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 In this study, the numerical solution of the nonlinear thermo-mechanical bending analysis of 

functionally graded (FG) annular thick plates, based on 3D elasticity theory and resting on 

Winkler-Pasternak elastic foundations, is presented under mechanical, thermal, and 

thermo-mechanical loading using the semi-analytical polynomial method (SAPM). This 

study represents the first report on the bending analysis of plates under asymmetric 

boundary conditions and non-uniform local loading. The bending of an FG annular thick 

plate subjected to general or local, uniform or non-uniform loadings for different symmetric 

and asymmetric boundary conditions—clamped, simply supported, and free edges—is 

studied. Considering the fact that no study has been conducted on 3D asymmetric bending 

analysis, the influences of different positions, areas, intensities, and functions of uniform 

and non-uniform, general and local loading under symmetric and asymmetric boundary 

conditions on deflection and thickness variations are investigated and the results are 

compared with those obtained from ABAQUS software. The most significant result in the 

case of local loading is one that in some cases, the plate may experience higher deflection 

than when the general loading covered all areas of the plate. 
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1. Introduction 

Different plate theories have been used to 
analyze the bending behavior of plates with 
different shapes, mechanical behaviors, 
boundary conditions, and types of loading 
during the last decades. Different plate theories 
such as classical plate theory (CPT) [1,2], first-
order shear deformation theory (FSDT) [2,3], 
third-order shear deformation theory (TSDT) 
[4], and higher-order shear deformation theory 
(HSDT) [5] are used by the literature to 
investigate the bending behavior of 
axisymmetric annular/circular plates. However, 
few studies have examined the bending of 
annular/circular plates based on 3D elasticity 

theory such as ones by Yang et al. [6] recently, 
which investigated the 3D bending of 
axisymmetric FG graphene-reinforced circular 
and annular plates. 

Reddy and Berry [7] proposed nonlinear 
size-dependent models based on Classical 
Laminate Plate Theory (CLPT) and FSDT for the 
bending of circular plates. Reddy and Kim [8] 
utilized MCST and the nonlinear strains of von 
Karman to develop a size-dependent third-order 
plate model. Dastjerdi and Jabbarzadeh [9-14] 
employed Eringen's nonlocal theory and the 
Differential Quadrature Method (DQM), as well 
as introduced a new Semi-Analytical Polynomial 
Method (SAPM), to investigate the nonlinear 
thermo-mechanical bending of monolayer and 
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bilayer graphene sheets based on FSDT and 
TSDT. Thai et al. [15–17] proposed new models 
based on CPT, FSDT, TSDT, and sinusoidal shear 
deformation plate theories for analyzing the 
bending and free vibration of rectangular 
microplates with simply supported edges. 
Sahmani and Ansari [18] analyzed the free 
vibration of rectangular microplates using strain 
gradient theory and TSDT. Using nonlocal 
elasticity and a Higher-Order Shear Deformation 
Plate Theory (HSDT), Daneshmehr et al. [19] 
examined the size-dependent instability of 
nanoplates under biaxial in-plane loadings, 
solving the governing equations with the 
Generalized Differential Quadrature (GDQ) 
method. 

Few studies are devoted to examining the 
asymmetric bending of plates. For example, 
Tielking [20] examined the bending of an 
isotropic annular plate with variable thickness 
and clamped edges using Von Karman plate 
theory, the Ritz method, and two-dimensional 
sinusoidal displacement relations numerically. 
Pardoen [21] presented a two-dimensional 
analytical finite element method (FEM) to 
investigate the bending of a circular plate 
subjected to a concentrated force. Al Jarbouh Ali 
[22] developed a mathematical analytical model 
based on classical plate theory to investigate the 
behavior of a metallic circular plate under 
asymmetric loading using Reissner theory. 

Also, among the literature, there are some 
other researchers [23-26] whose review helps to 
better understand the present study. 

To the best of the authors' knowledge, the 
asymmetric bending analysis of FG (Functionally 
Graded) annular thick plates under non-uniform 
local loading and asymmetric boundary 
conditions has not been investigated or reported 
in the literature. This gap is due to the lack of 
numerical or analytical methods capable of 
solving the bending governing equations of 
plates under such asymmetric conditions. 
Therefore, the present study investigates, for the 
first time, the nonlinear asymmetric bending 
analysis of FG annular thick plates under 
asymmetric boundary conditions and uniform 
and non-uniform, general and local loading 
based on 3D elasticity theory using the SAPM 
method, as recently presented by Dastjerdi and 
Jabbarzadeh [3].SAPM is a powerful semi-
analytical polynomial method with significant 
potential for solving governing equations related 
to various asymmetry cases in the 3D bending 
analysis of annular thick plates. 

For this purpose, the governing equations of 
3D nonlinear bending of FG annular plates are 
derived using the principle of stationary total 
potential energy. Then, general or local loadings 
with different areas, intensities, functions, and 

positions are applied to the plate under various 
symmetric and asymmetric boundary 
conditions. To apply the asymmetric boundary 
conditions, the plate boundaries are divided into 
two parts, with different boundary conditions 
used for each part. The analysis is performed for 
different types of loading, such as mechanical, 
thermal, and thermo-mechanical, and the 
influence of elastic foundations is investigated 
using Winkler-Pasternak parameters. 

2. Governing Equations 

2.1. Functionally Graded Materials 

FG materials refer to a non-homogeneous 
category of materials in which the material 
properties vary gradually and continuously 
between two points of the solid. These 
variations can be smooth or sharp, depending on 
the volume fractions of the constituent 
materials. Among the most attractive 
applications of FG materials are wear coating 
and thermal shielding problems. In this study, a 
two-constituent functionally graded annular 
thick plate based on the following formula is 
employed [2]: 
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where E(z) is the modulus and α(z) is thermal 
diffusivity, the subscripts 1 and 2 refer to the top 
and bottom materials, n denotes the volume 
fraction exponent and h is the plate thickness. A 
schematic of FG annular thick plate is illustrated 
in Fig.1 with inner radius ri, outer radius ro, the 
thickness of h under transverse loading q(r,θ) 
resting on two parameters Winkler-Pasternak 
elastic foundations, kw, and kp are the Winkler 
and Pasternak stiffness coefficients of elastic 
foundation respectively. 

 
Fig. 1.The schematic view of an FG annular thick plate under 

non-uniform local loading rested on elastic foundations 

2.2. 3D Elasticity Theory Formulation 
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According to the 3D elasticity theory of 
plates, the displacement field can be expressed 
as follows: 

)z,,r(u)z,,r(u1 =  (2) 

)z,,r(v)z,,r(u2 =  (3) 

)z,,r(w)z,,r(u3 =  (4) 

where iu is the displacement vector and w,v,u

are the displacement components along the
z,,r  directions respectively. It is evident that no 

assumptions or simplifications are made in defining 

the displacement vectors, ensuring that the most 

accurate results are obtained compared to other 

theories. The nonlinear components of the Von 

Karman strain field can be expressed as [27]:

 

−











+




= )z(

r

w

2

1

r

u
2

rr  (5) 

−











+




+= )z(

w

r

1

2

1v

r

1

r

u
2

 (6) 

−











+




= )z(

z

w

2

1

z

w
2

zz  (7) 

















+−




+




= 

w

r

w

r

1

r

v

r

vu

r

1

2

1
r  (8) 

















+




+




=

z

ww

r

1w

r

1

z

v

2

1
z  (9) 

















+




+




=

z

w

r

w

r

w

z

u

2

1
rz  (10) 

where
ij is the stress tensor,

ij is Kronecker 

delta symbol, T is thermal strain and T is the 

temperature difference. 
Due to the isotropic behavior of the 

employed FG plate, the stress-strain relations, 
according to Hook's Law [2,27], are defined as:

( )
( ) ( ) ( )

( )
( )
( ) ( )

( ) ( )
( )
( )



































−

−

−

−







































































−

−

−



−


−



−

−

−


−



−



−

−

+
=



















































)z(

0

0

0
)21(

)z(E

)21(

)z(E
)21(

)z(E

100000

010000

001000

000
21

1

2121

000
2121

1

21

000
212121

1

)1(

)z(E

r

rz

z

zz

rr

r

rz

z

zz

rr

 (11) 

where
ij is the Cauchy stress, ij  is the strain 

and  is the poison ratio of the FG plate. 

2.3. Constitutive Equations 

In this study, the constitutive equations and 
boundary conditions are derived based on the 
principle of stationary total potential energy 
[27]: 

( ) 0WU ext =−  (12) 

where  is the variation symbol and Wext is the 

potential of applied forces which contains the 
effects of transverse loading q(r,θ) and Winkler-
Pasternak elastic foundation on the surface of 
the plate. 

The components of total potential energy are 
defined as: 
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By substituting Eqs. (5)-(10) into the Eq. (13) 
and neglecting body forces, 3D equilibrium 
equations of FG annular thick plate are derived 
as: 
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As the final step, by substituting Eqs. (5)-(10) 
into Eq. (11) to express the stress components in 
terms of the displacement fields, and then 
replacing the resulting stress components into 
Eqs. (15)-(17), three equilibrium equations are 
derived as follows: 
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3. Solution Procedure 

Given the three equilibrium equations, a 
system of nonlinear partial differential 
equations is obtained. In the present study, a 
new semi-analytical polynomial method (SAPM), 

recently introduced by Dastjerdi and 
Jabbarzadeh [3], is employed. This method can 
solve the system of nonlinear partial differential 
equations without requiring any assumptions or 
simplifications. 



 

6 

Using this method, each function in the 
partial differential equations is approximated by 
a polynomial in general form, dependent on the 
distribution of grid points. Unlike traditional 
solution methods, each polynomial does not 
need to satisfy boundary conditions explicitly. 

This approach allows for the convenient and 
rapid solution of each partial equation or set of 
equations, accommodating various types of 
boundary and surface conditions. By considering 
a partial differential equation as follows:
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where the function ( )z,,rF  is defined as: 
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where N is the number of grid points in the r 
direction, M is the number of grid points in θ 
direction and P is the number of grid points in 
the z direction, and l is counted from 1 to

PMN  by counting k,j,i on the summations, 

which sample grid point domains are shown in 
Fig. 2. By substituting Eq. (22) in Eq. (21) the 
partial differential equation is converted to the 
algebraic equations which PM2  number of 
equations would be derived from surface and 
boundary conditions (black points) and
( ) ( )PM2PMN −  number of equations are 

derived from Eq. (22) (related to the white 
points). Consequently, there are PMN 

numbers of algebraic equations and unknown ia

coefficients which by substituting obtained ia

into the Eq. (22) the function ( )z,,rF  would be 

determined. For a system of partial differential 
equations, similar procedures should be applied. 

 
Fig. 2.The schematic view of grid points based on SAPM 

Due to the above explanations about SAPM, 
three displacement fields could be defined as 
follows: 
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The obtained algebraic equations are solved 

using numerical methods, such as the Newton-

Raphson method. 

4. Boundary Conditions 

In this study, all types of boundary conditions 
are categorized into three types: simply 
supported (S), clamped (C), and free edges (F). 
At the inner and outer radius (ri and ro) the 
boundary conditions can be defined as follows: 
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In the present study, to define asymmetric 
boundary conditions, the plate's grid points 
along the radial direction are divided into two 
parts (see Fig. 3). Each part must satisfy specific 
boundary conditions, a possibility made feasible 
by the use of SAPM. As previously mentioned, 
this method does not require each polynomial to 
satisfy boundary conditions explicitly, allowing 
each partial equation or set of equations to be 
solved while accommodating various boundary 
conditions. 

 
Fig. 3.The schematic view of an annular plate with 
asymmetric boundary conditions (two parts B.Cs.) 

Also, the displacement components should 
satisfy the following boundary conditions at the 
top and bottom surfaces of the plate: 
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In the present study, due to the application of 
local non-uniform loading, the term is used for 

the top surface conditions. Additionally, Eqs. 
(29)-(31) are defined for the grid points at the 
top surface that are not subjected to local 
loading, while Eqs. (29), (30), and (32) are used 
for the grid points under local loading. Eqs. (29), 
(30), and (33) are defined for the bottom surface 
grid points. 

5. Numerical Results and Discussions 

To investigate the convergence of the SAPM, 
various grid sizes are considered for an FG 
annular thick plate with the properties listed in 
[2] (no specific units are used) under symmetric 
uniform loading. Different boundary conditions 
are employed, and the results for maximum 
deflection are reported in Table 1. 
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(34) 

which the number of grid points is defined as
pmn  which are through r, θ, and z directions. 

It is observed that the convergence at 9 grid 
points through the r direction occurred. For all 
cases, the number of grid points through θ and z 
directions is 5 points, and for less amount of grid 
numbers, no exact results are observed for 
upper grid numbers no considerable change is 
observed. Also, to examine the accuracy of the 
results, the FEM results using ABAQUS software 
are compared with the presented results at the 
convergence point in Table 1 which good 
agreement is observed. 

To validate the present model and solution 
procedure, and to compare the results obtained 
using the present 3D elasticity theory with other 
theories such as First Order Shear Deformation 
Theory (FSDT), Third Order Shear Deformation 
Theory (TSDT), and Fourth Order Shear 
Deformation Theory (FOSDT), the maximum 
non-dimensional symmetric deflections of a 
circular thick plate are compared. The 
comparison, based on the following non-
dimensional properties and clamped boundary 
conditions for various volume fraction 
exponents, is presented in Table 2. 
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which good agreement is observed. 
In continue, to study the asymmetric 

bending, an FG thick annular plate with the 
following properties is employed [2]:



 

* Corresponding author. 
   E-mail address: Jabbarzadeh@mshdiau.ac.ir 

Table 1. Convergence checking of maximum symmetric deflection of an FG annular thick plate versus the number of grid points for 
various boundary conditions and comparing with FEM results. 

 

N 

(number of domain nodes) 

w 

Boundary Condition Type 

C - C S - S C - S S - C F - C F - S 

755 0.000249 0.000774 0.000481 0.000360 0.002797 0.01543 

955 0.000252 0.000775 0.000480 0.000362 0.002481 0.01440 

1155 0.000253 0.000775 0.000480 0.000361 0.002441 0.01448 

FEM 0.000253 0.000782 0.000479 0.000370 0.002525 0.01377 

Table 2.Comparison of the maximum non-dimensional symmetric deflection of an FG circular thick plate with clamped edge and 
various volume fraction exponent by different theories 

Study w* 

n = 0 n = 2 n = 4 n = 5 n = 6 

FSDT [28] 2.979 1.613 1.473 - 1.404 

FSDT [29] 2.979 1.613 - 1.434 - 

TSDT [29] 2.968 1.603 - 1.423 - 

FOSDT [29] 2.968 1.603 - 1.423 - 

3D elasticity [Present study] 3.037 1.691 1.474 1.422 1.407 

1n;2.0h;25.0r;1r;105.1

;102.2;25.0;10E;10E
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To investigate the influence of non-uniform 
loading, four types of general non-uniform 
transverse loading with symmetric clamped 
inner and outer edges are employed: 

a) linear loading as 
)2()()rr()rr(50),r(q io −−−= , 

b) sinusoidal loading as 
)2/(Sin)rr(Sin)rr(Sin50),r(q io −−= ,  

c) logarithm loading as 
)2/(Sin)r/r(10log)r/r(10log50),r(q io =  

and d) exponential loading as 

)2/(Sinee50),r(q
)rr()rr( io =

−−  which the 

results are reported in Table 3. Due to no study 
reporting the bending of the thick annular plate 
under non-uniform loading, the same FE model 
is created in ABAQUS software and the results 
are compared. The results are in good 
agreement which this point validates the 
potential of the presented method in bending 
analysis under non-uniform loading. 

To examine and validate the effect of 
asymmetric boundary conditions, the plate is 
divided into two parts. The first boundary 
condition, referred to as B.C. 1, is applied to one 
part, while the second boundary condition, 
referred to as B.C. 2, is applied to the other part. 
The influence of different combinations of 
boundary conditions on the inner and outer 
edges under uniform loading as 50),r(q =  is 

examined. The results, compared with FEM 
results, are reported in Table 4. The findings 
indicate a good agreement between the results. 

Table 3.The comparison of the maximum deflection of FG 
annular thick plate under uniform loading with different 

asymmetric boundary conditions 

B.C. 1 B.C. 2 w 

FEM Present study 

C – C S – S 0.00070 0.00080 

C – S S – C 0.00046 0.00048 

C – C F – F 0.0380 0.0370 

S – S F – F 0.0380 0.0370 

In this part, the influence of uniform local 
loading on the bending of FG thick plate for two 
types of symmetric boundary conditions: 
clamped and simply-supported edges is studied. 
The study is performed under two categories of 
transverse loading. Initially a uniform local 
loading (Fig. 4) as 50),r(q = is used in which 

the load covers a half part of the r direction 

(middle part) and extends through  the  
direction step by step (type 1). In the first step, 
the load is distributed through 2/ rad of 
direction and at each step of analysis is extended 
by 2/ rad till it covers all areas of the plate. 

The results related to this part of the study are 
illustrated in Fig. 5. To validate the results, the 
same FEM using ABAQUS software is produced 
and the results are compared. From the results, 
it can be deduced that the presented model can 
simulate the bending behavior of such an FG 
thick plate under local loading as well. 
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Table 4.The comparison of the maximum deflection of FG annular thick plate under non-uniform loading with clamped inner and 
outer edges 

Loading w 

Present study FEM 

)2()()rr()rr(50),r(q io −−−=  0.000291 0.000261 

)2/(Sin)rr(Sin)rr(Sin50),r(q io −−=  0.0000278 0.0000278 

)2/(Sin)r/r(10log)r/r(10log50),r(q io =  0.0000177 0.0000157 

)2/(Sin)1e()1e(50),r(q
)rr()rr( io −−=

−−
 0.000030 0.000028 

 

 
Fig. 4.The schematic view of an annular plate under uniform 

local loading (type 1) 

 
Fig. 5.The variation and comparison of maximum deflection 

of an annular plate under local loading (type1) for symmetric 
boundary conditions 

In the second part of using uniform local 
loading, loading as Fig. 6 is used with the same 
intensity ( 50),r(q = ) but the load is distributed 

through the r direction completely and extended 

through direction step by step (type 2). The 
results related to this part of the study are 
illustrated in Fig. 7 and compared with FEM 
results. The results indicate that the plate may 
experience higher deflection under local loading 
compared to a plate subjected to general loading 
with the same intensity. This effect is more 
pronounced in plates with simply supported 
edges. Conversely, when local loading is applied 
to a plate with clamped edges, the deflection 
initially reaches the maximum deflection 
observed under general loading. Extending the 
local loading does not result in significant 

changes in the maximum deflection of the plate. 
These observations were not considered in the 
previous case, where deflection under local 
loading type 1 was less than under general 
loading. 

 
Fig. 6.The schematic view of an annular plate under uniform 

local loading (type 2) 

 
Fig. 7.The variation and comparison of maximum deflection 

of an annular plate under local loading (type2) for symmetric 
boundary conditions 

To report the maximum deflection under 
non-uniform local loading and asymmetric 
boundary conditions, the local loading type 2 
with the area of 2/ rad of  direction and four 

different functions is applied to an annular plate 
with two parts boundary conditions (one C-C 
and another S-S part) which the load is divided 
between two parts. Half of the loading area is 
distributed through the part with a clamped 
edge and half of that is distributed through the 
part with a simply-supported edge. Employed 
loading functions are: 

a) linear loading as 



 

10 

)2()()rr()rr(50),r(q io −−−= , b) 

sinusoidal loading as 

)2/(Sin)rr(Sin)rr(Sin50),r(q io −−= , c) 

logarithm loading as 

)2/(Sin)r/r(10log)r/r(10log50),r(q io =

 and d) exponential loading as 

)2/(Sinee50),r(q
)rr()rr( io =

−− . 

 

Table 5.The comparison of the maximum deflection of FG annular thick plate under non-uniform local loading (type 1 of local 
loading) with two parts (C-C & S-S) boundary conditions 

Loading w 

              Present study                     FEM 

 Clamped 

part 

Simply-

support part 

Clamped 

part 

Simply-

support part 

)2()()rr()rr(50),r(q io −−−=  0.000044 0.000077 0.000044 0.000079 

)2/(Sin)rr(Sin)rr(Sin50),r(q io −−=  0.0000035 0.0000063 0.0000030 0.0000065 

)2/(Sin)r/r(10log)r/r(10log50),r(q io =  0.0000018 0.0000037 0.0000018 0.0000039 

)2/(Sin)1e()1e(50),r(q
)rr()rr( io −−=

−−
 0.0000034 0.0000068 0.0000033 0.0000071 

 
The maximum deflection of each part is 

reported separately and compared in Table 5. 
The results are in good agreement. 

Some discrepancies could be observed 
during some table outcomes and the most 
important reason is due to the fact that the way 
of defining boundary conditions in analytical 
methods is different than those by FEM. 
Especially, when the percent of simply-
supported boundary conditions is increased, 
these discrepancies arise which is due to the 
differences in defining of degree of freedom in 
the two mentioned methods. It is observed, that 
by employing fully clamped boundary 
conditions, the results are in the best agreement. 

In continue, the effect of elastic parameters 
variations on the maximum deflection of the 
plate under

)2/(Sin)rr(Sin)rr(Sin50),r(q io −−= and 

two parts of boundary conditions (one C-C and 
another S-S part) are investigated. Initially, 

5

w 10k = is used and the effect of Pasternak 

parameter variation is investigated the result is 

illustrated in Fig. 8 and then 4

p 10k = is used and 

the effect of Winkler parameter variation is 
examined (Fig. 9). It is considered that by 
increasing the elastic parameters the boundary 
conditions effect is omitted and the deflections 
of both parts are converged to the same point. 

In the last part, the influence of thermo-
mechanical loading is investigated for the same 
plate with non-uniform local loading and 
asymmetric boundary conditions when the 
elastic foundation parameters are

2

p

5

w 10k,10k == . The variation of deflection 

and thickness of the plate are illustrated in Figs. 
10 and 11. It is considered that by increasing the 
temperature, the deflection and thickness 
variation are increased linearly. 

 
Fig. 8.The variation of maximum deflection of FG annular 

thick plate under non-uniform local loading with two parts S-
S & C-C boundary conditions versus Pasternak foundation 

parameter variations 

 
Fig. 9.The variation of maximum deflection of FG annular 

thick plate under non-uniform local loading with two parts S-
S & C-C boundary conditions versus Winkler foundation 

parameter variations 
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Fig. 10.The variation of maximum deflection of FG annular 

thick plate under non-uniform local loading with two parts S-
S & C-C boundary conditions versus thermal variations 

 
Fig. 11.The variation of thickness of FG annular thick plate 
under non-uniform local loading with two parts S-S & C-C 

boundary conditions versus thermal variations 

6. Conclusions 

In this study, the nonlinear thermo-
mechanical bending analysis of an FG thick 
annular plate under uniform and non-uniform, 
general and local loading, as well as symmetric 
and asymmetric boundary conditions, is 
investigated based on 3D elasticity theory using 
the SAPM. 

The plate is supported on Winkler-Pasternak 
elastic foundations, and various types of 
loading—thermal, mechanical, and thermo-
mechanical—are applied. 

Since no previous studies have reported such 
an asymmetric bending analysis, a finite element 
model using ABAQUS software was created to 
validate the obtained results. 

Following comparisons have been done 
during the study and good agreement is 
observed: 
• The results obtained from different plate 

theories such as FSDT, TSDT, and FOSDT are 
compared with those resulting from 3D 
elasticity theory. 

• The results under different non-uniform 
transverse loading and various asymmetric 
boundary conditions are compared. 

• The influence of various types of uniform 
and non-uniform local loading under 
different boundary conditions is examined. 

• Both deflection and thickness variations are 
studied under thermal variations. 

In all cases, the results show good agreement 
with those from FEM, demonstrating the 
acceptability of the presented method.  

The most significant result in the case of local 
loading is that, in some instances, the plate may 
experience higher deflection compared to when 
general loading covers the entire area of the 
plate. 

The study reports the impact of thermo-
mechanical non-uniform local loading under 
asymmetric boundary conditions with elastic 
foundations on both the deflection and thickness 
variation of the plate. 
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