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Abstract

This article discusses the existence and multiplicity of solutions for the following Schrödinger-Kirchhoff-Poisson system: −
(
a+ b

∫
Ω
|∇u|2

)
∆u+ λϕu = m(x)|u|q−2

u+ f(x, u), x ∈ Ω,

−∆ϕ = u2, x ∈ Ω,

where Ω is a bounded smooth domain of R3, a ≥ 0 ,b > 0 and λ > 0 is a parameter, 1 < q < 2 and f(x, u) is linearly
bounded in u at infinity. Under some suitable assumptions on m and f , we prove the existence and multiplicity of
solutions via variational methods.
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1 Introduction

In this paper, we investigate the existence and multiplicity of solutions for the following Schrödinger-Kirchhoff-
Poisson system 

−
(
a+ b

∫
Ω

|∇u|2
)
∆u+ λϕu = m(x)|u|q−2

u+ f(x, u), x ∈ Ω,

−∆ϕ = u2, x ∈ Ω,

(1.1)

where Ω is a bounded smooth domain of R3, a ≥ 0 ,b > 0 and λ > 0 is a parameter, 1 < q < 2 and f(x, u) is linearly
bounded in u at infinity that satisfying some conditions we will precise later. When a = 1, b = 0 and m ≡ 1, the
problem (1.1) reduces to a Schrödinger-Poisson system like as follows:

−∆u+ ϕu = f(x, u), x ∈ Ω,

−∆ϕ = u2, x ∈ Ω.
(1.2)
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System (1.2) is related to the nonlinear parabolic Schrödinger-Poisson system: i
∂ψ

∂t
−∆ψ + ϕ(x)ψ = |ψ|p−2ψ, x ∈ Ω,

−∆ϕ = |ψ|2, lim
|x|→∞

ϕ(x) = 0, x ∈ Ω.
(1.3)

The first equation in (1.3) is called the Schrödinger equation, which describes quantum (non-relativistic) particles
interacting with the electromagnetic field generated by the motion. an interesting class of Schrödinger equations is
where the potential ϕ(x) is determined by the charge of wave function itself, that is when the second equation in (1.3)
(Poisson equation) holds. For more details about the physical relevance of the Schrödinger-Poisson system, we refer
to [5, 9, 17].

System (1.2) has been extensively studied after the basic work of Benci and Fortunato [9]. Many important about
existence and nonexistence of solutions, multiplicity of solutions, least energy solutions, radial and non-radial solutions,
and so on, have been obtained. See for instance [1, 2, 5, 6, 7, 10, 11, 12, 18, 19, 20, 22, 24].

On the other hand, considering just the first equation in (1.2) with the potential equal to zero, we have the problem −(a+ b

∫
Ω

|∇u|2)∆u = g(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1.4)

The Kirchhoff model [16] is a mathematical model used to study small transverse vibrations of an elastic string. A
stationary and N -dimensional version of this model can be represented by considering the effect of the change in length
during the vibrations. As the length of the string varies during the vibrations, the tension changes with time and
depends on the L2 norm of the gradient of the displacement u. The model includes variables such as a = P0/h, and
b = E/2L, where L is the length of the string, h is the area of cross-section, E is the Young modulus of the material
and P0 is the initial tension. This model is called nonlocal because of the presence of the term

∫
Ω
|∇u|2dx, which

implies that the equation in the text is no longer a pointwise identity. This phenomenon causes some mathematical
difficulties, making the study of such a class of problems particularly interesting. Some existence and multiplicity
results on Kirchhoff-type problems can be found in various papers, including [3, 4, 7, 14, 15, 27] and their references,
which represents the stationary and N -dimensional version of the Kirchhoff model [16] for small transverse vibrations
of an elastic string by considering the effect of the changing in the length during the vibrations. In fact, since the
length of the string is variable during the vibrations, the tension changes with the time and depends of the L2 norm
of the gradient of the displacement u. More precisely, we have a = P0/h and b = E/2L, where L is the length of the
string, h is the area of cross-section, E is the Young modulus of the material and P0 is the initial tension. Problem
(1.4) is called nonlocal because of the presence of the term

∫
Ω
|∇u|2dx which implies that the equation in (1.4) is no

longer a pointwise identity. This phenomenon causes some mathematical difficulties which makes the study of such a
class of problem particularly interesting. Some existence and multiplicity results on Kirchhoff type problems can be
found in [3, 4, 7, 14, 15, 27] and the references therein.

Recently, Schrödinger-Kirchhoff-Poisson systems (equivalently Schrödinger-Kirchhoff problems) like (1.1) have
great attention of mathematical community. In [8], the authors studied the following Schrödinger-Kirchhoff-Poisson
system 

−(a+ b

∫
Ω

|∇u|2)∆u+ ϕu = f(x, u), x ∈ Ω,

−∆ϕ = u2, x ∈ Ω,
ϕ = u = 0, x ∈ ∂Ω,

(1.5)

where Ω is a bounded smooth domain of R3, and f : Ω× R → R is a continuous function. They proved that problem
(1.5) has at least three solutions: one positive, one negative and one which changes its sign. Furthermore, in case f
is odd with respect to u, the authors obtained unbounded sequence of sign-changing solutions. Shao and Chen [23]
studied the following Schrödinger-Kirchhoff-Poisson system:

−(a+ b

∫
Ω

|∇u|2)∆u+ λϕu = ηf(x, u) + u5, x ∈ Ω,

−∆ϕ = u2, x ∈ Ω,
ϕ = u = 0, x ∈ ∂Ω,

(1.6)
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where a ≥ 0, b > 0 and η, λ > 0, Ω ⊂ R3 is a bounded smooth domain and with the help of the variational methods, the
existence of a non-trivial solution was obtained. In [21], We consider the following nonlinear Schrödinger-Kirchhoff-
Poisson system: 

−(a+ b

∫
R3

|∇u|2)∆u+ ϕu = µg(x, u) + λf(x, u), x ∈ R3,

−∆ϕ = u2, lim
|x|→∞

ϕ(x) = 0, x ∈ R3,

where a, b > 0. We prove the existence of infinitely many solutions with high energy by using the Fountain theorem.
Motivated by the above works, we study the existence and multiplicity of solutions for the problem (1.1). Before
stating our main results, we give the following assumptions on m and f .

(H1) m(x) ∈ L
2

2−q (Ω);

(H2) m(x) > 0 on Ω;

(H3) f(x, u) ∈ C(Ω× R,R), f(x, u)u ≥ 0 for all (x, u) ∈ Ω× R and

lim
u→0

f(x, u)

u
= 0, uniformly in x ∈ Ω;

(H4) There exists C > 0 such that∣∣∣∣f(x, u)u

∣∣∣∣ ≤ C, for all x ∈ Ω, u ∈ R and u ̸= 0.

Throughout this paper, C > 0 will be used indiscriminately to denote a suitable positive constant whose value
may change from line to line and we will use o(1) for a quantity which goes to zero. Moreover, we use |.|p to denote
the usual norm on Lp(Ω) for 1 < p < +∞. Our main results reads as follows.

Theorem 1.1. Suppose that a > 0, b ≥ 0 and (H1) − (H4) hold. Then there exists M > 0 such that for every m
with |m| 2

2−q
< M and λ > 0, problem (1.1) has a nontrivial solution at negative energy.

Theorem 1.2. Under the assumptions of Theorem 1.1, there exists λ∗ > 0 such that for every λ > λ∗, problem (1.1)
has a nontrivial solution at negative energy.

Theorem 1.3. Let (H1)− (H4) hold, and suppose further that f(x, u) is odd in u. Then there exists λ such that for
every λ > λ, problem (1.1) has infinitely many solutions at negative energy.

The reminder of this paper is organized as follows. In section 2, we present a suitable variational framework for
our problem. In section 3, we prove Theorems 1.1-1.2. Finally the proof of Theorem 1.3 will be given in section 4.

2 Preliminaries

Let us fix some notations:

(i) H1(Ω) is the usual Sobolev space with the scalar product and norm

⟨u, v⟩ =
∫
Ω

∇u∇vdx, ∥u∥2 =

∫
Ω

|∇u|2dx.

(ii) Let D1,2(Ω) be the completion of C∞
0 (Ω) with respect to the norm

∥u∥D =

∫
Ω

|∇u|2dx.
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The following result is well known (see.e.g. [13, 17, 26])

Lemma 2.1. [13] For any u ∈ H1(Ω), there exists a unique ϕu ∈ D1,2(Ω) such that

−∆ϕu = u2. (2.1)

Moreover, ϕu has the following properties:

(i) there exists c > 0 such that ∥ϕu∥ ≤ ∥u∥2 and∫
Ω

|∇ϕu|2dx =

∫
Ω

ϕuu
2dx ≤ c∥u∥4;

(ii) ϕu ≥ 0 and ϕtu = t2ϕu, for all t > 0;

(iii) if un ⇀ u in H1, then ϕun
⇀ ϕu in D1,2(Ω) and

lim
n→∞

∫
Ω

ϕun
un

2dx =

∫
Ω

ϕuu
2dx.

We mean by a weak solution of (1.1), a function u ∈ H1(Ω) such that

(a+ b∥u∥2)
∫
Ω

∇u∇vdx+ λ

∫
Ω

ϕuuvdx =

∫
Ω

m(x)|u|q−2
uvdx+

∫
Ω

f(x, u)vdx,

for all v ∈ H1(Ω). Let us consider the functional I : H1(Ω) → R defined by

I(u) =
a

2
∥u∥2 + b

4
∥u∥4 + λ

4

∫
Ω

ϕuu
2dx− 1

q

∫
Ω

m(x)|u|qdx−
∫
Ω

F (x, u)dx,

where F (x, u) =
∫ u

0
f(x, t)dt. Moreover, it is known that I is a C1 functional with derivative given by

⟨I ′(u), v⟩ = (a+ b∥u∥2)
∫
Ω

∇u∇vdx+ λ

∫
Ω

ϕuuvdx−
∫
Ω

m(x)|u|q−2
uvdx−

∫
Ω

f(x, u)vdx,

Clearly, critical points of I are weak solutions of problem (1.1).

Definition 2.2. We say a C1 functional I satisfies Palais-Smale condition
(
Cerami condition

)
if any sequence {un} ⊂

H1(Ω) such that
I(un) being bounded, I ′(un) → 0, as n→ 0 (2.2)(

I(un) being bounded, (1 + ∥un∥)I ′(un) → 0, as n→ 0

)
admits a convergent subsequence, and such a sequence is called a palais-Smale sequence

(
Cerami sequence

)
.

Lemma 2.3. Assume that (H1), (H3) and (H4) hold. Then any Cerami sequence of I is bounded in H1(Ω).

Proof . Let {un} be a Cerami sequence of I. By contradiction, let ∥un∥ → ∞. By definition of Cerami sequence we
have

⟨I ′(un), un⟩
∥un∥4

= o(1),

that is

o(1) = b+ λ

∫
Ω

ϕunu
2
n

∥un∥4
dx−

∫
Ω

m(x)|un|q

∥un∥4
dx−

∫
Ω

f(x, un)un
∥un∥4

dx. (2.3)

By Sobolev and Hölder inequalities, we have∫
Ω

m(x)|un|qdx ≤ |m| 2
2−q

|un|q2 ≤ C|m| 2
2−q

∥un∥q. (2.4)
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Hence ∫
Ω

m(x)|un|q

∥un∥4
dx→ 0. (2.5)

By (H4), we get that ∫
Ω

|f(x, un)un|
∥un∥4

dx =

∫
Ω

∣∣∣∣f(x, un)un

∣∣∣∣ u2n
∥un∥4

dx ≤ C

∥un∥2
→ 0. (2.6)

By Lemma 2.1, we have ∫
Ω

ϕunu
2
ndx ≥ 0,

which is a contradiction, because b > 0. Thus {un} is bounded in H1(Ω) and the proof is completed. □

Lemma 2.4. Under the assumptions of Lemma 2.3, any Cerami sequence of I has a convergent subsequence in H1(Ω).

Proof . Let {un} be a Cerami sequence of I. We show that {un} possesses a strong convergent subsequence. Since
{un} is bounded in H1(Ω)

(
Lemma 2.3

)
, we may assume that for some u ∈ H1(Ω), up to a subsequence, un ⇀ u in

H1(Ω). By the fact that the embedding H1(Ω) ↪→ Lp
loc(Ω) is compact for p ∈ [2, 6), it is easy to see that

un → u in Lp(Ω), p ∈ [2, 6). (2.7)

Since ⟨I ′(un), u⟩ = o(1) and ⟨I ′(un), un⟩ = o(1),

o(1) = a

∫
Ω

|∇un|∇udx+ b∥un∥2
∫
Ω

|∇un||∇u|dx− λ

∫
Ω

ϕununudx−
∫
Ω

m(x)|un|q−2unudx−
∫
Ω

f(x, un)udx

and

o(1) = a

∫
Ω

|∇un|∇undx+ b∥un∥2
∫
Ω

|∇un||∇un|dx− λ

∫
Ω

ϕununundx−
∫
Ω

m(x)|un|q−2unundx−
∫
Ω

f(x, un)undx.

Hence, we have ∫
Ω

ϕun
un(un − u)dx = o(1), (2.8)∫

Ω

m(x)|un|q−1(un − u)dx = o(1), (2.9)

and ∫
Ω

f(x, un)(un − u)dx = o(1). (2.10)

In fact, by Hölder inequality and (2.7), we have∫
Ω

ϕunun(un − u)dx ≤ |ϕun |6|un|3|un − u|2 ≤ C|un − u|2 → 0. (2.11)

Similarly, ∣∣∣∣ ∫
Ω

m(x)|un|q−1(un − u)dx

∣∣∣∣ ≤ ∫
Ω

|m(x)||un|q−1|un − u|dx

≤ |m| 2
2−q

|un|q−1
2 |un − u|2 → 0.

(2.12)

By (H4), we can see ∣∣∣∣ ∫
Ω

f(x, un)(un − u)dx

∣∣∣∣ ≤ ∫
Ω

∣∣f(x, un)
un

∣∣|un||un − u|dx

≤ C|un|2|un − u|2 → 0.

(2.13)

Thus, by (2.11), (2.12) and (2.13) we have

(a+ b∥un∥2)
(∫

Ω

(∇un −∇u)∇un
)

→ 0 (2.14)
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We have to prove that
∥un∥ → ∥u∥.

By definition of the norm

∥un − u∥2 =

∫
Ω

(∇un −∇u)(∇un −∇u)dx

=

∫
Ω

(∇un −∇u)∇undx−
∫
Ω

(∇un −∇u)∇udx.
(2.15)

Thus, ∫
Ω

(∇un −∇u)∇undx = ∥un − u∥2 +
∫
Ω

(∇un −∇u)∇udx. (2.16)

Moreover, ∫
Ω

(∇un −∇u)∇undx =

∫
Ω

|∇un|2 −∇un∇udx

= ∥un∥2 −
∫
Ω

∇un∇udx.
(2.17)

Hence, we have

2

∫
Ω

(∇un −∇u)∇undx = ∥un − u∥2 + ∥un∥2 − ∥u∥2. (2.18)

By (2.14)-(2.18), we obtain

a+ b∥un∥2

2
∥un − u∥2 + a+ b∥un∥2

2

(
∥un∥2 − ∥u∥2

)
→ 0. (2.19)

Since a ≥ 0 and b > 0, we obtain
∥un − u∥2 → 0,

and
∥un∥2 − ∥u∥2 → 0.

Therefore, it is easy to see that ∥un∥ → ∥u∥ in H1(Ω). Therefore, un → u in H1(Ω) and the proof is completed. □

3 Existence and multiplicity results

In this section, under the assumptions on m and f , we give the proof of Theorems 1.1-1.2. Clearly, by (H3) and
(H4), for any ε > 0 there exists Cε > 0 such that

|f(x, u)| ≤ ε|u|+ Cε|u|p−1, for all (x, u) ∈ Ω× R. (3.1)

and
|F (x, u)| ≤ εu2 + Cε|u|p, for all (x, u) ∈ Ω× R, (3.2)

for some p ∈ (2, 6).

Lemma 3.1. Suppose that a > 0, b ≥ 0 and (H1)− (H4) hold. Then

(i) There exists M > 0 and ρ1 > 0 such that for all m with |m| 2
2−q

< M,

I(u) > 0, for u ∈ H1(Ω) with ∥u∥ = ρ1.

(ii) There exist λ∗ > 0 and ρ2 > 0 such that for all λ > λ∗,

I(u) > 0, for u ∈ H1(Ω) with ∥u∥ = ρ2.
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Proof . (i) By Sobolev inequality and (2.4) and (3.2) we have

I(u) =
a

2
∥u∥2 + b

4
∥u∥4 + λ

4

∫
Ω

ϕuu
2dx− 1

q

∫
Ω

m(x)|u|qdx−
∫
Ω

F (x, u)dx

≥ a

2
∥u∥2 + b

4
∥u∥4 + λ

4

∫
Ω

ϕuu
2dx− 1

q
|m| 2

2−q
∥u∥q − ε

∫
Ω

u2dx− Cε

∫
Ω

|u|pdx

≥ C1∥u∥2 − C2|m| 2
2−q

∥u∥q − Cε∥u∥p

≥
(
C1 − C2|m| 2

2−q
∥u∥q−2 − Cε∥u∥p−2

)
∥u∥2.

(3.3)

Let

J(t) = C1 − C2|m| 2
2−q

tq−2 − Cεt
p−2, for t > 0.

Since 1 < q < 2 < p, the function J(t) achieves its maximum on (0,∞) at t0 > 0. Moreover, there exists M > 0
such that for |m| 2

2−q
< M , we have

max
t∈(0,∞)

J(t) = J(t0) > 0.

By ρ1 = t0, the proof will be completed.

(ii) As in [17], by equation (2.1) we have

√
λ

∫
Ω

|u|3dx =
√
λ

∫
Ω

∇ϕu∇|u|dx

≤ 1

2

∫
Ω

(|∇|u||2 + λ|∇ϕu|2)dx

=
1

2

∫
Ω

(|∇u|2 + λϕuu
2)dx.

(3.4)

Thus,

λ

∫
Ω

ϕuu
2dx ≥ 2

√
λ

∫
Ω

|u|3 −
∫
Ω

|∇u|2dx. (3.5)

By (2.4), (3.2) and (3.5) with p = 3 for λ large enough, we obtain

I(u) ≥ a

2
∥u∥2 + b

4
∥u∥4 + λ

4

∫
Ω

ϕuu
2dx− C|m| 2

2−q
∥u∥q −

∫
Ω

εu2 + Cε|u|3dx

≥
(
a

2
− ε− 1

4

)
∥u∥2 + b

4
∥u∥4 +

(√
λ

2
− Cε

)∫
Ω

|u|3dx− C|m| 2
2−q

∥u∥q

≥
(
a

2
− ε− 1

4

)
∥u∥2 + b

4
∥u∥4 − C|m| 2

2−q
∥u∥q.

(3.6)

Since q < 2, if we choose ρ2 large enough, then the conclusion holds. The proof is completed. □

Proof .[Theorem 1.1] By Lemma 3.1 (i), we define

Bρ1 = {u ∈ H1(Ω) : ∥u∥ ≤ ρ1}, ∂Bρ1 = {u ∈ H1(Ω) : ∥u∥ = ρ1}.

Then we have
I
∣∣
∂Bρ1

> 0. (3.7)

Clearly I ∈ C1(Bρ,R), hence I is lower semicontinuous and bounded from below on Bρ. Let

c1 = inf{I(u) : u ∈ Bρ} > −∞.

By (H2), we can choose v ∈ C∞
0 (Ω). Since m(x) > 0 on Ω and 1 < q < 2, it is easy to obtain

I(tv) < 0, for t small.
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Thus c1 < 0. Now by (3.6), Lemma 2.4 and Ekeland’s variational principle, c1 can be achieved at some inner point
u1 ∈ Bρ and u1 is a critical point of I. □

By applying 3.1(ii), we can prove Theorem 1.2 using the same argument as in the proof of Theorem 1.1. The
details are omitted.

4 Existence of infinitely many solutions

In this section, we prove the existence of infinitely many solutions using the critical point theorem when f(x, u) is
odd in u.

Proposition 4.1. [25] Assume X is a reflexive Banach space, I ∈ C1(X,R) satisfies the (PS) condition and is even
and bounded from below, I(0) = 0. If for any k ∈ N, there exist a k-dimensional subspaces Xk and ρk > 0, such that

sup
Xk

⋂
Sρk

I < 0,

where Sρk
= {u ∈ X : ∥u∥ = ρk}. Then I has a sequence of critical values ck < 0 satisfying ck → 0 as k → ∞.

Proof . [Theorem 1.3] By Lemma 2.4, I satisfies the Cerami condition. Using (3.6), it is easy to see that I is coercive
in E and bounded from below for large λ. In order to apply Proposition 4.1, for any n ∈ N, it suffices to fined a
subspace En and ρn > 0 such that

sup
En

⋂
Sρn

I < 0.

In fact, for any n ∈ N, we fined n linearly independent functions e1, ..., en ∈ C∞
0 (Ω), and define En := span{e1, ..., en}.

Since m(x) > 0 in Ω, we can choose

∥u∥q,m =
(∫

Ω

m(x)|u|qdx
) 1

q

,

as an equivalent norm in En. Using the fact that all the norms on En are equivalent, for u ∈ En, similar to (3.3) and
by Lemma 2.1 (i), we have

I(u) ≤ a

2
∥u∥2 + b

4
∥u∥4 + λ

4

∫
Ω

ϕuu
2dx− ∥u∥qq,m

≤ C1∥u∥2 +
(
b+ λC

)
∥u∥4 − ∥u∥qq,m

< 0,

for ∥u∥ = ρn small since q < 2. The proof is completed. □
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