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Recently, the finite size effects, via superconducting nanograins, have attracted much attention from 
physicists. The effect of the small size can enter via the interaction matrix element and the spectral 
energy. We suppose that the mean level spacing near the Fermi energy is smaller than the bulk gap, 
allowing the BCS formalism to remain a valid approximation. For a nanograin, the gap function, in 
general, depends on the size of the system, and the Fermi energy. By entering the effect of the small 
size on the gap equation for a rectangular nanograin, specific heat in terms of temperature and length 
of a superconducting nanograin is obtained. Our results reveal that the spectral energy of the 
nanograin does not affect the change in the behavior of specific heat. However, the effect of the energy 
gap of nanograin strongly affects the behavior of specific heat. One of the interesting results is that at 
some fixed temperatures, the behaviour of specific heat shows a peak in a special length. Also, we 
compare specific heat in 2- and 3-dimensional cases. 
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1. Introduction 
Nanotechnology is highly interesting to researchers of 

various sciences and will continue to be in the next few 
decades. This field has also made notable advances in 
superconductivity. Recently, the finite size effects, via 
considering nanograins, have attracted much attention from 
physicists. As Anderson initially noted, BCS theory becomes 
inconsistent when the size of the superconductor is such 
that the mean level spacing, d, approaches the 
superconducting gap, ∆ [1]. According to BCS theory, the 
dominant contribution to pairing correlations comes from 
levels within a range of order ∆ around the Fermi surface. 
Still, there are no levels left within this range when d > ∆. 
When it became possible to reach this regime 
experimentally by doing transport measurements on 
superconducting grains, interest was spurred in a 
description of the pair-correlated state that is also valid for 
d > ∆ [2-4]. 

 
 

Because of the importance of this issue, the  
thermodynamic properties of these grains have been 
extensively analyzed [5]. Also, Experimental investigations 
into the characteristics of these grains have been 
conducted in detail.  The results have further stimulated the 
interest in superconducting nanograin [6-10]. 

 These systems are altered with thickness down to the 
nanometre  scale has also significant technological 
implications. Subsequent experimental investigations of 
superconducting confined systems showed either a 
decrease or an increase in critical temperatures with 
sample size, depending on the material. 

Since 1960s, most experiments focusing on 
superconducting correlations in grains were performed 
with either grain powders or with granular films, where 
each metallic crystallized grain is surrounded by an 
insulating, amorphous barrier [11-26]. 
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 The experimental results demonstrated an increase in 

critical temperatures for Indium (In), Tin (Sn), and 
Aluminum (Al) [15,21]. The studies indicated good 
agreement between theoretical predictions and 
experimental observations for weak and intermediate 
coupling superconductors. For Lead (Pb) and Niobium (Nb) 
films, which consist of crystalline grains, a decrease in 
critical temperature was observed as the thickness 
decreased, suggesting that the system behaves like a 
disordered network of weakly coupled grains [22-26]. 
Detecting the superconducting gap in a single physically 
isolated ultra-small Pb/Sn grain was achieved using a 
scanning tunneling microscope (STM) [27,28]. These 
studies examined the size evolution of superconductivity in 
isolated nanoparticles that were grown on a substrate. In 
the case of Sn particles, oscillations of the superconducting 
energy gap with varying particle sizes were observed, with 
enhancements of the gap reported to be as large as 60%.  
Conversely, Pb particles demonstrated a decrease in the gap 
as particle size decreased [27-29]. 

One of the most important thermodynamic properties of 
superconductors is specific heat [30-33]. In the present 
paper, we calculate the specific heat for rectangular-shaped 
grains based on gap fluctuations. Our work relies on 
numerical calculations, focusing on ballistic grains. The 
mean field potential is approximated as an infinite well 
representative of the grain's shape.  Additionally, the mean 
level spacing near the Fermi energy is smaller than the bulk 
gap, allowing the BCS formalism to remain a valid 
approximation. 

The paper is organized as follows. In Sec. 2, the 
theoretical Frame of the calculation of specific heat is given. 
In Sec. 3, the effect of the finite size of a superconductor is 
entered via the dependence of the energy gap to the length 
of the superconductor, and numerical calculations are 
brought. In Sec. 4, some remarks and conclusions are given. 

 

2. Theoretical Frame 
BCS Hamiltonian can be written as 

𝐻𝐻 = �𝜀𝜀𝑛𝑛
𝑛𝑛𝑛𝑛

𝑐𝑐𝑛𝑛𝑛𝑛
† 𝑐𝑐𝑛𝑛𝑛𝑛 −�𝐼𝐼𝑛𝑛,𝑛𝑛ʹ

𝑛𝑛,𝑛𝑛ʹ
𝑐𝑐𝑛𝑛↑
† 𝑐𝑐𝑛𝑛↓

† 𝑐𝑐𝑛𝑛ʹ↓𝑐𝑐𝑛𝑛ʹ↑ (1) 

where nc σ  and †
nc σ  are annihilation and creation operators 

for the state n and spin σ . nε  is an eigenvalue of electron 

in a grain. Also, interaction matrix element, ,n nI ′  , is given 
by [34] 

𝐼𝐼𝑛𝑛,𝑛𝑛′ = 𝜆𝜆𝜆𝜆𝜆𝜆 �𝜓𝜓𝑛𝑛2(𝑟𝑟) 𝜓𝜓𝑛𝑛′
2 (𝑟𝑟)𝑑𝑑𝑑𝑑

→
 (2) 

The matrix shows the interaction between electrons. λ is a 
constant. C𝜓𝜓𝑛𝑛is the eigenstate of a free electron in a grain, 
δ is mean level spacing and 𝑉𝑉 is the volume of the system. 
Gap energy is defined by 
𝛥𝛥(𝜀𝜀𝑘𝑘) = �𝐼𝐼𝑘𝑘𝑘𝑘′𝑢𝑢𝑘𝑘′

𝑘𝑘′
𝑣𝑣𝑘𝑘′  (3) 

 

where ku and kv are given by 

𝑢𝑢𝑘𝑘 = �1
2
�1 + 𝜀𝜀𝑘𝑘

𝐸𝐸𝑘𝑘
� ,    𝑣𝑣𝑘𝑘 = �1

2
�1 − 𝜀𝜀𝑘𝑘

𝐸𝐸𝑘𝑘
� (4) 

 
where kE  is the excitation energy and kε  is the kinetic 

energy measured with respect to the chemical potential, 
𝜀𝜀𝑘𝑘 = ��

2𝑘𝑘2

2𝑚𝑚
� − 𝜇𝜇, where m , µ  and k



are the mass of the 
electron, the chemical potential and the wave vector. Also, 
the excitation energy is given by 𝐸𝐸𝑘𝑘 = �𝜀𝜀𝑘𝑘2 + 𝛥𝛥(𝜀𝜀𝑘𝑘)2. It 
should be noted that ku and kv existing in Eq. (3) can be 
obtained by minimizing the following total energy of the 
system 
𝐸𝐸 = �𝜀𝜀𝑛𝑛

𝑛𝑛𝑛𝑛

𝑣𝑣𝑛𝑛2 −�𝐼𝐼𝑛𝑛.𝑛𝑛′

𝑛𝑛,𝑛𝑛′
𝑣𝑣𝑛𝑛𝑢𝑢𝑛𝑛𝑣𝑣𝑛𝑛′𝑢𝑢𝑛𝑛′  

(5) 

For finite temperatures, the first term and the last term 
should be multiplied by the factors (1 − 2𝑓𝑓𝑘𝑘)  and 
(1 − 2𝑓𝑓𝑘𝑘)�1 − 2𝑓𝑓𝑘𝑘′�, respectively. 𝑓𝑓𝑘𝑘 is Fermi-Dirac 
distribution function and is given by [35,36] 

𝑓𝑓↑ = 𝑓𝑓↓ ≡ 𝑓𝑓𝑘𝑘 =
1

1 + 𝑒𝑒𝜀𝜀/𝑘𝑘𝐵𝐵𝑇𝑇
 (6) 

Bk and T are Boltzmann constant and temperature, 

respectively. Then, ku and kv  given by Eq. 4 lead to the 
following result for total energy 

( )
( )( )

2 2 2

,
,

2

1 2 1 2

k k k k k
k

k k k k k k k k
k k

v u v f

I v u v u f f

ε

′ ′ ′ ′
′

 + − + 

− −

∑

∑
 

(7) 

 
Or by using Eq. (4), one has 

2�
1

2𝐸𝐸𝑘𝑘𝑘𝑘

[(𝜀𝜀𝑘𝑘 + 𝐸𝐸𝑘𝑘)2𝑓𝑓𝑘𝑘 + (𝐸𝐸𝑘𝑘 − 𝜀𝜀𝑘𝑘)2(1 − 𝑓𝑓𝑘𝑘)] (8) 

 
At finite temperatures, the integral form of the energy 

gap, which is, in general, dependent on energy and 
temperature, in the grand canonical approximation (by 
introducing spectral energy, 𝑁𝑁�𝜀𝜀 ′� = ∑ 𝛿𝛿(𝜀𝜀 − 𝜀𝜀 ′)𝑛𝑛′ ), is 

𝛥𝛥(𝜀𝜀,𝑇𝑇) =
1
2
�

𝛥𝛥(𝜀𝜀 ʹ,𝑇𝑇)𝐼𝐼(𝜀𝜀, 𝜀𝜀 ʹ)

�𝜀𝜀 ʹ2 + 𝛥𝛥2(𝜀𝜀 ʹ,𝑇𝑇)

𝜀𝜀𝐷𝐷

−𝜀𝜀𝐷𝐷
𝑁𝑁(𝜀𝜀 ʹ) 

                   × (1 − 2𝑓𝑓(𝜀𝜀 ʹ))𝑑𝑑𝜀𝜀 ʹ (9) 
 

It should be mentioned that we can modify the gap 
equation (Eq, 9) for finite temperatures by the factor (1 −
2𝑓𝑓�𝜀𝜀 ′�). 

The small size effect influences in two ways: First from 
𝐼𝐼�𝜀𝜀, 𝜀𝜀 ′�, which is related to the energy, and second via 
spectral energy, 𝑁𝑁�𝜀𝜀 ′�. When the volume of nanograin 
approaches infinity, the spectral density, 𝑁𝑁�𝜀𝜀 ′�, can be 
taken to be energy independent and is equal to that of bulk 
superconductor. Also, matrix elements are energy-
independent and the gap is equal to the bulk value. 𝑁𝑁(𝜀𝜀) for 
the superconducting nanograin in the semiclassical 
approximation is given by 
𝑁𝑁(𝜀𝜀) ≈ 𝑁𝑁(0)�1 + 𝑔̄𝑔(0) + 𝑔𝑔�(𝜀𝜀)� (10) 
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where 𝑁𝑁(0) is spectral energy at the Fermi surface. 𝑁𝑁(𝜀𝜀) is 
accompanied by a monotonous ¯𝑔̄𝑔(0) (at the Fermi energy) 
and an oscillatory function, 𝑔𝑔�(𝜀𝜀). Spectral energy is related 
to the length of a superconductor. It should be mentioned 
that the dependence of the energy gap on the length of the 
superconductor comes in two ways, i.e., from spectral 
energy and energy gap. By considering our numerical 
calculations, we saw that the effect of spectral energy was 
not effective in changing our results except for a somewhat 
change in the value of specific heat. However, the gap 
energy of the superconducting nanograin has more effects 
on the specific heat concerning that of a bulk 
superconductor.  

The entropy for a system of fermions is given by 

𝑆𝑆 = −𝑘𝑘𝐵𝐵�    [𝑓𝑓𝑘𝑘
𝑘𝑘,𝛼𝛼

𝑙𝑙𝑙𝑙 𝑓𝑓𝑘𝑘 + (1 − 𝑓𝑓𝑘𝑘) 𝑙𝑙𝑙𝑙(1 − 𝑓𝑓𝑘𝑘)] (11) 

 
It should be noted that  kf  is not dependent on spins, 

therefore, the summation on spins is trivial and is given by 
2. Then, one has 

𝑇𝑇𝑇𝑇 = −��𝐸𝐸𝑘𝑘(1 − 2𝑓𝑓𝑘𝑘)−2𝑘𝑘𝐵𝐵𝑇𝑇 𝑙𝑙𝑙𝑙 �2 cosh �
𝐸𝐸𝑘𝑘

2𝑘𝑘𝐵𝐵𝑇𝑇
���   

𝑘𝑘

 

 (12) 
 

By using C T dS dT= , the specific heat is 

𝐶𝐶 = 2𝛽𝛽2𝑘𝑘𝐵𝐵 ∑ 𝑓𝑓𝑘𝑘𝑘𝑘 (1 − 𝑓𝑓𝑘𝑘) �𝐸𝐸𝑘𝑘2 + 𝛽𝛽𝐸𝐸𝑘𝑘
𝑑𝑑𝐸𝐸𝑘𝑘
𝑑𝑑𝑑𝑑
�    (13) 

where 1 Bk Tβ = . Then, after transforming the summation to 
the integral, one has 

𝐶𝐶 = 2𝛽𝛽2𝑘𝑘𝐵𝐵𝑁𝑁(0)� 𝑑𝑑𝑑𝑑
∞

0
𝑓𝑓(𝜀𝜀)�1 − 𝑓𝑓(𝜀𝜀)� �𝐸𝐸2  − 𝑇𝑇𝑇𝑇

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� 

 (14) 
Now we proceed to enter the effect of the small size of 

the system. Temperature-dependence of the gap function in 
the BCS model is given by 

𝛥𝛥𝐵𝐵𝐵𝐵𝐵𝐵(𝑇𝑇) ≈ 1.76𝑘𝑘𝐵𝐵𝑇𝑇𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡һ�1.74�
𝑇𝑇𝑐𝑐
𝑇𝑇
− 1� 

= 𝛥𝛥(𝑇𝑇 = 0) 𝑡𝑡𝑡𝑡𝑡𝑡һ�1.74�
𝑇𝑇𝑐𝑐
𝑇𝑇
− 1� (15) 

where cT  is the critical temperature. 
At zero temperature, for a nanograin, the gap function, in 

general, depends on the single-particle energy, the size of 
the system, and the number of particles (or, equivalently, 
Fermi energy). For a rectangular box in two and three 
dimensions, the gap equation is energy-independent. In the 
chaotic case, however, one gets an integral equation due to 
the energy dependence of the interaction matrix elements. 

We consider only a rectangular box. Using the knowledge of 
spectral energy and interaction matrix elements as series in 
1

(𝑘𝑘𝐹𝐹𝐿𝐿)
,  where 𝑘𝑘𝐹𝐹  and 𝐿𝐿 are Fermi number wave and the length 

of the nanograin, respectively, and by using the solution of 
the gap equation in the semiclassical region for a 3D case, 
one has 

𝛥𝛥 = 𝛥𝛥𝐵𝐵𝐵𝐵𝐵𝐵 �1 + 𝑓𝑓(1) + 𝑓𝑓�
3
2� + 𝑓𝑓(2)�   (16) 

 
where 𝑓𝑓(𝑛𝑛) ∝ 1

(𝑘𝑘𝐹𝐹𝐿𝐿)𝑛𝑛
and 𝛥𝛥𝐵𝐵𝐵𝐵𝐵𝐵  is gap energy for bulk limit. 

For finite temperatures, we apply Eq. (16), by replacing 
𝛥𝛥𝐵𝐵𝐵𝐵𝐵𝐵 → 𝛥𝛥𝐵𝐵𝐵𝐵𝐵𝐵(𝑇𝑇). This is correct since 𝛥𝛥�𝜀𝜀 ′� ≡ 𝛥𝛥 and the gap is 
energy-independent for a rectangular nanograin [34]. 
Using Eqs. (14) and (16), we obtain the heat capacity of 
grain for numerical calculation 

𝐶𝐶𝑉𝑉 = (1.7642) �
𝑁𝑁(0)𝑉𝑉

2
��

𝛿𝛿3

𝑡𝑡2
�� 𝑑𝑑𝑑𝑑

𝛿𝛿−1 sinh(1 𝑁𝑁(0)𝑉𝑉⁄ )

0
    

×
1

cosh2 ��0.88𝛿𝛿
𝑡𝑡 � �√1 + 𝑧𝑧2��

× �𝑧𝑧2 + 1 + �
0.87𝑡𝑡 𝛿𝛿⁄

(𝑡𝑡2)�(1 𝑡𝑡⁄ ) − 1
��

× �
1

cosh2�1.74�(1 𝑡𝑡⁄ ) − 1�
� 

 (17) 
 

where we use the definitions ct T T= and 

𝛿𝛿 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ �1.74�
𝑇𝑇𝑐𝑐
𝑇𝑇
− 1�  

×

⎝

⎜
⎛

1 + �
1
𝑘𝑘𝐹𝐹𝐿𝐿

�

+ �
1
𝑘𝑘𝐹𝐹𝐿𝐿

�
2

+ �
1
𝑘𝑘𝐹𝐹𝐿𝐿

�
3/2

⎠

⎟
⎞

 
(18) 

 

3. Numerical results 
Before investigating the specific heat, we examine the 

behavior of gap function to observe how dimensionality and 
length influence the value of the gap, as shown in Fig. 1.   

In Fig. 1, for the 3D case, the gap energy (measured by 
bulk gap at zero temperature and in arbitrary units) is 
plotted with respect to the temperature ratio (𝑇𝑇/𝑇𝑇𝑐𝑐) for both 
2D and 3D cases. Fig. 1 shows that at a fixed length, the gap 
function decreases with increasing temperature, in both 2D 
and 3D cases. However, at a fixed temperature (or a fixed 
length), the gap in 2D case is higher than that in the 3D case. 
The inset of Fig. 1 displays the behavior of the gap function 
versus the length of a superconducting nanograin. At a fixed 
temperature, the gap function decreases as the length 
increases for both the 2D and 3D cases.
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Fig. 1. Gap function (measured by bulk gap at zero temperature and in 
arbitrary units) in terms of the 𝑇𝑇/𝑇𝑇𝑐𝑐for both 2D and 3D cases. Inset: 
Gap function (measured by bulk gap at zero temperature and in 
arbitrary units) in terms of the 

Fk L for both 2D and 3D cases 

 
In Fig. 2, the specific heat concerning the 𝑇𝑇/𝑇𝑇𝑐𝑐  at two 

fixed different 𝑘𝑘𝐹𝐹𝐿𝐿 is plotted.  Although, the specific heat 
increases with the increasing temperature, the rate of 
increase varies for nanograins of different lengths. 

 
Fig. 2. Specific heat (in arbitrary units) in terms of 𝑇𝑇/𝑇𝑇𝑐𝑐 at two different 
𝑘𝑘𝐹𝐹𝐿𝐿 = 4 and 𝑘𝑘𝐹𝐹𝐿𝐿 = 10 

The more significant issue is the variations in specific 
heat capacity concerning the length of the 
superconductor, as illustrated in Figs. 3-5, which 
belonged at different temperatures, yield very 
noteworthy results. At 𝑇𝑇/𝑇𝑇𝑐𝑐values around 0.8 up to 0.84, 
the specific heat displays a peak in the curve; however, 
at temperatures above 0.84, the specific heat shows a 
decreasing trend. Conversely, at temperatures below 
approximately 0.8, there is an increasing trend in 
specific heat as a function of length for the 
superconductor. 

 
Fig. 3. Specific heat (in arbitrary units) in terms of 𝑘𝑘𝐹𝐹𝐿𝐿 and at two 
different temperature ratios 0.829 and 0.83  

 
Fig. 4. Specific heat (in arbitrary units) in terms of 𝑘𝑘𝐹𝐹𝐿𝐿 and at two 
different temperature ratios 0.85 and 0.86 
 

 
Fig. 5. Specific heat (in arbitrary units) in terms of 𝑘𝑘𝐹𝐹𝐿𝐿 and at two 
different temperature ratios 0.68 and 0.70 

 
Now we will compare the effects of small size on 3D 

and 2D cases. 𝛥𝛥 = �𝛥𝛥𝐵𝐵𝐵𝐵𝐵𝐵(𝑇𝑇)��1 + 𝑓𝑓(1) + 𝑓𝑓(1/2)� is used 
for 2D cases. In Fig. 6, the specific heat concerning the 
temperature is plotted at a fixed 𝑘𝑘𝐹𝐹𝐿𝐿 = 10 for two cases, 
i.e., two- and three-dimensional cases. It is seen that the 
behavior of the specific heat is different in these cases.  

 
Fig. 6. Specific heat (in arbitrary units) in terms of the 𝑇𝑇/𝑇𝑇𝑐𝑐  at 
fixed 𝑘𝑘𝐹𝐹𝐿𝐿 = 10for 2D and 3D 

 

In Fig. 7, the specific heat (in arbitrary units) in terms 
of  𝑘𝑘𝐹𝐹𝐿𝐿 for 2-dimensional and 3-dimensional at a fixed 
𝑇𝑇/𝑇𝑇𝑐𝑐 = 0.86 is plotted.  For example, at 𝑇𝑇/𝑇𝑇𝑐𝑐 = 0.86, 
which is the typical temperature, at lower value of  
𝑘𝑘𝐹𝐹𝐿𝐿 = 13, for the 3D case, specific heat is increasing with 
length, while, for the 2D case, that is decreasing. Of 
course, when the circumstance is changed, the results 
about increasing and decreasing are changed. 
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Fig. 7. Specific heat (in arbitrary units) in terms of  𝑘𝑘𝐹𝐹𝐿𝐿 for 2-
dimension and 3-dimension at a fixed 𝑇𝑇/𝑇𝑇𝑐𝑐 = 0.86 

 

4. Conclusions 
We have considered a superconducting nanograin and 

numerically obtained a thermodynamic property of  the 
system, namely, its specific heat.  When a bulk 
superconductor is replaced by a superconducting 
nanograin, the effect of small size is incorporated 
through the spectral energy and the energy gap. Our results 
reveal that the spectral energy of the nanograin does not 
change the behavior of specific heat, except for its value. 
However, the energy gap of the nanograin strongly affects 
the behavior of specific heat. Generally, the energy gap 
depends on the excitation energy, the size of the system, 
and the Fermi energy. In particular, the present 
investigation shows that the specific heat is related to the 
length of the superconducting nanograin.  

An important issue is that, at different temperatures, 
the behavior of specific heat varies. For example, at T/Tc = 
0.68 (T/Tc = 0.86), we do not observe any extremum in 
specific heat; it increases (decreases) with 𝑘𝑘𝐹𝐹𝐿𝐿 (when the 
calculation continues, at least 𝑘𝑘𝐹𝐹𝐿𝐿 = 2000, the results do 
not change). However, in the temperature ratio interval of 
about T/Tc = 0.79 and T/Tc = 0.84, the specific heat shows 
a maximum value with respect to 𝑘𝑘𝐹𝐹𝐿𝐿. Additionally, we 
focused on comparing the 2-dimensional and 3-
dimensional cases. The dependence of the energy gap on 
the length differs, and the behavior of specific heat with 
respect to 𝑘𝑘𝐹𝐹𝐿𝐿 is also notably different in 2- and 3-
dimensions cases. 
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