

ϕbMnx
+

Mry

ϕbMny
) ≤ 1.0 (4.1)

B) If
Pr

ϕcPn
≤ 0.2

Then,
Pr

2ϕcPn
+ (

Mrx

ϕbMnx
+

Mry

ϕbMny
) ≤ 1.0 (4.2)

where Pr is the compressive strength required, Pn is the nominal compressive strength for the given section, (ϕc) is
the compressive strength coefficient that takes a value of 0.9, Mrx and Mry are the required flexural strength around
strong and weak axes (respectively), Mnx and Mny are the nominal flexural strength around the strong and weak axes
(respectively), and (ϕb) is flexural strength coefficient taking a value of 0.9

The regulatory constraints set columns are also applied to beams, but the difference is that there are no interaction
between axial and flexural forces in the beams and the only determinant factor will be “flexural moment”. Here,
according to the calculated reduction coefficients of the allowable flexural strength, and when the above condition is
not satisfied, the cost function will be penalized to some values.

4.2. In the allowable stress design (ASD) method, the reliability coefficients are applied such that the material’s
strength is divided into the reliability coefficients and, in calculations, smaller values are assigned to strength.

Further, according to the ASD method, the sections are chosen such that the stress generated under the service
loads in any member does not exceed a given allowable stress. This method was first devised according to the theory
of elasticity to allow quantifying stress created in the members under the service load.

Thus, the constraints set for the strength of columns are studied according to the synergistic effect of axial and
flexural forces of the same column. In turn, when the tensile or compressive axial force and the flexural moment in
the intended column exceed the values set in the building code and the stress ratio is greater than one, the column
will be penalized. According to the building codes, these the equations will be as follows:

A) If ( fa
FA > 0.15), then,

fa
FA

+
Cm · fb

(1− fa
F ′

ex
)Fb

≤ 1 (4.3)

F ′
e =

12

23
× π2E

λ2
b

(4.4)

fa
0.6fy

+
fb

Fb
≤ 1 (4.5)

where (λb) refers to the slenderness of the free length of the element in the plane of bending.

B) If fa
FA ≤ 0.15, then,

fa
FA

+
fb

Fb
≤ 1 (4.6)

where (Cm) is a coefficient that its value depends on the condition of the frame and lateral forces.

B-1) In rigid frames (where the ends of the frame have zero rotation), Cm is obtained from equation below:

Cm = .6− .4
M1

M2
≥ .4 (4.7)

where (M1
M2 ) is the ratio of small-to-larger anchor of the free ends of the column and takes a positive value.

Importantly, besides the constraints mentioned above, some other constraints have also been regraded in this
research. In turn, the cross-section of columns of the lower stories should definitely be larger than that of the columns
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of the upper stories. Therefore, if these conditions are not satisfied, or if the cross-section of columns of the lower
stories are smaller than that of the columns of the upper stories, the model under consideration will be further
penalized beyond the penalty set on the stress ratio. Accordingly, such problems will be automatically omitted from
the optimization cycle [11].

5 The study samples

This research investigated two distinct samples to evaluate the performance of the algorithm. For this, two
structures were studied. These were two-bay structures, one with three stories and the other with six stories, where
the former represents a short-height and the latter represent a medium-height structure. The height of the stories was
3 m and the length of the bays was 4 m. The live and dead loads of the stories were widely applied to the beams of
the stories. Similarly, the lateral point loads were applied to the joints of the beams and columns. According to the
building codes, the loads were synergistically applied as follows:

U = D + 1.2L+ 1.2E, U = 0.85D + 1.2E (5.1)

Furthermore, uniform dead and live loads were equal to Dl = 550 kg/cm2 and Ll = 200 kg/m2, respectively. For

the roof, these values were 500 kg/m
2
and 150 kg/m2, respectively. The compressive strength of steel was equal to

Fy = 2400 kg/cm2.

We can apply various conditions to stop the algorithm, including the “condition of convergence” or “the number
of iterations”. By examining various “trials and errors” and choosing the best stopping strategy, we selected the
condition of “the number of iterations” for this algorithm. To find the best population and number of iterations, we
evaluated various populations with different iterations and ultimately picked up a population with 45 members and
250 iterations.

5.1 Study samples

This research investigated two distinct samples to evaluate the performance of the algorithm. For this, two
structures were studied. These were two-bay structures, one with three stories and the other with six stories, where
the former represents a short-height and the latter represent a medium-height structure. The height of the stories was
3 m and the length of the bays was 4 m.

We applied various conditions to stop the algorithm, including the “condition of convergence” or “the number
of iterations”. By examining various “trials and errors” and choosing the best stopping strategy, we selected the
condition of “the number of iterations” for this algorithm. To find the best population and number of iterations, we
evaluated various populations with different iterations and ultimately picked up a population with 45 members and
250 iterations.

In this article, two different samples have been examined to measure the performance of the algorithm. The
two investigated models of two-bay structures with three and six floors are considered so that each of the samples are
representative of low and medium height structures. The height of the floors is 3 meters and the length of the openings
is 4 meters. We further considered 150 and 78 distinct cross-sections for “columns” and “beams”, respectively. We
further considered 267 distinct cross-sections for “W sections” according to the building codes for both the beam and
column.

Sample 1

In this frame, the stories are each 3 m in height and the length of the bays is 4 m. The values of gravity loads
have been reported previously, and the values of lateral loads are depicted in Figure 1. There are two types of beams
and four types of columns [16].

Information
DL = 550 kg/m LL = 200 kg/m E = 2E6
F = 2400 kg/cm2 LL forroof = 250 kg/m

Combination of loads =
1.2D + 1.0E + 1.0L

Loads on beams = 1.2× 550 + 200 = 860 kg
m

= 8.6 kg/cm

Loads on the beams of the roof = 1.2× 500 + 150 = 750 kg
m

= 7.5 kg/cm
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Figure 1: Sample 1

5.1.1 Model 1: Two-bay, three-story structure

In this model, each story is 3 m in height and the length of each bay is 4 m. The seismic load is calculated as
follows:

H = 9m : T = 0.08H0.75 = 0.08× 90.75 = 0.4157 s

A = 0.3 , I = 1 , II Type of ground

T0 = 0.1 , TS = 0.5 , S = 1.5 , S0 = 1

B1 = 2.5 , N = 1 B = B.N = 2.5 RU = 5

C =
ABI

R
=

0.3× 2.5× 1

5
= 0.15

W = (0.2× 200 + 550)× 2× 8× 8 + (0.2× 150 + 550)× 8× 8 + (3× (3− 1))× 4× 8× 250 = 157.44 ton

K = 1 , V = C.W = 0.15× 157.44 = 23.616

fi =
wi.hi∑
wi.hi

, F = fi · V

Table 1: Lateral loads on the structure

Story Load applied to the story Load applied to the frame Load applied to the node
1 3.73 1.26 0.42
2 9.38 3.13 1.64
3 10.46 3.46 1.16

Since the optimization method is a MHA, we cannot consider the answers obtained after the first optimization as
the best solutions. Thus, to achieve the best solution, the optimization needs to be repeated in several iterations. In
this research, each model was optimized within 11 separate iterations. Figure 2 illustrates the values obtained for the
best answer and the average value of answers.

Figure 2: The optimization process for sample 1 based on the method of ultimate strength (W sections)

Regarding ultimate strength, the weight of a 3-story structure is reduced from 7491.80 kg to 1868.40 kg at best,
and its average weight is reduced from 6250.9 kg to 1930.2 kg [17].
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Figure 3: The ratio of stresses generated in beams and columns for sample 1 at ultimate strength (I section)

Table 2: Specifications of the beams (3-story) – ultimate strength

Type W section Stress ratio
1 W14×22 0.72
2 W12×14 0.72

Table 3: Specifications of the columns (3-story) – ultimate strength

Type W section Stress ratio
1 W16×26 1.00
2 W18×50 1.00
3 W12×16 1.00
4 W16×26 0.59
Best Weight 1868.40 kg
Worst Weight 7491.80 kg

Ave Best Weight 1930.21 kg
Displacement 1.61 cm

Figure 4: Optimization of the first model with the method of ultimate strength (W section)

Figure 5: The ratio of stresses generated for the first model under allowable stress (W section)
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Table 4: Specifications of the beams (3-story) – allowable stress

Type W section Stress ratio
1 W12×19 0.76
2 W8×10 0.84

Table 5: Specifications of the columns (3-story) – allowable stress

Type W section Stress ratio
1 W8×31 1.00
2 W10×60 0.97
3 W8×24 0.94
4 W8×24 0.92
Best Weight 1983.90 kg
Worst Weight 36763.00 kg

Ave Best Weight 2047.95 kg
Displacement 3.13 cm

Regarding allowable stress, the weight of a 3-story structure is reduced from 36763 kg to 1983.90 kg at best, and
its average weight is reduced from 33313.20 kg to 2047.95 kg.

Figure 6 compares the weight of W sections for ASD and LRFD.

Figure 6: Comparison of the process of optimization for the first model under ASD and LRFD

5.1.2 Sample 2

Similar to sample 1, the stories are each 3 m in height and the length of the bays is 4 m. In this sample, there
are three types of beams and six types of columns. The gravity loads include both dead and live loads, similar to
sample 1. Figure 7 shows the values of lateral loads and the types of beams and columns. This figure further shows
the separate values of stress applied to beams and columns. The allowable displacement in calculated from equation
below: {

∆m = 0.7R∆w

∆m < 0.025h
→ ∆w <

0.025× 1800

0.7× 5
= 12.8 cm

5.1.3 Model 2: Two-bay, six-story structure

The seismic load is calculated as follows:

H = 18m : T = 0.08H0.75 = 0.08× 180.75 = 0.699 s

A = 0.3 , I = 1 , II type of ground

T0 = 0.1 , TS = 0.5 , S = 1.5, S0 = 1
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Figure 7: Sample 2

B1 = (S + 1)

(
TS

T

)
= 1.788, N = 1B = B.N = 1.788 RU = 5

C =
ABI

R
=

0.3× 1.788× 1

5
= 0.107

W = (0.2× 200 + 550)× 5× 8× 8 + (0.2× 150 + 500)× 8× 8 + (3× (6− 1))× 4× 8× 250 = 342.72 ton

K = 0.5T + 0.75 = 1.099 , V = C.W = 0.107× 342.72 = 36.67

fi =
wi.hi∑
wi.hi

, F = fi.V

Table 6: Lateral loads on the structure

Story Load applied to the story Load applied to the frame Load applied to the node
1 1.34 0.45 0.15
2 3.56 1.19 0.4
3 5.56 1.19 0.4
4 7.62 2.54 0.85
5 9.74 3.25 1.08
6 8.85 2.95 0.98

Since the optimization method is a MHA, we cannot consider the answers obtained after the first optimization as
the best solutions. Thus, to achieve the best solution, the optimization needs to be repeated in several iterations. In
this research, each model was optimized within 11 separate iterations. Figure 2 illustrates the values obtained for the
best answer and the average value of answers.

Figure 8: The optimization process for sample 2 based on the method of ultimate strength (W sections)
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Regarding ultimate strength, the weight of a 6-story structure is reduced from 14344 kg to 5286 kg at best, and
its average weight is reduced from 15867 kg to 5648 kg.

Figure 9: The ratio of stresses generated in beams and columns for sample 1 at ultimate strength (I section)

Table 7: Specifications of the beams (6-story) – ultimate strength

Type W section Stress ratio
1 W14X22 0.69
2 W14X22 0.65
3 W14X22 0.95

Table 8: Specifications of the columns (6-story) – ultimate strength

Type W section Stress ratio
1 W10X49 1.00
2 W10X77 1.00
3 W8X40 0.95
4 W10X54 1.00
5 W8X40 0.85
6 W10X54 0.89
Best Weight 5286 kg
Worst Weight 14344 kg

Ave Best Weight 5648 kg
Displacement 8.37 cm

Figure 10: Optimization of the first model with the method of ultimate strength (W section)

Regarding allowable stress, the weight of a 6-story structure is reduced from 12089 kg to 5335 kg at best, and its
average weight is reduced from 13409 kg to 5483 kg. Figure 12 compares the weight of W sections for ASD and LRFD.



Comparison of ASD and LRFD with ... 11

Figure 11: The ratio of stresses generated for the first model under allowable stress (W section)

Table 9: Specifications of the beams (6-story) – allowable stress

Type W section Stress ratio
1 W14X22 1.00
2 W14X26 0.96
3 W12X14 1.00

Table 10: Specifications of the columns (3-story) – allowable stress

Type W section Stress ratio
1 W18X50 1.00
2 W30X90 1.00
3 W16X40 0.89
4 W16X45 0.96
5 W14X38 0.53
6 W21X50 0.71
Best Weight 5335 kg
Worst Weight 12089 kg

Ave Best Weight 5483 kg
Displacement 4.37cm

Figure 12: Comparison of the process of optimization for the first model under ASD and LRFD

5.1.4 Comparison of GA with PSO algorithms

This research compared the results obtained from the GA algorithm for a 15-story structure in this study with
those results obtained from the PSO algorithm for the same structure reported by Kaveh and co-workers. Similar to
the structure in the study by Kaveh et al., the model studied in this research was a 15-story 3-bay structure with W
sections. This model was analyzed within 30 iterations and the results are given in the following sections. Figure 13
shows the 15-story 3-bay structure in the study by Kaveh et al.
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Figure 13: A 15-story model with W sections

Figure 14: Showing optimization process with genetic algorithm

This study compares the performance of GA with PSO for a 15-story 3-bay model. As can be seen, the structure’s
weight has been reduced from 125230 kg to 60790 kg at best, and its average weight has been reduced from 144094 to
64094 kg.

Figure 15: Optimization with GA
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Figure 16: The ratio of stresses generated in beams and columns in GA

Table 11: Specifications of the beams (12-story) – ultimate strength

Type W section Stress ratio
1 W24×84 1.00

Table 12: Specifications of the columns (12-story) – ultimate strength

Type W section Stress ratio
1 W30×90 0.52
2 W12×279 0.96
3 W18×50 0.70
4 W30×211 0.95
5 W21×50 0.89
6 W18×158 0.89
7 W8×48 0.56
8 W10×77 1.00
9 W8×31 0.57
10 W16×50 0.89
Best Weight 60790 kg
Worst Weight 125230 kg

Ave Best Weight 64094 kg
Displacement 16.13 cm

Table 13: Optimal design comparison for the 3-bay 15-story planar frame

GA PSO
1 W16×50 W33X118
2 W30×90 W33X263
3 W12×279 W24X76
4 W18×50 W36X256
5 W30×211 W21X73
6 W21×50 W18X86
7 W18×158 W18X65
8 W8×48 W21X68
9 W10×77 W18X60
10 W8×31 W18X65
11 W24×8 W21X44

Weight(kg) 60790 49668

Comparison of stress in a 3-story structure in SAP2000

6 Conclusion

In this research, it was confirmed from the results that, as an advantage, GA is less dependent on the initial
population. Collectively, the results obtained from optimization can be summarized as follows:

1) Regarding the values of stress in the beams and columns, it can be found that LRFD uses all the capacity of the
section and it is the final goal of this algorithm.
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Figure 17: The stress ratio in a 3-story structure using the Sap-(W section) LRFD method

Figure 18: Displacement of a 3-story structure using the Sap-(W section) LRFD method

Figure 19: Stress ratio in a 3-story structure using the Sap (W-section) ASD method

2) Regarding the graphs depicting the performance of algorithms, it can be concluded that GA has not stopped at
the local optima and has achieved the overall optima.

3) When comparing optimization using W section by LRFD and ASD methods, LRFD can trivially outperform ASD
for both 3-story and 6-story structures and achieve lighter structure.

4) When comparing a 15-story 3-bay model using the PSO algorithm reported by Kaveh et al., it is observed that
PSO offer a structure that is 10000 kg lighter than that offered by GA, implying PSO’s superiority in achieving
structure optimization.

5) When comparing the stress ratio and displacement of the 3-story structure by LRFD and ASD methods in Sap2000,
it can be seen that OpenSees provides results that are comparable to those obtained in Sap2000, indicating the
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Figure 20: Displacement of a 3-story structure using the Sap-(W sections) ASD method

Figure 21: Stress ratio in a 3-story structure using the Etabs- (W section) ASD

Figure 22: Displacement of a 3-story structure using the Etabs-(W section) ASD method

analytical potency of OpenSees in obtaining stress ratio and displacement values.

6) When comparing the stress ratio and displacement for a 3-story structure by ASD, it can be seen that the corre-
sponding values obtained in Sap2000 and are close to those obtained in Etabs, implying the good performance of
both software.
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