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Abstract

We propose a category of normalized analytic functions given by g(ζ) = ζ +
∞∑
j=2

djζ
j that are bi-univalent in the disc

{ζ ∈ C : |ζ| < 1} defined by (p,q)-derivative operator, subordinate to (m,n)-Lucas polynomials. For members of this
family, we determine estimates for the coefficients |d2| and |d3| and the Fekete-Szegö result. New implications of the
primary result, as well as pertinent links to previously published findings, are also provided.
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1 Preliminaries

Quantum calculus is essential because it is applied in many branches of mathematics, computer science, physics, and
other fields. The quantum calculus’s extension to the (p, q)-calculus was taken into consideration by the researchers.
The (p, q)-calculus, which includes the (p, q)-number, is first examined around the same time (1991) and subsequently
on its own by [7, 10, 15, 43]. Fibonacci oscillators were studied with the presentation of the (p, q)-number in [7].
The investigation of the (p, q)-number in [10] allows for the construction of a (p, q)-Harmonic oscillator. In [15],
the (p, q)-number was explored to unify or generalize various forms of q-oscillator algebras. The (p, q)-numbers are
investigated in [43] to calculate the (p, q)-Stirling numbers. Consequently, many mathematical, computer science,
physical, chemical and other related problems require knowledge of (p, q)-calculus. Expanding upon the previously
mentioned papers, numerous scientists have studied the (p, q)-calculus in a variety of research fields since 1991. A
syntax for embedding the q-series into a (p, q)-series was given by the results in [22]. Additionally, they looked
into the (p, q)-hypergeometric series and discovered some outcomes that matched (p, q)-extensions of the well-known
q-identities. The q-identities are extended correspondingly to yield the (p, q)-series (see, e.g., [6]). We give some
elementary definitions of the terms used in this paper related to (p, q)–calculus. The (p, q)-bracket number is given

by [j]p,q = pj−1 + pj−2q + ...+ p2qj−3 + pqj−2 + qj−1 = pj−qj

p−q (p ̸= q), which is an extension of q-number (see [21]),

that is [j]q = 1−qj

1−q (q ̸= 1). Note that [j]p,q is symmetric and if p=1, then [j]p,q = [j]q.

Let N = N0\{0} := {1, 2, 3, ...} and R be the family of real numbers. let D = {ζ ∈ C : |ζ| < 1}, where C is the
complex numbers set.
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Definition 1.1. [41] Consider a function g defined on C and let 0 < q < p ≤ 1. Then the (p, q)-derivative of g is
defined by

Dp,qg(ζ) =
g(pζ)− g(qζ)

(p− q)ζ
(ζ ̸= 0),

and Dp,qg(0) = g′(0), provided g′(0) exists.

We note that Dp,qζ
j = [j]p,qζ

j−1 and Dp,qln(ζ) = ln(p/q)
(p−q)ζ . Also, [j]p,q → j, if p = 1 and q → 1−. Therefore,

Dp,qg(ζ) → g′(ζ) as p = 1 and q → 1−. Any function’s (p, q)-derivative is a linear operator. More accurately
Dp,q(cg1(ζ) + dg2(ζ)) = cDp,qg1(ζ) + cDp,qg2(ζ), where c and d are constants. The (p, q)-derivative satisfies the
product rules and quotient rules (see [30]). Exponential functions are used to introduce the (p, q)-analogues of many
functions, including sine, cosine, and tangent similar to how their Euler expressions. Durani et al. [17] have examined
the (p, q)-derivatives of these functions. For further details on (p, q)-calculus, see, among other sources, ([11, 17, 41]).

Let us take a normalized regular function g in D given by

g(ζ) = ζ +

∞∑
j=2

djζ
j , (1.1)

and let A be the class of all such functions. Let S = {g ∈ A : g is univalent inD}. If g ∈A is of the form (1.1), then

Dp,qg(ζ) = 1 +
∞∑
j=2

[j]p,qdjζ
j−1, (ζ ∈ D). (1.2)

The renowned Koebe theorem (see [18]) states that each function g ∈ S has an inverse and is defined as

g−1(ω) = f(ω) = ω − d2ω
2 + (2d22 − d3)ω

3 − (5d32 − 5d2d3 + d4)ω
4 + · · · (1.3)

satisfying ζ = g−1(g(ζ)) and ω = g(g−1(ω)), |ω| < r0(g), r0(g) ≥ 1/4, ζ, ω ∈ D. The notion of bi-univalent functions
was first presented by Levin in his work [24]. These are analytic functions, denoted by g, where both g and g−1are

univalent in D. The set of all bi-univalent functions of the type (1.1) is symbolized by Σ. 1
2 log

(
1+ζ
1−ζ

)
, −log(1−ζ) and

ζ
1−ζ are some of the functions in the Σ family. However, ζ − ζ2

2 , ζ
1−ζ2 , and the Koebe function do not belong in Σ,

even though they are in S. For a concise analysis and to discover some of the remarkable characteristics of the family
Σ, see [8, 9, 40] and the citation provided in these papers. The article by Srivastava et al. [32] gave rise to the recent
momentum of studies of the bi-univalent function family. Numerous scholars have looked into several fascinating
special families of Σ since this article brought the subject back to life (see [12, 13, 20]).

The (p, q)-calculus was used to study several subclasses of the class S and the class Σ. In [33], the subordination
principle is used to define the (p, q)-starlike and (p, q)-convex functions classes. Novel subclasses of the class Σ
associated with (p, q)-differential operators have also been presented and examined in several studies (refer to [3, 5,
16, 28, 27, 42]).

The (m,n)-Lucas polynomials Lj(κ) ( or Lj(m(κ), n(κ),κ)) are defined by the below mentioned recurrence relation
(see [23]):

L0(κ) = 2, L1(κ) = m(κ), Lj(κ) = m(κ)Lj−1(κ) + n(κ)Lj−2(κ), (1.4)

where j ∈ N\{1}, m(κ) and n(κ) are real polynomials. The generating function (GF) of the (m,n)-Lucas polynomials
Lj(κ) is given by

G(κ, ζ) :=
∞∑
j=0

Lj(κ)ζj =
2−m(x)ζ

1−m(κ)ζ − n(κ)ζ2
. (1.5)

One can easily find from (1.4) that L2(κ) = m2(κ) + 2n(κ), L3(κ) = m3(κ) + 3m(x)n(κ) and so on. For specific
selections of m(κ) and n(κ), the (m,n)-Lucas polynomials Lj(κ) ( or Lj(m(κ), n(κ),κ)) leads to various known
polynomials (see [4]). For members of some subfamilies of Σ linked to (m,n)-Lucas polynomials, fascinating findings
about coefficient estimations and Fekete- Szegö result has been found in [1, 25, 29, 36, 37, 38, 39].

For functions g1 and g2 regular in D, g1 is said to subordinate g2, if there is a Schwarz function ψ in D, satisfying
ψ(0) = 0 , |ψ(ζ)| < 1 and g1(ζ) = g2(ψ(ζ)), ζ ∈ D. The notation g1 ≺ g2 indicates this subordination. If g2 ∈ S,
then g1(ζ) ≺ g2(ζ) is equivalent to g1(0) = g2(0) and g1(D) ⊂ g2(D).
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Definition 1.2. The (p, q)-analogue of Swamy differential operator for g ∈ A is defined as follows:

W ν,µ,0
p,q g(ζ) = g(ζ),

W ν,µ,1
p,q g(ζ) =

νg(ζ) + µzDp,qg(ζ)

ν + µ
,

...

W ν,µ,k
p,q g(ζ) =W ν,µ

p,q (W
ν,µ,k−1
p,q g(ζ)),

where ζ ∈ D, µ ≥ 0, ν a real number with ν + µ > 0, k ∈ N and 0 < q < p ≤ 1.

Remark 1.3. i) We observe that W ν,µ,k
p,q : A → A is a linear operator. We have

W ν,µ,k
p,q g(ζ) = ζ +

∞∑
j=2

(
ν + µ[j]p,q
ν + µ

)k

djζ
j , (1.6)

for g(ζ) given by (1.1).

ii) If we let ν = 0 and µ = 1, then W ν,µ,k
p,q g(ζ) reduces to the (p, q)-analogue of Salagean operator discussed in [31].

iii) If we take ν = 1 − µ, µ ≥ 0, then Aµ,k
p,q (= W 1−µ,µ,k

p,q ) : A → A is a linear operator. For g(ζ) given by (1.1), we
have

Aµ,k
p,q g(ζ) = ζ +

∞∑
j=2

(1 + µ([j]p,q − 1))
k
djζ

j , (1.7)

which is (p, q)-analogue of Al-Oboudi differential operator.

iv) If we put ν = l + 1− µ, l > −1, µ ≥ 0, then Cl,µ,k
p,q (=W l+1−µ,µ,k

p,q ) : A → A is another linear operator. For g(ζ)
given by (1.1), we have

Cl,µ,k
p,q g(ζ) = ζ +

∞∑
j=2

(
l + 1 + µ([j]p,q − 1)

l + 1

)k

djζ
j , (1.8)

which is (p, q)-analogue of Catas differential operator.

v) Swamy operator [35], Al-Oboudi operator [2], and Cătaş operator [14] are obtained by taking q → 1− and p = 1
in (1.6), (1.7), and (1.8), respectively.

We propose a subfamily of Σ using the (p, q)-analogue of the Swamy derivative operator, subordinate to (m,n)-
Lucas polynomials Lj(κ) as in (1.4) with GF (1.5).In this paper, 0 < q < p ≤ 1 is always satisfied by the parameters
p and q.This paper also makes use of the inverse functions g−1(ω) = f(ω) and G(κ, ζ), which are as in (1.3) and (1.5),
respectively.

Definition 1.4. Any function g ∈ Σ is said to be in the family Sτ,k
Σ,p,q(κ, ν, µ), if

1

2

ζ(W ν,µ,k
p,q g(ζ))′

g(ζ)
+

(
ζ(W ν,µ,k

p,q g(ζ))′

g(ζ)

) 1
τ

 ≺ G(κ, ζ)− 1, ζ ∈ D

and

1

2

ω(W ν,µ,k
p,q f(ω))′

f(ω)
+

(
ω(W ν,µ,k

p,q f(ω))′

f(ω)

) 1
τ

 ≺ G(κ, ω)− 1, ω ∈ D,

where 0 < τ ≤ 1, µ ≥ 0, ν a real number with ν + µ > 0, and k ∈ N.

For particular chioces of p, q, τ, and ν, the family Sτ,k
Σ,p,q(κ, ν, µ) includes many new subfamilies of Σ as mentioned

below:
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Example 1.1. Sτ,k
Σ,p,q(κ, µ) ≡ Sτ,k

Σ,p,q(κ, 1 − µ, µ), 0 < τ ≤ 1, µ ≥ 0, and k ∈ N is the set of members g ∈ Σ that
satisfy

1

2

ζ(Aµ,k
p,q g(ζ))

′

g(ζ)
+

(
ζ(Aµ,k

p,q g(ζ))
′

g(ζ)

) 1
τ

 ≺ G(κ, ζ)− 1, ζ ∈ D

and

1

2

ω(Aµ,k
p,q f(ω))

′

f(ω)
+

(
ω(Aµ,k

p,q f(ω))
′

f(ω)

) 1
τ

 ≺ G(κ, ω)− 1, ω ∈ D.

Example 1.2. T τ,k
Σ,p,q(κ, l, µ) ≡ Sτ,k

Σ,p,q(κ, l + 1 − µ, µ), µ ≥ 0, 0 < τ ≤ 1, l > −1, and k ∈ N is the set of members
g ∈ Σ that satisfy

1

2

ζ(Cl,µ,k
p,q g(ζ))′

g(ζ)
+

(
ζ(Cl,µ,k

p,q g(ζ))′

g(ζ)

) 1
τ

 ≺ G(κ, ζ)− 1, ζ ∈ D

and

1

2

ω(Cl,µ,k
p,q f(ω))′

f(ω)
+

(
ω(Cl,µ,k

p,q f(ω))′

f(ω)

) 1
τ

 ≺ G(κ, ω)− 1, ω ∈ D.

Example 1.3. Rk
Σ,p,q(x, ν, µ) ≡ S1,k

Σ,p,q(κ, ν, µ), µ ≥ 0, ν a real number with ν + µ > 0, and k ∈ N is the set of
members g ∈ Σ that satisfy

ζ(W ν,µ,k
p,q g(ζ))′

g(ζ)
≺ G(κ, ζ)− 1, ζ ∈ D

and
ω(W ν,µ,k

p,q f(ω))′

f(ω)
≺ G(κ, ω)− 1, ω ∈ D.

Example 1.4. If p = 1 and q → 1− in the set Sτ,k
Σ,p,q(κ, ν, µ), then we obtain a subset Yτ,k

Σ (κ, ν, µ), which is the
collection of members of g ∈ Σ that satisfy

1

2

{
ζ(Wν,µ,kg(ζ))′

g(ζ)
+

(
ζ(Wν,µ,kg(ζ))′

g(ζ)

) 1
τ

}
≺ G(κ, ζ)− 1, ζ ∈ D

and

1

2

{
ω(Wν,µ,kf(ω))′

f(ω)
+

(
ω(Wν,µ,kf(ω))′

f(ω)

) 1
τ

}
≺ G(κ, ω)− 1, ω ∈ D,

where Wν,µ,k ≡W ν,µ,k
p=1,q→1− , µ ≥ 0, ν a real number with ν + µ > 0, k ∈ N, and 0 < τ ≤ 1.

Fekete-Szegö inequality [19] and estimates for |d2| and |d3| are found in Section 2 for functions in Sτ
Σ,p,q(κ, ν, µ).

Along with relevant links to the earlier results, there are also a few intriguing implications of the main result.

2 Main Results

Initially, we compute the Fekete-Szegö inequality for functions in Sτ,k
Σ,p,q(κ, ν, µ), as well as the bounds for |d2| and

|d3|.

Theorem 2.1. Let 0 < τ ≤ 1, µ ≥ 0, ν a real number such that ν+µ > 0 and k ∈ N. If a function g ∈ Sτ,k
Σ,p,q(κ, ν, µ),

then

(i)

|d2| ≤
2τ
√
|m3(κ)|√

|(2τ(τ + 1)(N −M)− τ(τ + 3)M2)m2(κ)− 2M2n(κ)(1 + τ)2)|
, (2.1)
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(ii)

|d3| ≤
4τ2m2(κ)
(1 + τ)2M2

+
2τ |m(κ)|
(1 + τ)N

, (2.2)

and for ξ ∈ R,

(iii)

|d3 − ξd22| ≤

{
2τ |m(κ)|
(1+τ)N ; |1− ξ| ≤ J

4τ2|m3(κ)| |1−ξ|
|(2τ(τ+1)(N−M)−τ(τ+3)M2)m2(κ)−2M2n(κ)(1+τ)2)| ; |1− ξ| ≥ J,

(2.3)

where

J =
|(2τ(τ + 1)(N −M)− τ(τ + 3)M2)m2(κ)− 2M2n(κ)(1 + τ)2|

2τ(τ + 1)Nm2(κ)
, (2.4)

M =

(
2

(
ν + µ[2]p,q
ν + µ

)k

− 1

)
, (2.5)

and

N =

(
3

(
ν + µ[3]p,q
ν + µ

)k

− 1

)
. (2.6)

Proof . Let g ∈ Sτ,k
Σ,p,q(κ, ν, µ). Then, we can write because of Definition 1.4:

1

2

ζ(W ν,µ,k
p,q g(ζ))′

g(ζ)
+

(
ζ(W ν,µ,k

p,q g(ζ))′

g(ζ)

) 1
δ

 = G(κ, r(ζ))− 1

and

1

2

ω(W ν,µ,k
p,q f(ω))′

f(ω)
+

(
ω(W ν,µ,k

p,q f(ω))′

f(ω)

) 1
δ

 = G(κ, s(ω))− 1,

where r and s are functions regular in D, with r(0) = 0, |r(ζ)| < 1, s(0) = 0, |s(ω)| < 1. Or, equivalently

1

2

ζ(W ν,µ,k
p,q g(ζ))′

g(ζ)
+

(
ζ(W ν,µ,k

p,q g(ζ))′

g(ζ)

) 1
δ

 = −1 + L0(κ) + L1(κ)r(ζ) + L2(κ)r2(ζ) + · · · , (2.7)

and

1

2

ω(W ν,µ,k
p,q f(ω))′

f(ω)
+

(
ω(W ν,µ,k

p,q f(ω))′

f(ω)

) 1
δ

 = −1 + L0(κ) + L1(κ)s(ω) + L2(κ)s2(ω) + · · · . (2.8)

On account of (1.4), (2.7) and (2.8), we obtain

1

2

ζ(W ν,µ,k
p,q g(ζ))′

g(ζ)
+

(
ζ(W ν,µ,k

p,q g(ζ))′

g(ζ)

) 1
δ

 = 1 + L1(κ)r1ζ + [L1(κ)r2 + L2(κ)r21]ζ2 + · · · , (2.9)

and

1

2

ω(W ν,µ,k
p,q f(ω))′

f(ω)
+

(
ω(W ν,µ,k

p,q f(ω))′

f(ω)

) 1
δ

 = 1 + L1(κ)s1ω + [L1(κ)s2 + L2(κ)s21]ω2 + · · · . (2.10)

If |r(ζ)| = |r1ζ + r2ζ
2+ r3ζ

3+ ...| < 1, ζ ∈ D, and if |s(ω)| = |s1ω+ s2ω
2+ s3ω

3+ · · · | < 1, ω ∈ D, then we known
that

|ri| ≤ 1 and |si| ≤ 1 (i ∈ N). (2.11)

From (2.9) and (2.10), it can be inferred that(
1 + τ

2τ

)
Md2 = L1(κ)r1, (2.12)
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1 + τ

2τ

)
(Nd3 −Md22) +

(
1− τ

4τ2

)
M2d22 = L1(κ)r2 + L2(κ)r21, (2.13)

−
(
1 + τ

2τ

)
Md2 = L1(κ)s1, (2.14)

and (
1 + τ

2τ

)
(N(2d22 − d3)−Md22) +

(
1− τ

4τ2

)
M2d22 = L1(κ)s2 + L2(κ)s21. (2.15)

From (2.12) and (2.14), we have
r1 = −s1 (2.16)

and also (
(1 + τ)2

2τ2

)
M2d22 = (r21 + s21)(L1(κ))2. (2.17)

If we add (2.13) and (2.15), then we obtain[(
1 + τ

τ

)
(N −M) +

(
1− τ

2τ2

)
M2

]
d22 = L1(κ)(r2 + s2) + L2(κ)(r21 + s21). (2.18)

Substituting the value of (r21 + s21) from (2.17) in (2.18), we get

d22 =
2τ2(L1(κ))3(r2 + s2)

[(2τ(τ + 1)(N −M) + (1− τ)M2)(L1(κ))2 − (1 + τ)2M2L2(κ)]
, (2.19)

which produces (2.1), when applied (2.11). After deducting (2.15) from (2.13) and then applying (2.16), we get

d3 = d22 +
τL1(κ)(r2 − s2)

(1 + τ)N
. (2.20)

Then in view of (2.17), (2.20) becomes

d3 =
2τ2(L1(κ))2(r21 + s21)

(1 + τ)2M2
+
τL1(κ)(r2 − s2)

(1 + τ)N
,

which produces (2.2), when applied (2.11). For ξ ∈ R, we obtain in view of (1.4) from (2.19) and (2.20):

|d3 − ξd22| = |L1(κ)|
∣∣∣∣(B(ξ,κ) +

τ

(1 + τ)N

)
r2 +

(
B(ξ,κ)− τ

(1 + τ)N

)
s2

∣∣∣∣ ,
where

B(ξ, x) =
2τ2(1− ξ)L2

1(κ)
[(2τ(τ + 1)(N −M) +M2(1− τ))L2

1(κ)−M2(1 + τ)2L2(κ)]
.

Clearly,

|d3 − ξd22| ≤

{
2τ |L1(κ)|
(1+τ)N ; 0 ≤ |B(ξ,κ)| ≤ τ

(1+τ)N

2|B(ξ,κ)||L1(κ)|; |B(ξ,κ)| ≥ τ
(1+τ)N .

This produces (2.3), where J is the same as in (2.4) on using L1(κ) = m(κ), L2(κ) = m2(κ) + 2n(κ). Thus,
Theorem 2.1 has been demonstrated. □

Remark 2.2. The results of Altınkaya and Yalçın [3, Theorem 2.1 and Theorem 3.1] are obtained by allowing µ =
1, ν = 0, n(x) = 1, and m(x) = x in Theorem 2.1.

Corollary 2.3. Let us assume that ν = 1−µ in Theorem 2.1. Then the upper bounds of |d2|, |d3|, and |d3−ξd22|, ξ ∈R,
for any function g ∈ Sτ,k

Σ,p,q(κ, µ) are given by (2.1), (2.2), and (2.3), respectively, with M = M1 = 2(1 + µ([2]p,q −
1)k − 1), and N = N1 = 3(1 + µ([3]p,q − 1)k − 1). For J in (2.4), M, andN are to be substituted with M1, andN1,
respectively.
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Corollary 2.4. Let us assume that ν = l + 1 − µ in Theorem 2.1. Then the upper bounds of |d2|, |d3|, and |d3 −
ξd22|, ξ ∈R, for any function g ∈ T τ,k

Σ,p,q(κ, l, µ) are given by (2.1), (2.2), and (2.3), respectively, with

M =M2 =

(
2

(
l + 1 + µ([2]p,q − 1)

l + 1

)k

− 1

)
, and N = N2 =

(
3

(
l + 1 + µ([3]p,q − 1)

l + 1

)k

− 1

)
.

For J in (2.4), M and N are to be substituted with M2 and N2, respectively.

When τ = 1, the following would result from Theorem 2.1.

Corollary 2.5. Let µ ≥ 0, ν a real number satisfying ν + µ > 0 and k ∈ N. If a function g ∈ Rk
Σ,p,q(κ, ν, µ), then

(i)

|d2| ≤
√
|m3(κ)|√

|(N −M −M2)m2(κ)− 2M2n(κ)|
,

(ii)

|d3| ≤
m2(κ)
M2

+
|m(κ)|
N

,

and for ξ ∈ R

(iii)

|d3 − ξd22| ≤

{ |m(κ)|
N ; |1− ξ| ≤ J1

|m3(κ)| |1−ξ|
|(N−M−M2)m2(κ)−2M2n(κ)| ; |1− ξ| ≥ J1,

where (2.5) provides M , (2.6) provides N , and

J1 =

∣∣∣∣ (N −M −M2)m2(κ)− 2M2n(κ)
4Nm2(κ)

∣∣∣∣ .
Remark 2.6. We acquire the results of Altınkaya and Yalçın [3, Corollary 2.1 and Corollary 3.1 ] by taking n(x) =
1,m(x) = x, ν = 0, and µ = 1 in Corollary 2.5.

Corollary 2.7. Let us assume that q → 1− and p = 1 in Theorem 2.1. Then the upper bounds of |d2|, |d3|, and |d3 −
ξd22|, ξ ∈R, for any function g ∈ Yτ,k

Σ (κ, ν, µ), are given by (2.1), (2.2), and (2.3), respectively, with M = M3 =(
2
(

ν+2µ
ν+µ

)k
− 1

)
, and N = N3 =

(
3
(

ν+3µ
ν+µ

)k
− 1

)
. For J in (2.4), M and N are to be substituted with M3 and

N3, respectively.

Remark 2.8. If k = 0 in the set Yτ,k
Σ (κ, ν, µ), then we obtain a subset Qτ

Σ(κ), 0 < τ ≤ 1, which is the collection of
members of g ∈ Σ that satisfy

1

2

{
ζg′(ζ)

g(ζ)
+

(
ζg′(ζ)

g(ζ)

) 1
τ

}
≺ G(κ, ζ)− 1, ζ ∈ D

and
1

2

{
ωf ′(ω)

f(ω)
+

(
ωf ′(ω)

f(ω)

) 1
τ

}
≺ G(κ, ω)− 1, ω ∈ D.

Corollary 2.9. Let 0 < τ ≤ 1. If a function g ∈ Qτ
Σ(κ), then

(i)

|d2| ≤
2τ
√

|m3(κ)|√
|τ(τ − 1)m2(κ)− 2(1 + τ)2n(κ)|

,
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(ii)

|d3| ≤
4τ2m2(κ)
(1 + τ)2

+
τ |m(κ)|
1 + τ

,

and for ξ ∈ R

(iii)

|d3 − ξd22| ≤


τ |m(κ)|
1+τ ; |1− ξ| ≤

∣∣∣∣τ(τ − 1)m2(κ)− 2(1 + τ)2n(κ)
4τ(τ + 1)m2(κ)

∣∣∣∣
4τ2|m3(κ)| |1−ξ|

|τ(τ−1)m2(κ)−2(1+τ)2n(κ)| ; |1− ξ| ≥
∣∣∣∣τ(τ − 1)m2(κ)− 2(1 + τ)2n(κ)

4τ(τ + 1)m2(κ)

∣∣∣∣ .
Remark 2.10. We obtain the results of Altınkaya and Yalçın [4, Corollaries 1 and 3 ] by taking τ = 1 in Corollary
2.9. These results are also stated in [29].

3 Conclusions

This study establishes upper bounds on |d2| and |d3| for functions in subfamily of Σ related to (m,n)−Lucas
polynomials. Moreover, the Fekete-Szegö functional |d3 − ξd22|, ξ ∈ R has been identified for functions in these
subfamilies. By adjusting the parameters in Theorem 2.1, a few implications have been brought to light. Relevant
connections to the current research are also discovered. Nevertheless, this paper does not address all of the significant
subclasses of Σ that exist in the literature. For example, authors [26, 28, 42] have examined various subclasses involving
(p, q)-operators introduced in (p, q)-calculus. Functions from this class may be studied with interesting results due to
their symmetry properties. Topics about fuzzy differential subordination, and fuzzy differential subordination may be
added in future research. By defining the (p, q)-analogue of the Swamy operator defined for p-valent functions [35],
the results obtained in this paper could be extended. It is recommended that the interested reader review these papers
and the associated references.
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