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Abstract

In this paper, We prove the Ulam-Hyers-Rassias stability of a Cauchy-Jensen additive functional equation in fuzzy
Banach spaces. The concept of Ulam-Hyers-Rassias stability originated from Th. M. Rassias’ stability theorem that
appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978),
297-300.
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1 Introduction

The stability problem of functional equations was originated from a question of Ulam [37] concerning the stability
of group homomorphisms. Hyers [I7] gave a first affirmative partial answer to the question of Ulam for Banach spaces.
Hyers’ Theorem was generalized by Th. M. Rassias [30] for linear mappings by considering an unbounded Cauchy
difference.

Theorem 1.1. (Th.M.Rassias): Let f: E — E’ be a mapping from a normed vector space E into a Banach space
E’ subject to the inequality

1f(z+y) = f(2) = FW)Il < ellll” + lyll”)
f(2")

for all x,y € E, where € and p are constants with ¢ > 0 and 0 < p < 1. Then the limit L(x) = lim, ;. ~5+— exists
forall z € F and L : E — E’ is the unique additive mapping which satisfies

2e

1) - L@ < 5=

[|]”
for all z € E. Also, if for each x € E the function f(tx) is continuous in ¢ € R, then L is linear.

The functional equation
fle+y)+ fla—y)=2f(z) +2f(y)

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be
a quadratic mapping. The Ulam-Hyers-Rassias stability of the quadratic functional equation was proved by Skof [36]
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for mappings f : X — Y, where X is a normed space and Y is a Banach space. Cholewa [7] noticed that the theorem of
Skof is still true if the relevant domain X is replaced by an Abelian group. Czerwik [8] proved the Ulam-Hyers-Rassias
stability of the quadratic functional equation.

The stability problems of several functional equations have been extensively investigated by a number of authors, and
there are many interesting results concerning this problem (see [1I, 2, 3, O]-[12], [16], [23]-[35]).

Katsaras [18] defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure on the space.
Some mathematicians have defined fuzzy norms on a vector space from various points of view (see [13], [20], [24]).
In particular, Bag and Samanta [4], following Cheng and Mordeson [6], gave an idea of fuzzy norm in such a manner
that the corresponding fuzzy metric is of Karmosil and Michalek type [I9]. They established a decomposition theorem
of a fuzzy norm into a family of crisp norms and investigated some properties of fuzzy normed spaces [5].
Now we consider a mapping f : X — Y satisfying the following functional equation, which is introduced by the first

author,
Z 1 i, T~ TL —m + 1) n n
1<i1 < <im<n i=1
1<ki(#i5,¥j€{1,-- ,;m})<n
for all z1,--- ,x, € X, where m,n € N are fixed integers with n > 2, 1 < m < n. Specially, we observe that in case

m =1 the equation (|1.1]) yields Cauchy additive equation
n n
(o) -3
1=1 =1
We observe that in case m = n the equation (|1.1)) yields Jensen additive equation

f (Zﬂ’;j “’”) =3 fw)
=1

Therefore, the equation is a generalized form of the Cauchy-Jensen additive equation and thus every solution
of the equation may be analogously called general (m,n)-Cauchy- Jensen additive. For the case m = 2, we have
established new theorems about the Ulam-Hyers-Rassias stability in quasi S-normed spaces [29]. Let X and Y be
linear spaces. For each m with 1 < m < n, a mapping f : X — Y satisfies the equation for all n > 2 if and only if
f(z)—f(0) = A(z) is Cauchy additive, where f(0) = 0 if m < n. In particular, we have f((n—m+1)z) = (n—m+1) f(z)
and f(mz) =mf(x), for all z € X.

Definition 1.2. Let X be a real vector space. A function N : X x R — [0, 1] is called a fuzzy norm on X if for all
z,y € X and all s,t € R,

(N1) N(z,t) =0 for ¢ <O0;

(N2) z=0if and only if N(x,t) =1, for all ¢t > 0;

(N3) N(ex,t)= ( ,ﬁ) if ¢ £ 0;

(N4) N(xz+wy,c+1t)>min{N(z,s), N(y,t)};

(N5) N(z,.) is a non-decreasing function of R and lim;_, ., N(x,t) = 1;
(N6) for z # 0, N(z,.) is continuous on R.

Example 1.3. Let (X, |.||) be a normed linear space and «, 3 > 0. Then

—t . t>0zx€X
N(x.t) = o8l ’
(@,7) { 0 t<0,2€X

is a fuzzy norm on X.

2 Preliminaries

Definition 2.1. Let (X, N) be a fuzzy normed vector space. A sequence {z,} in X is said to be convergent or
converge if there exists an « € X such that lim; oo N (2, — 2,t) =1 for all ¢ > 0. In this case, x is called the limit of
the sequence {z,} in X and we denote it by N — lim;_, o0 2,, = .
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Definition 2.2. Let (X, N) be a fuzzy normed vector space. A sequence {z,} in X is called Cauchy if for each € > 0
and each ¢ > 0 there exists an ng € N such that for all n > ng and all p > 0, we have N(zp4p — zp,t) > 1 —€.

It is well known that every convergent sequence in a fuzzy normed vector space is Cauchy. If each Cauchy sequence
is convergent, then the fuzzy norm is said to be complete and the fuzzy normed vector space is called a fuzzy Banach
space.

We say that a mapping f : X — Y between fuzzy normed vector spaces X and Y is continuous at a point z € X
if for each sequence {z,} converging to xy € X, then the sequence {f(z,)} converges to f(zg). If f: X — Y is
continuous at each z € X, then f: X — Y is said to be continuous on X (see [5]).

Definition 2.3. Let X be a set. A function d : X x X — [0, 00] is called a generalized metric on X if d satisfies the
following conditions:

(1) d(z,y) =0 if and only if z =y, for all z,y € X;
(2) d(z,y) = d(y,x) for all z,y € X;
(3) d(z,2z) < d(x,y) + d(y, 2), for all z,y,z € X.

Theorem 2.4. Let (X,d) be a complete generalized metric space and J : X — X be a strictly contractive mapping
with Lipschitz constant L < 1. Then, for all x € X, either

d(J"z, J" M r) = oo
for all nonnegative integers n or there exists a positive integer ng such that
(1) d(J"z, J" lz) < oo for all ng > ng;
(2) the sequence {J™xz} converges to a fixed point y* of J;
(3) y* is the unique fixed point of J in the set Y = {y € X : d(J™z,y) < co};
(4) d(y,y*) < 27d(y, Jy) for ally € Y.

3 Fuzzy stability of (m,n)—Cauchy-Jensen additive functional equation ([L.1): A fixed
point method

In this section, using the fixed point alternative approach we prove the Ulam-Hyers-Rassias stability of functional
equation (|1.1)) in fuzzy Banach spaces. Throughout this paper, assume that X is a vector space and that (Y, N) is a
fuzzy Banach space.

Theorem 3.1. Let ¢ : X™ — [0,00) be a function such that there exists an L < 1 with

T T < L%O(xlva)"'yxn)
14 n—m+1"""n-m+1 n—m+4+1

for all z1,--- ,2z, € X. Let f: X — Y with f(0) =0 is a mapping satisfying

s (ERE ) () S
=1 '

1<iy < <im<n
1<k (#i;,¥5€{1,-- ,;m})<n

t

3.1
Tt oz, xn) (3.1)
for all 1,--- ,2, € X and all t > 0 . Then there exists a unique (m, n)—Cauchy-Jensen additive mapping A: X — Y
such that
(n—m+1) ( :1 )(l—L)t
N(f(z) = A(z),t) = ; (3-2)

n

(nm+1)< » >(1L)t+Lgp(x,~~ )

for all z € X and all ¢ > 0.
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Proof . Replacing (x1,--- ,x,) by (z,---,z) in (3.1]), we have

n n t
N - z) — - 1 > .
(o) st=mena = (2 ) ommensne) > s (33)
for all x € X and ¢ > 0. Consider the set S:={g: X =Y ; g(0) = 0} and the generalized metric d in S defined by
t
=1 + . — > —_—
da(f,g) 1nf{,u€R : N(g(z) h(x),ut)ft+@(x"“7x),Vx€X,t>0},

where inf ) = +o00. It is easy to show that (S, d) is complete (see [22]). Now, we consider a linear mapping J : S — S
such that

Jg(x) = (n—m+ 1)g (71_:;“)

for all z € X. Let g,h € S be such that d(g,h) = e. Then N(g(z) — h(x),et) > m for all z € X and ¢ > 0.
Hence
N(Jg(x) — Jh(x), Let)
x x
=N - Ng|—— ) —(n— Dh| ——— ), Let
(=g (i) = om0 (=t ) et
“N (g T Ny, T 7 Let
n—m-+1 n—-—m+1) n—m+1
Lt Lt
n—m+1 > n—m+1 _ t
- z z - Lt Lo(z, - ,x) .
njntﬂ T (n7m+1 27T nferl) mmtl T Tnemil t+ (e, 7)

for all x € X and ¢ > 0. Thus d(g,h) = € implies that d(Jg, Jh) < Le. This means that d(Jg, Jh) < Ld(g, h) for all
g,h € S. It follows from (3.3]) that

x t t
N (nm+1)f<n—m—|—1>f(x)’ >
( " ) t+90 (n—m+1’”' 7n—m+1)
m
t
o+ B

for all z € X and all ¢t > 0. So

n—;+Jf@%m_mfi(;) > e

N (nm+1)f<

This implies that
L

)

By Theorem [2:4] there exists a mapping A : X — Y satisfying the following:
(1) A is a fixed point of J, that is,
A
A ( ’ ) __A@) (3.4)

a(f, Jf) <

n—m-+1 n—m+1
for all x € X. The mapping A is a unique fixed point of J in the set Q@ = {h € S : d(g, h) < oo}. This implies that A
is a unique mapping satisfying 1) such that there exists u € (0, 00) satisfying N(f(z) — A(x), ut) > m, for
all z € X and ¢t > 0.
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(2) d(JPf, A) — 0 as p — oo. This implies the equality

N- lim < IR ) - (3.5)
p—=oo (n—m+ 1)~
for all x € X.
3)d(f,A) < % with f € Q, which implies the inequality

L
A= (n—m+1)( TZ ) —(n—m-i—l)(:L )L

This implies that the inequality (3.2] . holds. Furthermore, it follows from and . that

N > A(%ﬁ+§xkl>—w<$>iam,t
=1

1<iy < <im<n i=1
1<ki(#i5,Yj€{1,-- ;m})<n

_ . P Z;nzl L i Lk
_N—llm((n—m+1) > f<m(nm+1)p+zmm+1)p>

p—ro0
1<i1 < <im<n
1<ky(Fi;,V5€{1,-,m})<n

B ()5 ()

> lim (n_m+1)p
— 00 t x Tn
P (n—m+1)P +¢ ((n—m1+1)P ) (n—m+1)P>
t
> lim (n—m+1)7 1

Lro(zy, - ,an)
p—roo
(n—m+1)P + (n—m+1)P

for all 1, -+ ,x, € X, t > 0. Hence

3 A<Zﬂ 1le+7§:¢,€1>=”_:+1)<7’;>§:,4(9;
i=1

1<i1 < <im<n
1<k (#i;5,¥j€{1, - ,m})<n

for all z1,--- ,x, € X and therefore A satisfies (1.1). So the mapping A : X — Y is an additive, as desired. This
completes the proof. [

Corollary 3.2. Let § > 0 and let p be a real number with p > 1. Let X be a normed vector space with norm ||.||.
Let f: X — Y with f(0) =0 be a mapping satisfying the following inequality

N 3 f <ZJ L% +nz§n%> - %H) ( " )gf(xi),t

1<iy < <im<n
1<k (#i5,V5€{1,-- ;m})<n

t
2 O ) (3:6)

for all z1,--- ,2, € X and all t > 0. Then, the limit A(z) := N-lim,_, % exists for each x € X and defines
a unique (m,n)—Cauchy-Jensen additive mapping A : X — Y such that

(n—m-i—l)(:l ) [(n—m+1)p_(n—m+1)}t

N(f(x) — Az),t) =
(n—m+1) ( :2 ) [(n—m—l—l)P—(n—m—i—l)}t—i—n(n—m—i—l)HHxHP
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forall x € X and t > 0.

Proof . The proof follows from Theorem 3.1 by taking p(z1,- -+ ,xy) := 0 (3 i, ||=;||P) for all a4, -+ , 2, € X. Then
we can choose L = (n —m + 1)177 and we get the desired result. [J

Theorem 3.3. Let ¢ : X™ — [0,00) be a function such that there exists an L < 1 with

X1 ey
) < (n— L e
ploneean) < (n—m1) L'O(n—m—i—l n—m+1)

for all z1,29, - ,2, € X. Let f : X — Y be a mapping with f(0) = 0 satisfying (3.1).Then, the limit A(x) :=

N-lim,_, % exists for each z € X and defines a unique (m,n)—Cauchy-Jensen additive mapping A :

X — Y such that
n

m)(lL)t

)(1—L)t—|—<p(m,~-~ ,T)

(nm+1)(

N(f(x) — A(z),t) =
(n—m+1) ( m

(3.7)

forall z € X and all ¢t > 0.

Proof . Let (S,d) be the generalized metric space defined as in the proof of Theorem Consider the linear
mapping J : S — S such that Jg(z) := w, for all x € X. Let g,h € S be such that d(g,h) = e. Then

n—m-+
N(g(z) — h(z),et) > for all z € X and ¢t > 0 . Hence

t
t+p(z, - ,x)’

N(Jg(z) — Jh(z),Let) = N (9((Z - Zfbi 1)9”) - h((z - i 1)@ , Let)

- N(g((n—m+1)x)—h((n—m+1)x)7(n—m+1)Let)
(n—m+1)Lt
(n—m+1DLt+e((n—m+ Dz, - ,(n—m+1)x)
(n—m+ 1)Lt
(n—m+1)Lt+ (n—m+1)Lp(z,, - ,z)

t
t"‘@(xv"' 7x)

v

for all z € X and ¢t > 0. Thus d(g,h) = € implies that d(Jg, Jh) < Le. This means that d(Jg, Jh) < Ld(g,h) for all
g,h € S. It follows from (3.3]) that

f(ln=—m+ 1Dz t t
(n—m+1) < ) B
forall z € X and ¢t > 0. So )
a(f, Jf) < —

(n—m+1) ( m >
By Theorem there exists a mapping A : X — Y satisfying the following:
(1) A is a fixed point of J, that is,

(n—=m+1)A(z) = A((n —m + 1)x) (3.9

for all z € X. The mapping A is a unique fixed point of J in the set Q = {h € S : d(g,h) < oo}. This implies that A
is a unique mapping satisfying 1' such that there exists u € (0, 00) satisfying N(f(x) — A(x), ut) > for

¢
t+o(z, - ,x)’
all z € X and t > 0.
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(2) d(JPf, A) — 0 as p — oo. This implies the equality
f((n—m+1)Px)

A = N-1i
(2) B Sy P
for all x € X.
(3) d(f,A) < % with f € Q, which implies the inequality

1

(n—m+1)<;r’l)—(n—rrwrl)(:1 )L.

This implies that the inequality (3.7) holds. The rest of the proof is similar to that of the proof of Theorem O

d(f,A) <

Corollary 3.4. Let 8 > 0 and let p be a real number with 0 < p < 1. Let X be a normed vector space with norm
II.ll. Let f: X — Y be a mapping with f(0) = 0 satisfying (3.6)). Then, the limit

i d((n=m A 1))
Al) = N_phﬁnc}c (n—m+1)P

exists for each € X and defines a unique (m,n)—Cauchy-Jensen additive mapping A : X — Y such that

n

(n—m—|—1)<m > [(n—m+1)_(n—m+1)p}t

N(f(z) = Alx),t) >

n

(n—m—l—l)( " ) [(n—m—i—l)—(n—m—l—l)P}t—i—n(n—m—i—l)@HxHP

for all x € X.

Proof . The proof follows from Theorem 3.2 by taking p(z1, -+ ,xy) := 0 (3 i, ||z;||P) for all xq,--- , 2, € X. Then
we can choose L = (n —m + 1)P~! and we get the desired result. [J

4 Fuzzy stability of (m,n)—Cauchy-Jensen functional equation (1.1)): a direct method

In this section, using direct method, we prove the Ulam-Hyers-Rassias stability of functional equation (1.1f) in
fuzzy Banach spaces. Throughout this section, we assume that X is a linear space, (Y, N) is a fuzzy Banach space
and (Z, N') is a fuzzy normed spaces. Moreover, we assume that N(z,.) is a left continuous function on R.

Theorem 4.1. Assume that a mapping f: X — Y with f(0) = 0 satisfies the inequality

Dt N~ (n—m+1) [ n\¢
N f<m+z% Y
1<i1 < <tm<n =1 =1
1<k (Fi; ¥iE{L, - m})<n
> N'(o(x1,...,1p),t) (4.1)
for all z1,...,2, € X, ¢t > 0 and ¢ : X" — Z is a mapping for which there is a constant r € R satisfying
0<|r|l < such that

Z1 Tn t
N/ .. >N/ o v 4.
(w(”m+1’ 7nm+1>’t>_ ((‘O(xl’  Zn), |r|>’ (4.2)

for all x1,...,2, € X and all ¢ > 0. Then there exists a unique (m,n)—Cauchy-Jensen additive mapping 4 : X — Y
satisfying (1.1) and the inequality

1
n—m-+1

N(f(z) — A(z),t) > N’ Irlez, .., 2) t (4.3)

forall z € X and all ¢ > 0.
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Proof . It follows from (4.2)) that

for all x1,--- ,x, € X and all ¢ > 0. Substituting (z1,--- ,zy) by (z,--- ,2) in (4.1)), we obtain

f("‘x””rl)l_f(x), t >N’(<p< x e, v ),t)

(n—m+1) n—m+1 n—m+1

for all x € X and all £ > 0. Replacing = by m in the above inequality, we have

f(amte) S (aimy) -me i

(n—m+1)~=1  (n—m+1)~7" (n>

m

>N <<p(x,--~ »’C)Wtﬂ)

for all x € X, all ¢ > 0 and any integer j > 0. So,

(o) 02k —mo+ 1)t

N _
m
- pz_:l f(W) 3 f(ﬁ) S P g (n —m+ 1) it
R P o e e ;
) m
. f(W) (n mt1)7 ) (n—m+1)3|r[i+1t
>  min N A ’
0<j<p—1 (n—m+1)=3-1 (n—m+1)7J n
m
> N/(QD(ZL', 7x)7t) (45)
which yields
(mstrre) S (etor) S ms e
(n—m+1)7P=9  (n—m+1)=9 n
m
>N’ i . r . 6
> (o (o ) (10

St

for all x € X, t > 0 and any integers p > 0, ¢ > 0. So

(o) 1 () S00hn = m+ Dtaprporty .
(n—m—i—l)—P—qi(n_m_y_l)—q’ ( n ) = (@(Iv"'7x)7t)
m
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for all x € X, t > 0 and any integers p > 0, ¢ > 0. Hence one obtains

I (=) f(m)t SN <:L>t

(n—m+1)P49 (n—m+1)-4 Sr- “Hn—m + 1)itajpjitatt

forallz € X, t > 0 and any integers p > 0, ¢ > 0. Since, the series Zjﬁg(n—m+1)j|r\j+l is convergent series, we see by

Ha=agor)

taking the limit ¢ — oo in the last inequality that the sequence { i 1)-7 } is a Cauchy sequence in the fuzzy Banach

space (Y, N) and so it converges in Y. Therefore a mapping A : X — Y defined by A(x) := N — lim,,_, %

is well defined for all x € X. It means that

===
1 RN S " A =1 4.
phﬁnolo N | A(z) i—mt1)7 ,t (4.7

for all z € X and all ¢t > 0. In addition, it follows from (4.5)) that

! (o) ()
Tom¥D? ) m
VO™ et | 2N | Pl S

for all x € X and all ¢t > 0. So

N(f(z) = A(z), 1)

(n—m+1) (nferl)
, (Z)Et / <n>6(1—(n—m+1)|r|)
= N el Py “o(n = m+ 1)d|rt 2N [ e, 2), |7|

for sufficiently large n and for all x € X, t > 0 and € with 0 < € < 1. Since ¢ is arbitrary and N’ is left continuous, we
obtain

()=

7]

for all z € X and t > 0. It follows from (4.1) that

Z’,n—l I’L n—m xk
N((n_m+1)p fl——" oy
1Si1<;im§n m(n —m+1)P ; (n—m+1)P

1<k (#i5,Y5€{l,- ,m})<n

= ()2 ) )

t
>N’ (ﬁﬁ(xh“' »xn)7)

(n—m+ 1l
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for all z1,---,z, € X, t >0 and all n € N. Since lim,_,o, N’ ((p(xl,--- T ) =1 and so

) t
n/ (n—m+1)P|r|P

. P 2o T 3
pgrme((n—m+1) > f<m(ni¢;+1+z n—m+1 )

1<iy1 < <im<n
1<k (#i;,Vj€{l,- m}<

W( )Zf< T I >_A<x)’t> -

for all z1,--- ,z, € X and all ¢ > 0. Therefore, we obtain in view of (4.7)

1<iy < <im<n
1<k;(#i5,Vj€{1,-- ,m})<n

(L3 g (g
=1
A

Zmin{N( 3 A (z] L +ka> Saomtl) ( m )Z (x:)

1<iy <-<im<n
1<k (#i;,Vj€{l, - ,m})<n

Zm xzj n—m
~(n—m+ 1) 2 f<m<nm+1+lzzl T )

1<y < <im<n
1<k (#i;,Vje{l, ,m}<

a7 ()8 () (o

Zm n—m
2 f<m(n_m+1+ TRy )

1<ii < <im<n 1=1
1<k;(#ij,Vj€{l,-- ,m})<n

W( )Zn:f(nmﬂ) )9}

i=1

Zmlxij —
:N((n—m+1)p > f(M*; n—m—‘rl )

1<i1 <--<im<n
1<k (#ij,Yj€{l,..5m})<n

I S G o Y G S -
n m Zf —mtip)2 (for sufficiently large p)

i=1

t
>N’ Ce D),
> 3 (sl g )

—1 asp— o0

which implies

5 A(Zj 1% fokl):’ﬂ*”(g)ifum

1<i1 < <im<n
1<k (#i;,¥j€{1,-- ,m})<n

for all x1,--- ,x, € X. Thus A: X — Y is a mapping satisfying the equation (|1.1)) and the inequality (4.3]). To prove

the uniqueness, let there is another mapping L : X — Y which satisfies the inequality 1' Since L TFn=TyP Hffl)p
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z — A
(m+n—-1)P | = (m+4+n—-1)P>

L@ __ and A (

Tmn—1p for all z € X, we have

N(A(z) = L(z),1)

Aommr)  Eamey)

(m+n—1=" (m+n-—1)"r’

>min{ N (( hi Dp)* (( ) )
(m4+n—-1)"P (m4+n-—1)"P

i (wrmw) L (ammy)

t
(m+n—-17 (m+n—1)"r 2

;
> N r T <n>(1(nm+1)r|)t

= @<wﬂww4v””%m+n—1w>’ 20r[(n — m + 1)7

()= i

m

2P (n —m )7 —1 asn — oo

for all ¢ > 0. Therefore A(z) = L(x) for all x € X. This completes the proof. O

Corollary 4.2. Let X be a normed spaces and that (R, N’) a fuzzy Banach space. Assume that there exists real
numbers 6 > 0 and p > 1 such that a mapping f: X — Y with f(0) = 0 satisfies the following inequality

N 3y f<2%%+7§xk,>—w<2)if(xi),t
=1 i=1

1<iy < <im<n
1<k (#i;,¥5€{1,-- ,;m})<n

ZNQ«ZWW>Q, (4.8)

for all z1,...,2, € X and t > 0. Then there is a unique (m,n)—Cauchy-Jensen additive mapping A : X — Y that
satisfying (1.1) and the inequality
nf||([”

N(f(x) = A(z),t) = N’
( " ) [(n—m—Fl)P—(n—m—i—l)}

ot
m
Proof . Let (x1, -+ ,2,) =0 (> ||:]|P) and |r| = (n —m +1)"P. Apply Theorem we get desired results. [J

Theorem 4.3. Assume that a mapping f: X — Y with f(0) = 0 satisfies the inequality (4.1)) and ¢ : X™ — Z is a
mapping for which there is a constant r € R satisfying 0 < |r| < n —m + 1 such that

N’ o zn), |r[t) > N e t 4.9
(SD(I‘]_, y T ),|T|)_ (Qp(nm+1a 7n—m+1 ) ( )
for all z1,--- ,x, € X and all ¢ > 0. Then there exists a unique (m, n)—Cauchy-Jensen additive mapping A: X — Y

that satisfying (1.1) and the following inequality

(n—m+1—|r)t

(%)

(4.10)

for all z € X and all ¢ > 0.
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Proof . It follows from (4.4) that

f((n—m+1)x) t
nomd ’(nm+1)( TZ)

for all x € X and all t > 0. Replacing « by (n — m + 1)Pz in (4.11), we obtain

> N'(o(z,...,2),t) (4.11)

N | fz) -

fl(n —m+1)PTir) ~ f(n=m+1)Px) t
(n—m+1)pt1 (n—m+1)P (n—m—&—l)p“‘l(:;)

> N'(o((n—m+1)Px,...,(n —m+1)Px),t) (4.12)

, t
ZN <90(xavm)a|rp> .

N

So,

flln—m+1)P*z)  f((n—m+1)Px) [r|Pt
(n—m+ 1P+t (n—m+1)P 7(n—m+1)1’+1(:1>

for all z € X and all ¢ > 0. Proceeding as in the proof of Theorem [£.I] we obtain that

N > N(p(z,...,1),t)

N | oy - Hnmmt10a) il > N'(g(,...,2),1)
(n—m+1)? =0 (n —m + 1)it1 ( :1 )

for all x € X, all ¢ > 0 and any integer n > 0. So,

— p
f((n m—"_l) 1.)7t Z N, (p(x""7x)’ t
(n—m+1)P n p—1 e
m Zj:O (n7m+1)3+1

(n—=—m+1—|r|)t

(n)

N (f(x) -

Y

N | p(z,...,x),

The rest of the proof is similar to the proof of Theorem O
Corollary 4.4. Let X be a normed spaces and that (R, N') a fuzzy Banach space. Assume that there exists real

number § > 0 and 0 < p < 1 such that a mapping f : X — Y with f(0) = 0 satisfies (4.8). Then there is a unique
(m,n)—Cauchy-Jensen additive mapping A : X — Y that satisfying (1.1) and the inequality

(n—m+1—(n—m+1)P)t
(%)

Proof . Let o(z1,...,2,) := 0 (>, ||z;i||?) and |r| = (n — m + 1)P. Apply Theorem [4.3| we get desired results. [

N(f(z) = A(z),t) = N" [ nb|z||",
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