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Abstract

The smart water-enhanced oil recovery (EOR) process is a pioneering tertiary recovery method in the petroleum indus-
try. Meanwhile, more than half of oil reserves in the world are carbonate. Accordingly, considering the technical and
financial aspects, the determination of the accurate concentration of presented ions in smart water is very important.
Although several experimental studies considered this issue, no appropriate statistical method has been suggested to
deal with this problem during smart water injection in carbonate rocks. In the present article, five different multi-
target regression machine learning (ML) algorithms (i.e., Random Forest, Decision Tree, K-Nearest Neighbours, Lasso
and Linear), were used to predict the ionic concentration in imbibition tests. A completely reliable dataset of imbi-
bition test results, which were gathered from the literature, was employed in the learning process of the algorithms
and examining their accuracy. After data processing, feature extraction, splitting data and building candidate ML
models, an exact hyperparameter tuning was carried out to evaluate the ML models and select the best model. It is
found that the Random Forest algorithm is the best-acting approach with the lowest total root mean squared error
(RMSE) of 1.231 and the highest score of 0.981 for predicting ionic concentration in smart water EOR applications.
In conclusion, the proposed model is the most efficient approach as compared with commonly used costly laboratory
tests, which can be a good candidate for predicting the concentration of ions in smart water injection processes.
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1 Introduction

The initial production from an oil reservoir which is called Primary Production, mainly happens due to the reser-
voir’s internal pressure where hydrocarbons naturally rise to the surface. Secondary Recovery operations contain water
and gas injection into the reservoir to maintain reservoir pressure at a high level and displace hydrocarbons toward
the surface level. Hydrocarbons that have not already been extracted from the reservoir through the primary and
secondary stages of the recovery process, undergo the Tertiary Recovery step which is also known as Enhanced Oil
Recovery (EOR). Chemical flooding is one of the most practical EOR methods which helps to free trapped oil in the
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reservoir by altering the fluid properties by changing the surface tension to overcome capillary barriers in the reservoir
[1].

Enhanced oil recovery in carbonate rocks which are usually naturally fractured is one of the main recovery proce-
dures in mature fields. Carbonate rocks contain more than 50% of oil reserves in the world [44] and are neutral or
preferentially oil-wet which usually decreases the efficiency of the recovery process by water flooding [18, 58, 2]. Among
all recovery mechanisms, water-based EOR methods have been the most common way of hydrocarbon recovery by
many oil companies. In water-based EOR, not only the quantity of water but also the quality of injection water is very
important and should be highlighted as a determining factor for enhancing recovery efficiency [4]. Spontaneous imbi-
bition is one of the main mechanisms in fractured reservoirs in which water displaces oil from matrix to fracture due to
capillary forces, which highlights the importance of understanding the wettability characteristics of the rock surfaces
[45, 6, 35]. Smart water injection is the most common and efficient approach for chemical Enhanced Oil Recovery due
to its high efficiency and low cost. Effective mechanisms involved in smart water injection into carbonate rocks and
sandstones include fines migration, pH increase, multi-ion exchange (MIE), salting in, and wettability alteration. For
better effectiveness of these mechanisms, it is required to predict the optimal water ions in the imbibition and flooding
processes [3]. Studies on seawater injection into the North Sea chalk reservoirs showed that modifying and designing
the composition of the injection brine can change the wettability condition of the rock surfaces more toward water-wet
[33]. This process is termed as smart water, designed water, or engineered water. Smart water refers to synthesized
water whose type and content of its ions are selected in a smart way to achieve certain recovery conditions during
water injection for hydrocarbon recovery.

Zhang et al. used outcrop chalk from Stevns Klint (a white chalk cliff), near Copenhagen, Denmark, to investigate
the effect of Ca2+, in the presence of SO 2–

4 , on wettability alteration. This outcrop chalk had a low permeability of 2 to
5 [mD] and a high porosity of 45 to 50%. Besides, all cores had a length of 7 [cm] and a diameter of 3.75 [cm] and were
drilled from the same outcrop. Spontaneous imbibition tests, Chromatographic wettability tests, interfacial tension,
and zeta potential measurements were performed using oil samples with acid numbers of AN = 2.07 [mgKOH/g] and
AN = 0.55 [mgKOH/g] and brine samples (artificial Ekofisk formation brine) with different concentrations of Ca2+

and SO 2–
4 . They showed that when the oil has a higher AN , the change in Ca2+ in the reservoir water will not have

much effect on the recovery factor (RF ) and also showed that the higher the concentration of Ca2+ in the presence of
SO 2–

4 in both reservoir water and injected water, the higher the value of RF [69].

Strand et al. investigated the temperature effects on Enhanced Oil Recovery from mixed-wet outcrop chalk using
seawater injection. This outcrop was obtained from Stevns Klint (a white chalk cliff), near Copenhagen, Denmark,
and had a low permeability of 2 to 5 [mD] and a high porosity of 45 to 50%. In their experiments, crude oil with
low AN of 0.7 [mgKOH/g] and high AN of 1.9 [mgKOH/g] was used. They concluded that, firstly, at temperatures
below 100 °C, the amount of oil recovery through the imbibition process was not significant compared to the recovery
by flooding. Secondly, at temperatures above 100 °C, the amount of oil recovery increased through the imbibition
process, but still less than the flooding process [59].

Zhan et al. studied the secondary and tertiary recovery processes by changing the salinity of injection and connate
waters. Core plugs were cut from Berea sandstone and had a diameter of 3.8 [cm] and length of 7.6 [cm] with
permeability to N2 ranging from 600 [mD] to 1100 [mD] and porosity ranging from 16.5 to 33%. Three different oil
samples with acid numbers of 0.33, 0.17, and 0.16 [mgKOH/g] were used in their experiments. They concluded that if
low salinity water is used as the reservoir brine and high salinity water as displacing water, the amount of oil recovery
would be high. They also concluded that if both the reservoir water and the displacing water have low salinity, the
amount of oil recovery would be high as well [71].

Fathi et al. examined the effect of ionic composition and salinity of smart water on oil recovery at different
temperatures of 100, 110 and 120 °C under flooding and imbibition processes where crude oil with an acid number
of AN = 1.9 [mgKOH/g] was used. Outcrop chalks from Stevns Klint of Denmark, with a low permeability of 1 to
2 [mD] and a high porosity of about 45% were used. Their work confirmed that not only the impact of active ions
such as Ca2+, Mg2+, and SO 2–

4 are important for wettability alteration but also non-active ions such as Na+ and
Cl– have important effects on wettability alteration which can be considered as a double-layer mechanism. The high
ultimate recovery factor and the high speed of the imbibition process were the results of the reduction in NaCl content
in water. Consequently, ion-engineered water flooding can be a relatively smart EOR technique for tuning the ionic
composition of the injecting brine [24]. Used two types of oil with low AN of 0.5 [mgKOH/g] and high AN of 2.0
[mgKOH/g], as well as a temperature range of 70 to 120 °C, to investigate and find an optimal concentration of water
ions in the process of imbibition on the chalky cores from Stevns Klint, Denmark [25]. They found that when the
concentration of SO 2–

4 in the seawater is quadrupled, the recovery factor will be higher than when the water is depleted
in NaCl. Besides, the impact of changing concentrations of Ca2+ at a temperature of 100 °C was not noticeable, but
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at a temperature of 120 °C, a significant change was observed.

As a data-driven study on enhanced oil recovery, Dang et al. presented a novel EOR process called Hybrid Low
Salinity Chemical Flooding, where the low salinity water flooding and the chemical flooding are combined [22]. They
used artificial intelligence for its mechanistic modelling and showed that one of the most important problems during
the mechanistic modelling of that hybrid EOR process was the change of relative permeability due to different factors
such as the presence of salinity, polymers, and surfactants. To overcome this challenge, they implemented a multilayer
non-linear network for multi-dimensional interpolation of the relative permeability during the hybrid EOR process.
Romanuka et al. performed a screening study using different carbonate rocks. Spontaneous imbibition tests were
carried out on various rock samples such as limestone, dolomite, and chalk with different values of porosity and
permeability [52]. Puntervold et al. conducted a laboratory test to determine the optimum values of NaCl and
SO 2–

4 in smart water injection to obtain maximum oil recovery factor (RF ) at 90 °C [51]. In their experiment, with
complete depletion of NaCl from smart water, the amount of recovery factor increased by 8%, although was not a
linear function of the NaCl concentration. To achieve maximum recovery factor, more than 90% of NaCl got removed
from the smart water and the concentration of SO 2–

4 was approximately fourfold. As a result, the recovery factor was
increased by 10% of the original oil in place.

Shariatpanahi et al. compared the process of imbibition in dolomite and calcite rocks with experiments and
previous papers on sandstone and chalk [54]. They concluded that Mg2+ had a greater effect on the water wetness
of calcite compared to Ca2+. They also showed that, since the dolomite surface had both ions of Mg2+ and Ca2+ as
positively charged components, it could be stated that the adsorption of active polar carboxylic onto dolomite rock
was less than for calcite. Moreover, when the water was 10 times diluted, it reached incremental oil of 10 to 15% in
dolomite rock. Although laboratory imbibition tests are promising methods for EOR applications, they are expensive
and time-consuming. besides, the Design of Experiment (DOE) is another tool to predict optimal ionic concentration.
In this work, an accurate machine learning algorithm is used for the determination of ionic concentration in smart
water EOR processes. The proposed model showed good agreement with different imbibition tests.

2 Dataset Overview

The process of data collection for use as training and test datasets will be discussed in this section. In this work,
the results of imbibition tests which are carried out by other researchers are employed to generate a 29-dimentional
feature space dataset. The database on which the model was trained includes 127 sets of data obtained from different
experimental studies from the literature [24, 25, 36, 51, 52, 59, 69, 71] and these studies are discussed briefly in the
introduction section. Each data point includes lithology, porosity (ϕ), permeability (k), initial water saturation (Swi),
imbibing time (t), recovery factor (RF), imbibition test temperature (T0), temperature in which density and viscosity
are measured (T1), acid number (AN), crude oil density (ρo), crude oil viscosity (µo), formation water compositions,
imbibing fluid compositions, ionic strength (I), and total dissolved solids (TDS). Records of some data points existing
in the data bank used in this study are summarized in Table 1. Statistical parameters of the employed databank in
this paper are presented in Table 2.

Table 1: Summarized dataset.

Reference Lithology ϕ k Swi timb RF T0 AN ρo T1 µo

[69] chalk 47.3 - 49.9 2 - 5 21.4 - 26.3
30 9.2 - 54.6

70 0.55 0.803
25

2.56
100

2.07 0.806 3.05
10 20.6 - 65.8 130

[69] chalk 47.2 - 49.8 2 - 5 0 - 30

65 8.9 - 30.9 70
2.07 0.806

25
3.0519 22.5 - 29.4 100

5 58.1 - 63.2 130
15 - 30 17.5 - 67.3 70 0.55 0.8.3 2.56

[59] chalk 43.7 - 48.8 1 - 3 10
90 8 - 30.7 90 0.7

0.8 20 2512 10.2 & 10..8 110
1.9

19 10.8 & 11.9 120
[71] sandstone 22.7 - 23.3 1067 - 1174 22.4 - 25.8 4 42.5 - 73.8 75 0.17 0.903 75 7.5

[24] chalk 45 - 47 1 - 3 8 & 9
49 36.1 - 44.3 100

1.9 0.8115 20 3.3871.5 23.4 - 60.3 110
34 14.6 - 69.4 120

[24] chalk 44 - 48 1 - 3 9 - 11

37 16.5 - 62.2 90
0.5 0.798

25
2.6

27 39.6 - 48.5 70
61 10.6 - 30.3 100

2 0.815 3.38
59 34.1 - 47.8 120
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[52]

chalk 49 - 51 5.5 - 6.2 15 111 41 - 45 60 0.92 0.843
70

3.93

limestone 23 - 31 1.9 - 56.5 10 - 20
25.4 & 33 3 - 9.5 70

0.42
0.813 2.36

12 10.28 120 0.779 120 0.97
42.3 0.12 - 2.29 70 0.92 0.843 70 3.93

dolomite 12 - 25 10.8 - 235 11 - 17
64 2.53 - 10.43 85 0.07

0.831
85 4.84

4.1 & 6 5.6 & 8.7 70 0.92 70 3.93
[51] chalk 45 - 55 1 - 5 10 25 - 55 22 - 61.2 90 0.5 0.801 20 2.3

[54]
chalk 45.35 - 49 1 - 3 10 5.1 - 7.9 8.1 - 65 25

0.34 0.804
20 2.5

0.17 0.8
dolomite 20 201 & 235 15 4.1 & 6 5.6 - 26.3 70 0.52 0.847 20 20.8

[36] chalk 43 & 46 3 - 5 10 7.6 & 11.9 5.6 - 26.3 50 0.34 0.808 25 3.2

Table 2: Statistical description of the dataset.

Category Parameter Unit Mean Std Min Q1 Median Q3 Max

ϕ % 42.32 10.43 12.00 44.25 46.98 48.50 55.00
k mD 47.95 200.56 1.50 1.70 3.50 3.50 1174.00

Swi % 14.59 7.03 0.00 10.00 11.00 22.65 29.20
timb Day 34.15 23.73 4.00 12.00 30.00 50.56 111.00

Experiment RF % 31.53 20.49 0.12 10.80 30.90 47.25 73.80
T0 °C 83.86 28.13 25.00 70.00 85.00 100.00 130.00
AN mg of KOH/g 1.04 0.74 0.07 0.50 0.55 1.90 2.07
ρo g/cm3 0.81 0.02 0.78 0.80 0.81 0.81 0.90
T1 °C 35.75 25.41 20.00 20.00 25.00 25.00 120.00
µo cp 3.36 2.45 0.97 2.50 3.05 3.38 20.80

Na+ mol/lit 1.22 0.76 0.00 0.99 1.00 1.34 2.85

K+ mol/lit 0.00 0.00 0.00 0.00 0.00 0.01 0.01

Mg2+ mol/lit 0.04 0.09 0.00 0.01 0.03 0.03 0.66

Ca2+ mol/lit 0.13 0.16 0.00 0.01 0.03 0.23 0.57
Formation water Cl– mol/lit 1.56 1.04 0.00 1.07 1.20 1.41 3.87

HCO –
3 mol/lit 0.00 0.00 0.00 0.00 0.00 0.01 0.01

SO 2–
4 mol/lit 0.00 0.02 0.00 0.00 0.00 0.00 0.13

Ionic strength mol/lit 1.66 1.20 0.00 1.11 1.45 1.45 4.39
TDS g/lit 86.62 58.10 0.00 62.80 62.83 82.05 222.19

Na+ mol/lit 0.91 0.99 0.00 0.19 0.45 1.01 3.51

K+ mol/lit 0.01 0.00 0.00 0.00 0.01 0.01 0.01

Mg2+ mol/lit 0.05 0.06 0.00 0.04 0.05 0.05 0.66

Ca2+ mol/lit 0.09 0.15 0.00 0.01 0.01 0.05 0.57
Injection water Cl– mol/lit 1.17 1.30 0.00 0.32 0.54 1.08 3.98

HCO –
3 mol/lit 0.00 0.00 0.00 0.00 0.00 0.00 0.01

SO 2–
4 mol/lit 0.02 0.03 0.00 0.00 0.01 0.02 0.13

Ionic strength mol/lit 1.30 1.39 0.00 0.47 0.66 1.12 4.39
TDS g/lit 66.31 71.21 0.00 26.30 33.40 62.83 230.77

A boxplot is used to identify the outlier data and to show the distribution of data. Outlier data are those data
points higher than the upper extreme or lower than the lower extreme in the plot as shown in Figure 1. As mentioned in
the literature, earlier studies demonstrate a strong and consistent association between increasing Smart water injection
efficiency and diverse water ion concentration. Therefore, a histogram of them was drawn in Figure 2 to acquire the
best vision of this concentration on formation water and injected water ions as well.

ϕ k Swi timb RF T0 AN ρo T1 μo
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Figure 1: boxplot of the expriment data
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Figure 2: histogram of formation water and injected water ions

Furthermore, to investigate the relations between the outlier data and to show the distribution of data, a Confusion
matrix was plotted. This plot draws Confusion matrix plots between all parameters and calculates the Pearson
correlation coefficients. This coefficient represents the linear relations between the two parameters, see Figure 3. It
should be noted that outlier data points are higher than the upper extreme or under the lower extreme in the plot.
Mainly, this Figure was utilized to check potential correlations between independent and dependent data and to display
whether any variables are similar to each other. Finally, Input data were visualized and investigated, and the outlier
data were identified and deleted, see Figure 4. Five machine learning algorithms were exploited to estimate terminal
ionic concentration. The development procedures of the models are discussed below.

3 Machine Learning Framework

As mentioned earlier, the purpose of this work is to build predictive Multi-Target Regression (MTR) models. Multi-
Target Regression (MTR), also known as multi-output/multivariate regression is mainly the task of predicting multiple
continuous output variables (called targets) using some input variables (called features). MTR has applications in
many fields such as geoscience, economics, energy, healthcare, etc. ([27, 73, 12, 43, 72, 64, 11]). The main challenge
in building MTR models is the appropriate modelling of target dependencies between target parameters. A naive
approach towards Multi-Target Regression (MTR) is using a combination of single-output regression models instead
of multi-output regression models. There are several problems associated with using a combination of single-output
regression models for a multi-output regression task. Mainly, concatenating multiple single-output models takes
longer to train and is computationally expensive. Besides, they optimize for the single target rather than all the target
variables together and do not use the relationships between the target variables. In this work, we build Multi-Target
Regression (MTR) models using different algorithms proposed in the literature and use them for the prediction of
ionic contents in smart water flooding processes, see Figure 5.
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Gathering Data

Hyperparameter 
Tuning of ML Models

Evaluation 
of ML Models

Building Candidate 
ML Models

Feature Extraction

Processing Data

Splitting Data 
(Train, Dev, Test Sets)

Save the Best Model

Figure 5: Prediction steps by using machine learning algorithms.

3.1 Model Evaluation Metrics

In order to evaluate the performance of different regression models, we use and report Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE) as the evaluation metrics.
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Figure 4: Input features part of the dataset - experiment setup properties and formation water components

3.1.1 Mean Absolute Error (MAE)

MAE measures the equally weighted average of the errors between the set of predictions (ŷj) and the set of actual
observation values (yj) in a set of n samples as

MAE =
1

n

n∑
j=1

|yj − ŷj | . (3.1)

3.1.2 Root Mean Squared Error (RMSE)

Root Mean Squared Error (RMSE) is the square root of the average of squared differences between predicted and
real data and can be expressed as

RMSE =

√√√√ 1

n

n∑
j=1

(yj − ŷj)2. (3.2)

Root Mean Squared Error increases with the variance of the frequency distribution of error magnitudes. Although
both MAE and RMSE are negatively-oriented metrics meaning that lower values are better, RMSE gives a relatively
high weight to large errors and becomes important when existing large errors are particularly undesirable.

3.2 Multiple Linear Regression

Linear regression is a straightforward and fundamental approach to build predictive models. If there is more than
one independent variable, we can exploit multiple linear regression (MLP). The form of this model for P-predictors is:

yi = β1X1 + β2X2 + ...+ βpXp + ϵ, (3.3)

where Xi is i
th predictor, β0 is intercept, βi is i

th coefficient, and ϵ denotes the error. The best-fitting line is calculated
by minimizing a cost function as the residual sum of squares between the real and predicted data in the dataset. The
cost function is described as follows [7, 26].

Cost =

n∑
i=1

(ŷi − yi)
2. (3.4)
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3.3 Lasso Regression

It is possible to use the lasso algorithm, which is classified as a modified linear regression. Lasso regression is similar
to ridge regression with a slight modification in its cost function. Ridge regression pushes coefficients to approach
zero (approximately); therefore, all independent variables remain in this model. The lasso model pushes them equal
to be equal zero, so the lasso model reduces the number of predictors, and the algorithm applies feature selection
automatically [7, 26]. The cost function is considered

Cost =

N∑
i=1

(yi − β0 −
p∑

j=1

(βjXij)
2 + λ

p∑
j=1

|βj |. (3.5)

3.4 K-Nearest-Neighbour (KNN) Regression

K-Nearest-Neighbour (KNN) regression is a non-parametric regression model which is based on the k-nearest
neighbours algorithm [7] where the input is comprised of the k neighbouring (closest) training examples in the feature
space. KNN for regression has been used for different applications ([5, 34, 39, 42, 50] where a target value is predicted
by local interpolation of the other target values associated with the nearest neighbours in the training set. In principle,
the KNN -based regression uses an inverse distance weighted average of the K nearest neighbours to predict the value
of a target sample in the dataset. The Minkowki function (Lp norm) can be used as the measure of similarity (distance
function) for continuous data which is expressed as

D(xi, xj) =

[
k∑
i

(xi
d − xj

d)
p

] 1
p

, (3.6)

where for p values of 1 or 2, the Equation (3.6) respectively becomes Manhattan or Euclidean distance function.
In general, KNN regression gives good predictive results for low-dimensional spaces in case enough data samples
are available. This is because there would be enough nearby data points available for getting accurate predictions.
However, as the number of dimensions increases the KNN regression loses its accuracy since the distance measure
becomes meaningless and cannot represent a solid similarity metric for a significantly large number of dimensions. On
the other hand, KNN regression is quite robust in case of having noisy training data as a weighted distance function
is used.

There have been ways suggested on how to choose the value of k which is a model hyperparameter that needs to
be tuned for each dataset under study independently [66, 32]. Intuitively, for a very low value of k, the underlying
noise in the data will have a high influence on the results and the KNN model will overfit on the training data leading
to a high error rate on the validation set. On the other hand, for a high value of k, building the model becomes
computationally expensive, and the KNN model may perform poorly on the training and validation set. It has also
been shown that a small value of k leads to the most flexible fit, having low bias but high variance, and a large value
of k leads to a smoother decision boundary, having lower variance but higher bias, making it more resilient to outliers.

In this study, we use Euclidean distance as the similarity measure for reporting the results as based on our tests
no large difference was observed compared to Manhattan distance for our dataset. For information retrieval, we take
advantage ofthe KD-tree data structure as an efficient representation of the data in the KNN model. For the KD-
tree we investigate the influence of the leaf size as an important hyperparameter that influences the accuracy of the
information retrieval.

3.5 Decision Tree (DT) Regression

Decision trees (DT) have been used as a non-parametric machine learning model for different problems [70, 65, 38,
16, 41, 62, 53, 57] to perform a regression or classification task in a multistage hierarchical decision-making approach
(tree-like structure). The main component of a DT model (tree) consists of a root node (i.e. all the data), a set of
internal nodes (i.e. splits), and a set of external nodes (leaves). Each node of the decision tree structure makes a
binary decision that separates classes from one another. In principle, a decision tree is based on the task of breaking
down a complex decision into several simpler decisions, which may lead to a solution that is easier to interpret. In a
decision tree, features of data (i.e. bands) are predictor variables and the classes or values to be mapped or predicted
are target variables. In a decision tree model, features that carry a significant amount of information are automatically
selected for the regression task and the remaining features are suppressed leading to more computational efficiency.
In other words, in DT models, feature selection and regression are performed simultaneously which helps get over the
curse of dimensionality problem (the Hughes phenomenon [67]), since merely a small number of features take part in
building the model.
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3.6 Random Forest (RF) Regression

Random Forest (RF) algorithm, first proposed by Breiman in 2001 [14], as an extension to the idea of decision
trees has been used in practical applications mainly for purposes such as building predictive models (classification
and regression), selection of features, data preprocessing, and predictive performance assessment [9, 10, 23, 37, 63].
Random Forest algorithm has been applied to several scientific research areas including but not limited to oil and
gas ([19, 31]) agriculture ([37, 40, 68]), remote sensing ([8, 61], land classification ([29, 30]), biology and genomics
([17, 46, 48]), etc. Random-based methods are ensemble learning algorithms that use bootstrap aggregations (Bag)
of classification and regression trees (CARTs) as the basis of the learning process. Random Forest algorithm as a
supervised learning approach is proven to reduce the variance without increasing the bias during a prediction process,
to well adapt to sparse data, to reach the minmax rate of convergence independent of noisy predictor variables, to
capture nonlinear dependencies between predictor and dependent variables, to effectively handle small sample sizes,
and to effectively handle missing data ([13, 15, 21, 47, 55, 56, 74]).

Besides, classification, Random Forest based approaches have been used for single/multiple output regression
purposes. Svetnik et al. elaborate on the theory and details of using Random Forest for regression tasks [63]. In
principle, RF-based regression is based on an ensemble model comprised of decision trees by which one/multiple
continuous variable(s) are predicted as the average of the predictions from all the trees in the ensemble model.

In RF based regression task, an ensemble model of multiple regression trees is built from separate bootstrap samples
of the training data using the Classification and Regression Tree (CART) algorithm [60]. The branches of each tree get
subdivided and grow as long as the minimum number of observations for each leaf node is greater than a predetermined
margin whereas, unlike the regression trees, the branches don’t get pruned. The descriptor value that gets selected
for branch splitting at any fork in any tree is selected from random subset values with a predetermined size. Random
Forest has three main tuning hyperparameters as mtry being the number of descriptor values for each split, ntree

being the number of trees, and nodesize being the minimum number of nodes below which leaves are not further get
subdivided. Comprised of multiple members of the dataset, a bootstrap sample is used during the tree growth by a
random selection with replacement. The samples of the dataset which are not selected for the training of the trees
get included as part of another subset so-called out-of-bag (oob) that can be used to evaluate the performance of the
Random Forest model and provide an unbiased estimation of its generalization error. Random Forest also includes an
approach for assessing the importance of each input feature where each feature is replaced by random noise and then
the resulting decrease/increase in the model’s outcome is considered as a measure of feature importance ([15, 49, 20]).

As briefly mentioned above, a machine learning model typically has several parameters that need to be learned
from the data in the training procedure. Unlike model parameters, some hyperparameters must be determined outside
the actual training procedure. Likewise, Random Forest, KNN, and Decision Tree have some special hyperparameters.
Finding the best hyperparameters could have a significant effect on the prediction accuracy of these models.

Therefore, they should be optimized before the actual training process begins. In this study, several models were
trained with different values of hyperparameters, while the RMSE and MAE were recorded for each model. Figures
6,7, and 8 show the effort to find optimized hyperparameters by minimizing the RMSE and MAE for two examples.
Once the hyperparameters are optimized, the next step is to train a model on the entire dataset under the best
hyperparameters.

As an example in KNN regression, the P-value is a hyperparameter that determines the formula for calculating
the distances. If p is equal to one, the algorithm will use the Manhattan distance while applying Euclidean distance if
p is equal to two. Another hyperparameter in KNN is the number of neighbours to use. As a second example, in the
Random Forest algorithm, a few hyperparameters must be defined. For instance, N-estimators determine the number
of trees in the forest. It is necessary to optimize this parameter as adding growing more trees will notably slow down
the training process; on the other hand, a model with limited trees may lose accuracy. Max-depth, Min-samples-leaf
and max-features are other hyperparameters for Random Forest.

4 Results

All development procedures to accurately predict ionic concentrations, the main aim of conducting MTR, briefly
is described in the following. Firstly, outlier data was detected, and eliminated by using box plot tools. Then, all
features were investigated using a confusing plot to determine the most correlated variables. In the following, five
different algorithms were applied after optimizing their hyperparameters. The Random Forest algorithm makes the
most accurate results compared to measured (actual) data for MTR. Moreover, For the reason of an easy comparison,
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Figure 6: Determining the optimum value of hyperparameters, Decision Tree.
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Figure 7: Determining the optimum value of hyperparameters, KNN.
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Figure 8: Determining the optimum value of hyperparameters, Random Forest.

the main results drawn of Figure 9 are summarized in Table 3. As can be seen, the Random Forest model showed the
best performance in the test step.

Table 3: Statistical comparison between models

Regression Model MAE RMSE Score

Linear 1.763 6.356 0.941
Lasso 3.188 10.891 0.826

k-Nearest Neighbors 0.328 1.882 0.730
Decision Tree 0.498 1.746 0.956
Random Forest 0.259 1.231 0.981



12 Bahonar, Salmani, Rajabi

0 1 2 3 4

Measured

0

1

2

3

4

P
re

d
ic

te
d

[Na
+
]

0 4 8 12 16

Measured 10-3

0

4

8

12

16

P
re

d
ic

te
d

10-3 [K
+
]

0 0.2 0.4 0.6 0.8

Measured

0

0.2

0.4

0.6

0.8

P
re

d
ic

te
d

[Mg
2+

]

0 0.15 0.3 0.45 0.6

Measured

0

0.15

0.3

0.45

0.6

P
re

d
ic

te
d

[Ca
2+

]

0 1 2 3 4 5

Measured

0

1

2

3

4

5

P
re

d
ic

te
d

[Cl
-
]

0 1 2 3 4 5

Measured 10-3

0

1

2

3

4

5

P
re

d
ic

te
d

10-3 [HCO
3

-
]

0 0.03 0.06 0.09 0.12

Measured

0

0.03

0.06

0.09

0.12

P
re

d
ic

te
d

[SO
4

2-
]

0 1.5 3 4.5 6

Measured

0

1.5

3

4.5

6

P
re

d
ic

te
d

I

0 60 120 180 240

Measured

0

60

120

180

240

P
re

d
ic

te
d

TDS

Linear Lasso KNN DT RF y=x

Figure 9: Real vs. predicted values for all algorithms

5 Conclusion

Considering that a wide range of factors mentioned in literature has a remarkable effect on ionic concentration
measures simultaneously, therefore, being a multi-variant function, machine learning algorithms can be used to predict
ionic concentration. In this paper, an innovative machine-learning approach was developed to accurately estimate the
ionic concentrations for smart water injection without running expensive lab tests. An array of data, including a
matrix of 29 features for 129 data sets, was collected and used for training different ML models. Regression models
implemented in this study include Linear and other advanced regression models such as Lasso, k-nearest Neighbors,
Decision Tree, and Random Forest. Hyperparameters for each model were first optimized before the training process.
Models were then evaluated and ranked using errors and scores. Some of the key conclusions of this paper can be
summarized as follows:

1. We have applied machine learning algorithms in a new field of petroleum engineering that showed high reliability
and accuracy.
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2. RMSE of predicted data versus lab for Linear, Lasso, k-Nearest Neighbors, Decision Tree, and Random Forest
regression were 6.356, 10.891, 1.882, 1.746, and 1.231, respectively.

3. Random Forest exhibited the lowest error and highest accuracy for this particular data set.
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