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Abstract

In this paper, we define new notions of f -statistical convergence for triple sequences of order α̃ and strong f -Cesàro
summability for triple sequences of order α̃. Moreover we show the relationship between the spaces w3

α̃,0(f), w
3
α̃(f) and

w3
α̃,∞(f). Additionally, we show some properties of the strong f -Cesàro summability of order β̃. The main purpose of

this paper is to examine the concept of f -triple statistical convergence of order α; where f -is an unbounded function
and give relations between f -triple statistical convergence of order α and strong f -Cesàro summability for a triple
sequence of order α.
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1 Introduction and Preliminaries

The notion of statistical convergence was originally introduced by Zygmund [41] in his monograph. Statistical
convergence of number sequences was formally given by Steinhaus [30] and Fast [7] and then was reintroduced by
Schoenberg [29] independently for real and complex sequences. Later on, many works have been done by using
statistical convergence by Fridy [8], Connor [3], Maddox [21] and many others. Gadjiev and Orhan [9] took the
initiative to establish the order of statistical convergence of a single sequence of number, and after Çolak [5] continued
this idea and studied statistical convergence of order α and strong p-Cesàro summability of order α and later was
extended for triple sequences by Torgut and Altin [31]. The concept of statistical convergence for triple sequences was
first introduced by Şahiner et al. [27]. Besides, this topic was studied by many authors (see, for example, Granados [10],
Demirci and Gürdal [6], Huban et al. [20]). There are some more studies about statistical convergence in the literature
[11, 12, 13, 14, 15, 16, 26, 17, 18, 19, 32, 33]. Connor [3] has discussed the relationship between statistical convergence
and strong summability with the help of modulus function. Aizpuru et al. [1] studied and showed the concept of
f -statistical convergence. Bhardwaj and Dhawan [2] continued this idea and defined f -statistical convergence of order
α̃. The notion of modulus function was structured by Nakano [24]. In this paper, we define and discuss f -statistical
convergence of order α̃ for triple sequences which is an extension of the notions presented by [31]. Furthermore,
we study strong p-Cesàro summability of order α and show some related inclusion relations. Moreover, we prove
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the related inclusion relations for α̃′s in (0, 1]. For more topics related to mentioned above, we refer the reader to
[34, 35, 36, 37, 38, 39, 40].

Now, we will recall some notions which will be useful for the development of this paper.

Definition 1.1. (See [8]) The natural density of K ⊂ N is defined by

δ(K) = lim
q→∞

q−1|{k ≤ q : k ∈ K}|,

where |{k ≤ q : k ∈ K}| denotes the number of elements of K not exceeding q.

Remark 1.2. Any finite subset of N has zero natural density and δ(Kc) = 1− δ(K).

Definition 1.3. (See [28]) A sequence (yk) of complex numbers is said to be statistically convergent to some number
L if δ({k ∈ N : |xk − L| ≥ ε}) has natural density zero for every ε > 0. L is called the statistical limit of (xk) and
written as S-limxk = L.

Remark 1.4. Throughout this paper, S, S3, ℓ3∞, c3 and c30 denote spaces of all statistically convergent sequences,
the spaces of all triple sequences, the linear spaces bounded sequences, the linear spaces of convergent sequences and
the linear spaces of null sequences, respectively.

Remark 1.5. ∥y∥(∞,3) = sup
i,j,k

|xijk| denotes the norm, where i, j, k ∈ N = {1, 2, 3, ...}.

Definition 1.6. (See [25]) A triple sequence y = (yijk) has Pringsheim limit L provided that given for every ε > 0
there exists N ∈ N such that |yijk − L| < ε whenever i, j, k > N . In this case, we write P -lim y = L.

Remark 1.7. y = (yijk) is bounded if there exists a positive number M such that |xijk| < M for all i, j and k, that
is, ∥y∥ = sup

i,j,k≥0
|xijk| < ∞.

Remark 1.8. Throughout this paper, ℓ3∞ denotes the collection of all bounded triple sequences.

Remark 1.9. We shall recall that convergent triple sequence need not be bounded.

Definition 1.10. Let K ⊂ N× N× N and K(q, w, r) = {(i, j, k) : i ≤ q, j ≤ w, k ≤ r}. The triple natural density of
K is defined by

δ3(K) = P − lim
q,w,r

1

qwr
|K(q, w, r)|,

if the limit exists.

Definition 1.11. (See [27]) A triple sequence y = (yijk) is said to be statistically convergent to a number L if for
every ε > 0 the set {(i, j, k) : i ≤ q, j ≤ w, k ≤ r : |xijk −L| ≥ ε} has triple natural density zero. In this case, we write
st3-lim y = L.

Remark 1.12. Throughout this paper, st3 denotes the collection of all statistically convergent triple sequences.

Definition 1.13. (See [23]) A real-valued function f defined on (0,∞) is called a modulus if it satisfies the following
properties:

1. f(y) = 0 if and only if y = 0,

2. f(y + z) ≤ f(y) + f(z) for every y, z ∈ R+,

3. f is increasing,

4. f is continuous from the right at 0.

Remark 1.14. We shall recall that every such function is continuous. A modulus may be unbounded or bounded,

for example f(y) =
y

1 + y
and f(y) = yp with 0 < p ≤ 1.



New results on f -statistical convergence of order α̃ through triple sequences spaces 3

2 Main Results

In this section, we begin introducing the notion of f -triple statistical convergence of order α̃. We recall that
throughout this paper, a, b, c, d, e, g ∈ (0, 1] in case otherwise is indicated, and for the sake of brevity we will write α̃
instead of (a, b, c) and β̃ instead of (d, e, g). Besides, we define

1. α̃ ⪯ β̃ if and only if a ≤ d, b ≤ e and c ≤ g,
2. α̃ ⪯ β̃ if and only if a < d, b < e and c < g,
3. α̃ ∼= β̃ if and only if a = d, b = e and c = g,
4. α̃ ∈ (0, 1] if and only if a, b, c ∈ (0, 1],
5. β̃ ∈ (0, 1] if and only if d, e, g ∈ (0, 1],
6. α̃ ∼= 1 in case a = b = c = 1,
7. β̃ ∼= 1 in case d = e = g = 1,
8. α̃ ≻ 1 in case a > 1, b > 1 and c > 1.

Moreover, we will write S3
α̃(f) and S3

β̃
(f) to denote S3

(a,b,c)(f) and S3
(d,e,g)(f), respectively. Now, let f be an

unbounded modulus function, K ⊂ N × N × N and K(q, w, r) be the number of (i, j, k) ∈ K such that i ≤ q, j ≤ w
and k ≤ r In case the sequence (K(q, w, r)/qwr) has a limit in Pringsheim’s sense, we will say that K has an fα̃-triple
density and it is defined by

δf3α̃ (K) = lim
q,w,r→∞

f(|(K(q, w, r))|)
f(qawbrc)

.

We can see that for any set K ⊂ N×N×N, δf3α̃ (K) can be to (1,∞), but δf3α̃ (K) ≤ 1. Besides, δf3α̃ (Kc) = 1−δf3α̃ (K)

holds, but δf3α̃ (K) = 1− δf3α̃ (K) does not hold in general. For example, if we choose f(y) = yp, 0 < p ≤ 1, α̃ ∈ (0, 1),

and K = {(i2, j2, k2) : i, j, k ∈ N}, then δf3α̃ (Kc) = ∞ = δf3α̃ (K).

Definition 2.1. Let y = (yijk) ∈ s3 and α̃ ∈ (0, 1] be given. The sequence (yijk) is called f -triple statistically
convergent of order α̃ if there is a complex number L such that for every ε > 0,

lim
q,w,r→∞

1

f(qawbrc)
f(|{(i, j, k), i ≤ q, j ≤ w, k ≤ r : |yijk − L| ≥ ε}|) = 0

in which case we say that y is f -triple statistically convergent of order α̃ to L. In this case, we will write S3
α̃(f)-

lim
i,j,k

yi,j,k = L an we will denote the set of all f -statistically convergent triple sequences of order α̃ by S3
α̃(f) where f

is an unbounded modulus function.

Remark 2.2. It can be easily to check that if y = (yijk) is f -triple statistically convergent of order α̃ to the number
L, then L is determined uniquely.

Remark 2.3. The f -triple statistical convergence of order α̃ is well defined for α̃ ∈ (0, 1], but it is not well defined
for α̃ ≻ 1 as can be seen in the following example.

Example 2.4. Let y = (yijk) be defined as follows:

yijk =

 1, if i+ j + k is even,

0, if i+ j + k is odd.

Since lim
c→∞

f(c)

c
> 0, we have

lim
q,w,r→∞

1

f(qawbrc)
f(|{(i, j, k), i ≤ q, j ≤ w, k ≤ r : |yijk − 1| ≥ ε}|) ≤ lim

q,w,r→∞

f(( q3 + 1)(w3 + 1)( r3 + 1)

f(qawbrc)
= 0

and

lim
q,w,r→∞

1

f(qawbrc)
|{(i, j, k), i ≤ q, j ≤ w, k ≤ r : |yijk − 0| ≥ ε}| ≤ lim

q,w,r→∞

f(( q3 + 1)(w3 + 1)( r3 + 1)

f(qawbrc)
= 0

for α̃ ≻ 1, that is, a > 1, b > 1 and c > 1, so that y = (yijk) f -triple statistically converges of order α̃ all of them to 1
and 0, i.e., S3

α̃(f)-lim
ijk

= 1 and S3
α̃(f)-lim

ijk
= 0. But this is impossible.
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Theorem 2.5. Let f be and unbounded modulus function and α̃ ∈ (0, 1]. Now, let y = (yijk) and z = (zijk) be any
two sequences of complex numbers. Then

1. If S3
α̃(f)-lim yijk = y0 and p ∈ C, then S3

α̃(f)-lim pyijk = pxijk.

2. If S3
α̃(f)-lim yijk = y0 and If S3

α̃(f)-lim zijk = z0, then S3
α̃(f)-lim(yijk + zijk) = y0 + z0.

Proof . Proof is straightforward. □

Remark 2.6. It is easy to verify that every convergent triple sequence is f -statistically convergent of order α̃ to the
same number, that is, c3 ⊂ S3

α̃(f) for each α̃ ∈ (0, 1], this is, for each pair of (a, b, c), such that a, b, c ∈ (0, 1]. But the
converse does not hold as can be seen in the following example.

Example 2.7. Let y = (yijk) be defined as follows

yijk =

 1, ifi = q3, j = w3, k = r3; q, w, r = 1, 2, 3, ...,

0, otherwise.

Taking f(y) = yp, (0 < p ≤ 1). y = (yijk) ∈ S3
α̃(f) for α̃ ≻ 1

3 , but it is not convergent.

Theorem 2.8. Let f be an unbounded modulus function and α̃, β̃ be two real numbers such that 0 ⪯ α̃ ⪯ β̃ ⪯ 1.
Then, S3

α̃(f) ⊂ S3
β̃
(f) and strict inclusion may occur.

Proof . Let α̃, β̃ ∈ (0, 1] be given. If α̃ ≤ β̃, so that (a ≤ d, b ≤ e and c ≤ g). Since f is increasing, then

1

f(qdwerg)
f(|{(i, j, k), i ≤ q, j ≤ w, k ≤ r : |yijk − L| ≥ ε}|)

≤ 1

f(qawbrc)
f(|{(i, j, k), i ≤ q, j ≤ w, k ≤ r : |yijk − L| ≥ ε}|)

for every ε > 0 and this shows S3
α̃(f) ⊂ S3

β̃
(f) □

Remark 2.9. The strict inclusion may occur as can be seen in the following example.

Example 2.10. Consider the sequence y = (yijk) defined by

yijk =

 1, ifi = q2, j = w2, k = r2; q, w, r = 1, 2, 3, ...,

0, otherwise.

and take f(y) = yp, (0 < p ≤ 1). Therefore, we get y ∈ S3
β̃
(f) for β̃ ∈ ( 12 , 1], but y /∈ S3

α̃(f) for α̃ ∈ (0, 1
2 ].

Remark 2.11. If we take β̃ ∼= 1 in Theorem 2.8, then we have the following results.

Corollary 2.12. If a triple sequence is f -triple statistically convergent of order α̃ to L, for some α̃ such that α̃ ∈ (0, 1],
then it is f -triple statistically convergent to L, i.e. S3

α̃(f) ⊂ S3(f), and the inclusion is strict.

Proof . Proofs follows from Theorem 2.8. □

Corollary 2.13. Let α̃, β̃ ∈ (0, 1] be given, then

1. S3
α̃(f) = S3

β̃
(f) if and only if α̃ ∼= β̃,

2. S3
α̃(f) = S3(f) if and only if α̃ ∼= 1.

Proof . Proofs follows from Theorem 2.8. □
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Remark 2.14. To show that the strict inclusion may occur, we show the following example.

Example 2.15. Consider the sequence y = (yijk) defined by

yijk =

 ijk, ifi = q2, j = w2, k = r2; q, w, r = 1, 2, 3, ...,

0, otherwise.

Let f(y) = log(y + 1). Then, y ∈ S3
α̃ for α̃ ∈ ( 12 , 1] and hence y ∈ S3. Since f is increasing,

1

f(qawbrc)
f(|{(i, j, k), i ≤ q, j ≤ w, k ≤ r : |yijk − 0| ≥ ε}|)

≥ 1

f(qwr)
f(|{(i, j, k), i ≤ q, j ≤ w, k ≤ r : |yijk − 0| ≥ ε}|)

=
1

2

but y /∈ S3
α̃(f).

The following diagram shows the inclusion relations among the spaces c3, S3, S3
α̃ and S3

α̃(f).

Diagram I

c3 −→ S3
α̃(f) → S3

α̃

↓ ↓
S3(f) → S3

Next, we define and give the relationship between the spaces w3
α̃,0(f), w

3
α̃(f) and w3

α̃,∞(f). Besides, we prove some

properties of the strong f -Cesàro summability of order β̃ which is related to strong f -Cesàro summability of order α̃.

Definition 2.16. Let f be a modulus and α̃ be a positive real number, then we define

w3
α̃,0(f) =

y = (yijk) ∈ s3 : lim
q,w,r→∞

1

(qwr)α̃

q∑
i=1

w∑
j=1

r∑
k=1

f (|xijk|) = 0

 ,

w3
α̃(f) =

y = (yijk) ∈ s3 : lim
q,w,r→∞

1

(qwr)α̃

q∑
i=1

w∑
j=1

r∑
k=1

f (|xijk − L|) = 0

 ,

w3
α̃,∞(f) =

y = (yijk) ∈ s3 : sup
q,w,r

1

(qwr)α̃

q∑
i=1

w∑
j=1

r∑
k=1

f (|xijk|) < ∞

 .

Theorem 2.17. For any modulus f and α̃ ⪰ 0, we have w3
α̃,0(f) ⊂ w3

α̃,∞(f).

Proof . This proof follows from Definition 2.16. □

Theorem 2.18. For any modulus f and α̃ ⪰ 1, we have w3
α̃(f) ⊂ w3

α̃,∞(f)

Proof . Let y ∈ w3
α̃(f), by definition of modulus function, we have

1

(qwr)α̃

q∑
i=1

w∑
j=1

r∑
k=1

f (|xijk|) ≤
1

(qwr)α̃

q∑
i=1

w∑
j=1

r∑
k=1

f (|xijk − L|) + f (|L|) 1

(qwr)α̃

q∑
i=1

w∑
j=1

r∑
k=1

1,

and since α̃ ⪰ 1 and y ∈ w3
α̃(f), this implies y ∈ w3

α̃,∞(f). □
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Theorem 2.19. For any modulus f and α̃ ⪰ 1, we have

1. w3
α̃ ⊂ w3

α̃(f),

2. w3
α̃,0 ⊂ w3

α̃,0(f),

3. w3
α̃,∞ ⊂ w3

α̃,∞(f).

Proof . We just prove w3
α̃ ⊂ w3

α̃(f) and other cases will follow similarly. Let y ∈ w3
α̃,∞, thus

sup
q,w,r

1

(qwr)α̃

q∑
i=1

w∑
j=1

r∑
k=1

|yijk| < ∞.

Now, let ε > 0 and take δ with 0 < δ < 1 such that f(b) < ε for 0 ≤ b < δ. Now, write

1

(qwr)α̃

q∑
i=1

w∑
j=1

r∑
k=1

f (|yijk|) =
∑
1

+
∑
2

+
∑
3

where the first summation is over |yijk| ≤ δ and the second is over |yijk| > δ. Then,
∑
1

≤ ε
1

(qwr)α̃−1
, and for

|yijk| > δ w use the fact

|yijk| <
|yijk|
δ

< 1 +

[∣∣∣∣ |yijk|δ

∣∣∣∣] ,
where [|b|] denotes the integer part of b. Now, given ε > 0, by the definition of f , we have for |yijk| > δ

f(|yijk|) ≤
(
1 +

[∣∣∣∣ |yijk|δ

∣∣∣∣]) f(1) ≤ 2f(1)
|yijk|
δ

and then
∑
2

+
∑
3

≤ 2f(1)δ−1 1

(qwr)α̃

q∑
i=1

w∑
j=1

r∑
k=1

|yijk|, which together with
∑
1

≤ ε
1

(qwr)α̃−1
yields

1

(qwr)α̃

q∑
i=1

w∑
j=1

r∑
k=1

f (|yijk|) ≤ ε
1

(qwr)α̃−1
+ 2f(1)δ−1 1

(qwr)α̃

q∑
i=1

w∑
j=1

r∑
k=1

|yijk|.

Since α̃ ≥ 1 and y ∈ wα̃,∞, this implies that y ∈ wα̃,∞(f). □

Theorem 2.20. For any modulus function f and α̃ ≻ 0, if lim
b→∞

f(b)

b
> 0, then w3

α̃(f) ⊂ w3
α̃.

Proof . Following the proof of [22, Proposition 1], we have λ = lim
b→∞

f(b)

b
= inf

{
f(b)

b
: b > 0

}
. By definition of λ,

we have f(b) ≥ λb for all b ≥ 0. Since λ > 0, we have b ≤ λ−1f(b) for all b ≥ 0 and thus

1

(qwr)α̃

q∑
i=1

w∑
j=1

r∑
k=1

|yijk − L| ≤ λ−1 1

(qwr)α̃

q∑
i=1

w∑
j=1

r∑
k=1

f (|yijk − L|) .

Therefore, this implies that y ∈ w3
α̃(f) whenever y ∈ w3

α̃. □

Proposition 2.21. For any modulus function f such that lim
b→∞

f(b)

b
> 0 and α̃ ⪰ 1, then w3

α̃(f) = w3
α̃.

Proof . Proofs follows form Theorem 2.20. □

Theorem 2.22. For any modulus function f such that lim
b→∞

f(b)

b
> 0 and β̃ ⪰ α̃ ⪰ 0, then w3

α̃(f) ⊂ w3
β̃
(f) and the

inclusion is strict.
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Proof . To show w3
α̃(f) ⊂ w3

β̃
(f), it is similar to Theorem 2.8, hence we will show that inclusion is strict. Consider

the sequence y = (yijk) defined as follows

yijk =

 1, ifi = q2, j = w2, k = r2; q, w, r = 1, 2, 3, ...,

0, otherwise.

By using definition of modulus function, we have

1

qdwerg

q∑
i=1

w∑
j=1

r∑
k=1

f (|yijk − 0|) ≤
√
q
√
w
√
r

qdwerg
f(1) =

1

qd−
1
2we− 1

2 rg−
1
2

f(1)

Since
1

qd−
1
2we− 1

2 rg−
1
2

f(1) → 0 as q, w, r → ∞ for d, e, g >
1

2
, y ∈ w3

β̃
(f) for d, e, g >

1

2
. Furthermore,

1

qawbrc

q∑
i=1

w∑
j=1

r∑
k=1

f (|yijk − 0|) ≤
√
q
√
w
√
r − 1

qawbrc
f(1)

and

√
q
√
w
√
r − 1

qawbrc
f(1) → ∞ as q, w, r → ∞ for 0 < a, b, c <

1

2
, which implies that x /∈ w3

α̃(f) for 0 < a, b, c <
1

2
. □

Next, we show the relationship between the strong f -Cesàro summability of order α̃ and f -triple statistical con-
vergence of order β and we prove some inclusion theorems.

Lemma 2.23. (See [22]) Let f be unbounded modulus such that there is a positive constant k such that f(yz) ≥
kf(y)f(z) for all y, z ≥ 0.

Theorem 2.24. Let 0 ≺ α̃ ⪯ β̃ and f be unbounded function such that there is a positive constant k such that

f(yz) ≥ kf(y)f(z) for all y, z ≥ 0 and lim
b→∞

f(b)

b
> 0. If a sequence y = (yijk) is strongly triple Cesàro summable of

order α̃ with respect to f to L, then it is f -triple statistically convergent of order β̃ to L.

Proof . For any sequence y = (yjk) and ε > 0, by using definition of modulus function, we have

q∑
i=1

w∑
j=1

r∑
k=1

f (|yijk − L|) ≥ f

 q∑
i=1

w∑
j=1

r∑
k=1

|yijk − L|


≥ f(|{(i, j, k), i ≤ q, j ≤ w, k ≤ r : |yijk − L| ≥ ε}|ε)
≥ kf(|{(i, j, k), i ≤ q, j ≤ w, k ≤ r : |yijk − L| ≥ ε}|f(ε)),

and since α̃ ⪯ β̃,

1

qawbrc

q∑
i=1

w∑
j=1

r∑
k=1

f (|yijk − L|) ≥ 1

qawbrc
kf(|{(i, j, k), i ≤ q, j ≤ w, k ≤ r : |yijk − L| ≥ ε}|f(ε))

≥ 1

qdwerg
kf(|{(i, j, k), i ≤ q, j ≤ w, k ≤ r : |yijk − L| ≥ ε}|f(ε))

=
1

qdwergf(qdwerg)
kf(|{(i, j, k), i ≤ q, j ≤ w, k ≤ r : |yijk − L| ≥ ε}|f(ε))f(qdwerg).

Thus, using the fact lim
b→∞

f(b)

b
> 0 and y ∈ w3

α̃(f), this implies that y ∈ S3
β̃
. □

Corollary 2.25. Let f be unbounded modulus function f(yz) ≥ kf(y)f(z), where k is a positive constant for all

y, z ≥ 0 and lim
b→∞

f(b)

b
> 0. Let α̃ ∈ (0, 1]. If a sequence is strongly triple Cesàro summable of order α̃ with respect

to f to L, then it is f -triple statistically convergent of order α̃ to L.
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Proof . Proof follows form Theorem 2.24 taking β̃ ∼= α̃. □

Corollary 2.26. Let f be unbounded modulus function f(yz) ≥ kf(y)f(z), where k is a positive constant for all

y, z ≥ 0 and lim
b→∞

f(b)

b
> 0. Let α̃ ∈ (0, 1]. If a sequence is strongly triple Cesàro summable of order α̃ with respect

to f to L, then it is f -triple statistically convergent to L.

Proof . Proof follows form Theorem 2.24 taking 1 ∼= α̃. □

Remark 2.27. Converse of Theorem 2.24 is not true in general as can be seen in the following example.

Example 2.28. Consider the sequence y = (yijk) defined as follows

yijk =


1√

i
√
j
√
k
, ifi ̸= q3, j ̸= w3, k ̸= re; q, w, r = 1, 2, 3, ...,

1, otherwise.

And an unbounded modulus function f(y) = y. By Definition 4.1 and Remark of [32], we can check that the result
follows.

Corollary 2.29. Let α̃ ∈ (0, 1]. Then, w3
α̃(f) ⊂ S3(f). The inclusion is strict if α̃ ∈ (0, 1).

Proof . From Corollaries 2.25 and 2.12, we have w3
α̃(f) ⊂ S3(f). For proving that inclusion is strict, consider the

sequence y = (yijk) defined as follows

yijk =

 1, ifi = q3, j = w3, k = r3; q, w, r = 1, 2, 3, ...,

0, otherwise.

It is clearly that S3(f)− lim yijk = 0, i.e., y ∈ S3(f) but y /∈ w3
α̃(f) for α̃ ∈ (0, 1

3 ]. In fact, we can see that

1

qawbrc

q∑
i=1

w∑
j=1

r∑
k=1

f(|yijk|) ≥
3
√
q − 1

qa

3
√
w − 1

wb

3
√
r − 1

rc
.

Since
3
√
q − 1

qa
→ ∞ as q → ∞,

3
√
w − 1

wb
→ ∞ as w → ∞ and

3
√
r − 1

rc
→ ∞ as r → ∞, w3

α̃(f) if α̃ ∈ (0, 1
3 ].

Therefore, y ∈ w3
α̃(f)− S3(f) for α̃ ∈ (0, 1

3 ]. □

3 Conclusion

In this paper, we extended the notion of f -statistical convergence of order α̃ for triple sequences spaces. For future
works, we suggest to study this notion in a higher dimension, also we recommend to find more properties that the
f -statistical convergence of order α̃ can be had.
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