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Abstract

We say a ring is right principally π-Baer (or simply right p.π-Baer) if an idempotent generates the right annihilator
of every projection invariant principal left ideal. The class of right p.π-Baer rings includes the von Neumann regular
rings (and hence right p.p-rings) and all π-Baer rings. This class of rings is closed under direct products. The behavior
of the right p.π-Baer condition is investigated concerning various constructions and extensions. Moreover, we extend
a theorem of Kist for commutative p.p-rings to right p.π-Baer rings for which every prime ideal contains a unique
minimal prime ideal without using topological arguments.
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1 Introduction

Throughout this paper, all rings are associative with identity, and all modules are unital. A ring R is called
(quasi-)Baer if the right annihilator of each (right ideal) nonempty subset of R is generated by an idempotent. In [12],
Kaplansky introduced Baer rings to abstract various properties of AW ∗-algebras and von Neumann algebras. In [9],
Clark defined a ring to be quasi-Baer if the left annihilator of each ideal is generated, as a left ideal, by an idempotent.
He then uses the quasi-Baer concept to characterize when a finite-dimensional algebra with unity over an algebraically
closed field is isomorphic to a twisted matrix units semigroup algebra.

A ring R is called right (left) p.p if every principal right (left) ideal is projective (equivalently, if the right (left)
annihilator of any element of R is generated (as a right (left) ideal) by an idempotent of R. The ring R is called p.p
if it is both right and left p.p. Birkenmeier et al. [7] initiated the concept of principally quasi-Baer rings. A ring R
is called right principally quasi-Baer (or simply right p.q-Baer) if an idempotent generates the right annihilator of a
principal right ideal. Equivalently, R is right p.q-Baer if R modulo the right annihilator of any principal right ideal
is projective. A ring R is called p.q-Baer if it is both right and left p.q–Baer. The class of p.q-Baer rings includes all
biregular rings, all quasi-Baer rings and all abelian p.p rings. Further work on quasi-Baer and p.q-Baer rings appears
in [4, 5, 6, 7, 15].

Recall from [2] that the left (right) ideal I of R is said projection invariant if for each e = e2 ∈ R, Ie ⊆ I(eI ⊆ I).
If R is an abelian ring, then every one-sided ideal is an invariant projection. Note that every ideal of R is projection
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invariant, but not conversely. In [2], Birkenmeier et al. define a ring to be π-Baer if the right annihilator of every
projection invariant left ideal (as a right ideal) is generated by an idempotent of R. Like the quasi-Baer case, the
π−Baer condition is left-right symmetric.

Shahidikia et al. in [16] introduced the concept of generalized π−Baer rings. A ring R is called generalized right
π−Baer, if for any projection invariant left ideal I of R, the right annihilator of In is generated by an idempotent, for
some positive integer n, depending on I.

In this paper, we introduce the notion of right (left) p.π-Baer rings. Ring R is right p.π-Baer if the right annihilator
of each projection invariant principal left ideal is generated by an idempotent. Left case may be defined analogously.
If ring R is both right and left p.π-Baer then we say R is p.π-Baer. The class of right p.π-Baer is closed with respect
to direct products. If R is an abelian ring, then the p.π-Baer and p.p conditions agree.

A ring R [8] is right π-extending if every projection invariant right ideal of R is essential in a direct summand of
RR. We say that a ring R is right principally π−extending if every projection invariant principal right ideal of R is
essential in a direct summand of RR. We demonstrate the connection between the principally π−extending property
and the p.π−Baer property. Recall that an idempotent e ∈ R is left (right) semicentral if xe = exe (ex = exe), for
all x ∈ R and is denoted by Sl(R) (Sr(R)). If xe = ex = exe for all x ∈ R, then e = e2 ∈ R is called a central
idempotent and is denoted by B(R). Let R be a ring, then Zl(R)(Zr(R)), rR(X)(lR(X)), I(R), P (R) and N(R) denote
the left singular ideal of R (the right singular ideal of R), right annihilator of X in R (left annihilator of X in R)
for a nonempty subset X of R, subring of R is generated by idempotents, the prime radical and the set of nilpotent
elements of R, respectively.

2 The Preliminaries and Basic Concepts

Definition 2.1. A principal left (right) ideal I of R is called projection invariant if Ie ⊆ I ( eI ⊆ I) for all e = e2 ∈ R.

Definition 2.2. A ring R (with unity) is projection invariant principally right Baer (denoted right principally π-Baer
or right p.π-Baer) if for each projection invariant principal left ideal I there exists c = c2 ∈ R such that rR(I) = cR

Proposition 2.3. A ring R is right p.π-Baer if and only if for every projection invariant principal left ideal I of R,
there exists e ∈ Sl(R) such that rR(I) = eR.

Proof . Let R is a right p.π-Baer and I be a projection invariant principal left ideal of R. By definition there is an
idempotent e ∈ R such that rR(I) = eR. Let c = c2 ∈ R. Since I is projection invariant principal left ideal, Ic ⊆ I and
hence, eR = rR(I) ⊆ rR(Ic). Thus Ice = 0. Then ce ∈ rR(I) = eR, hence ce = ece. By [10, Proposition 1], e ∈ Sl(R).
The converse is obvious. □

Lemma 2.4. [2, Lemma 2.3] The following conditions are equivalent:

(i) R is abelian.

(ii) Every one-sided ideal is projection invariant.

(iii) Every right ideal generated by an idempotent is projection invariant.

(iv) Every right ideal generated by an idempotent is an ideal.

Recall from [1] that R is said to satisfy the IFP (insertion of factors property) or is semicommutative if right
annihilator of any element (subsets) of R is an ideal of R. Note that for every R ring, reduced condition implies IFP
and IFP condition implies abelian; but the converse is not hold.

Proposition 2.5. The following conditions are equivalent:

(i) R is domain.

(ii) R is π−Baer and 0 and 1 are the only idempotents of R.

(iii) R is p.π−Baer and 0 and 1 are the only idempotents of R.

(iv) R is right p.π−Baer and 0 and 1 are the only idempotents of R.
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Proof . (i)⇒ (ii) ⇒ (iii) ⇒ (iv) are clear.

(iv)⇒ (i) Let xy = 0 for x, y ∈ R. Then y ∈ rR(Rx). Since 0 and 1 are the only idempotents of R, by Lemma 2.4,
Rx is projection invariant principal left ideal of R, so rR(Rx) = eR. If e = 0, then y = 0 and if e = 1, then x = 0.
Thus, R is a domain. □

Proposition 2.6. [7, Proposition 1.7] The following conditions are equivalent:

(i) R is a right p.q-Baer ring.

(ii) The right annihilator of any finitely generated right ideal is generated by an idempotent.

(iii) The right annihilator of any principal ideal is generated by an idempotent.

(iv) The right annihilator of any finitely generated ideal is generated by an idempotent.

Proposition 2.7. If R has the IFP, then the following conditions are equivalent:

(i) R is a right p.π-Baer ring.

(ii) The right annihilator of any finitely generated projection invariant left ideal is generated by an idempotent.

(iii) The right annihilator of any principal ideal is generated by an idempotent.

(iv) The right annihilator of any finitely generated ideal is generated by an idempotent.

Proof . (i)⇐⇒ (ii) Clearly, (ii) implies (i). Assume that (i) holds and I = Σn
i=1Rxi. Since any Rxi is projection

invariant principal left ideal of R, there exists ei = e2i ∈ Sl(R) such that rR(Rxi) = eiR. Since each ei is central, there
is an idempotent e ∈ R such that rR(I) = rR(Σ

n
i=1Rxi) =

⋂n
i=1 eiR = eR.

The equivalences (i)⇐⇒ (iii) and (ii)⇐⇒ (iv) follow from the fact that rR(I) = rR(IR), where I is any projection
invariant left ideal of R. □

Proposition 2.8. (i) Assume that R = I(R). If R be right p.q-Baer ring, then R is right p.π-Baer.

(ii) Let R be a ring with IFP . R is right p.π-Baer if and only if R is right p.q-Baer.

Proof . (i) Assume R = I(R) and I be a projection invariant principal left ideal of R, then I is a principal ideal. By
Proposition 2.6, rR(I) = eR.

(ii) Assume R be right p.π-Baer and I be a principal right ideal of R. Then RI is a principal ideal. By Proposition
2.7, rR(I) = rR(RI) = eR.

Conversely, assume I be a projection invariant principal left ideal of R, then IR is a principal ideal of R. Proposition
2.6 yields, rR(I) = rR(IR) = eR. □

The following example shows that there exists a right p.q-Baer ring which is not right p.π-Baer.

Example 2.9. Let

R =

{(
a b
c d

)
|a, b, c, d ∈ Z, a ≡ d, b ≡ 0 and c ≡ 0 (mod 2)

}
.

R is a prime ring. Then is right p.q-Baer ring, but R is not domain.

(
0 0
0 0

)
and

(
1 0
0 1

)
are the only idempotents

of R. Therefore by Proposition 2.5, R is not right p.π-Baer ring.

Proposition 2.10. (i) Let R is a right p.p ring. Then R is right p.π-Baer.

(ii) Let R is an abelian right p.π-Baer, then R is right p.p.

Proof . (i) Let I be a projection invariant principal left ideal of R. Then there exists x ∈ R such that I = Rx. Since
R is right p.p ring, rR(I) = rR(Rx) = rR(x) = eR, for some e = e2 ∈ Sl(R).

(ii) Let x ∈ R. Then Rx is a projection invariant principal left ideal of R. Thus rR(x) = rR(Rx) = eR, for some
e ∈ Sl(R). □
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Corollary 2.11. Let R is an abelian ring. Then the following conditions are equivalent:

(i) R is right p.p.

(ii) R is p.p.

(iii) R is right p.π-Baer.

Proof . (i)⇒ (ii) It follows from [7, Proposition 1.14].

(ii) ⇒ (iii) and (iii)⇒ (i) these implications follow from Proposition 2.10. □

Proposition 2.12. If R be right p.π-Baer ring, then the following are equivalent:

(i) R is abelian.

(ii) R is semicommutative.

(iii) R is reduced.

Proof . (i)⇒ (ii) Assume that R is an abelian right p.π-Baer ring. Let x ∈ R, then Rx is a projection invariant
principal left ideal of R. Thus rR(x) = rR(Rx) = eR, where e ∈ Sl(R). Hence by [7, Lemma 1.1], r(x) is an ideal.

(ii)⇒ (iii) Let x2 = 0 for some x ∈ R. Then Rx2 = 0 and so x ∈ rR(Rx) = eR, where e is a central idempotent.
Then x = ex = xe = 0. Hence, R is a reduced ring.

(iii)⇒ (i) The proof is routine. □

Proposition 2.13. An abelian right p.π-Baer ring is semiprime.

Proof . It follows from Proposition 2.12 and [13, Example 10.17]. □

It is clear that every π-Baer ring is a right p.π-Baer ring. Examples 2.14 and 2.16 show that there are right p.π-Baer
rings that are not π-Baer.

Example 2.14. Let F be a fild and Fn = F for n = 1, 2, · · · . The ring

R =

(∏∞
n=1 Fn

⊕∞
n=1 Fn⊕∞

n=1 Fn <
⊕∞

n=1 Fn, 1 >

)
is a subring of the 2 × 2 matrix ring over the ring

∏∞
n=1 Fn, where <

⊕∞
n=1 Fn, 1 > is the F−algebra generated by⊕∞

n=1 Fn and 1∏∞
n=1 Fn

. The ring R is a regular ring (hence p.p). Thus R is a right p.π-Baer ring. But by [7, Example
1.6] the ring R is not right p.q-Baer. Therefore is not quasi–Baer and by [2, Theorem 2.1], R is not π-Baer ring.

Lemma 2.15. [7, Lemma 1.4 ] Let T be a ring with unity such that |T | > 1, and let S =
∏

λ∈Λ Tλ, where Tλ = T
and Λ is an infinite indexing set. If R is the subring of S generated by

⊕
λ∈Λ Tλ and either 1 ∈ S or {f : Λ → T | f is

a constant function}, then R is not quasi-Baer. Moreover if T is a right p.q-Baer ring, then so is R.

Example 2.16. (i) Let T in Lemma 2.15 be a commutative regular ring. Then R is p.p, hence R is right p.π-Baer
ring that is not π-Baer, as is not quasi-Baer.

(ii) Let F be a filed and Fi = F for i = 1, 2, · · · . Let R =
∏∞

i=1 Fi and S be the subring of R generated by
⊕∞

i=1 Fi

and 1R, then S is commutative p.p, hence right p.π-Baer. But S is not quasi-Baer, so is not π-Baer.

Proposition 2.17. Let R be a left Noetherian and right p.π-Baer ring with IFP. Then R is π-Baer.

Proof . Let I be a projection invariant left ideal of R. Since R is left Noetherian, I is a finitely generated projection
invariant left ideal. By Proposition 2.7, rR(I) = eR. Hence R is π-Baer. □

Proposition 2.18. The center of p.π-Baer ring is a p.p ring.

Proof . Let Z(R) be the center of R and a ∈ Z(R). Then rR(Ra) = eR with e ∈ Sl(R) and lR(aR) = Rf with
f ∈ Sr(R), as R is a p.π-Baer ring. Since rR(Ra) = lR(aR), we have e = f . Hence e ∈ B(R). Consequently,
rZ(R)(a) = rR(a) ∩ Z(R) = eZ(R). Therefore, Z(R) is a p.p ring. □
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Corollary 2.19. Let S be a subring of R and I(R) ⊆ S. If X is a projection invariant principal left (right) ideal of
S, then RX (XR) is a projection invariant principal left (right) ideal of R. Moreover, if R is right (left) p.π-Baer,
then S is right (left) p.π-Baer.

Proof . Assume I(R) ⊆ S and X is a projection invariant principal left ideal of S. Then (RX)e = R(Xe) ⊆ RX for
all e = e2 ∈ R. So RX is a projection invariant principal left ideal of R. Since R is right p.π-Baer, rR(RX) = eR for
some e = e2 ∈ R. It follows that rS(X) = eS, so S is right p.π-Baer. □

The following example shows that a subring of a right p.π-Baer ring need not be right p.π-Baer.

Example 2.20. Let R = Z⊕Z, then by Theorem 2.24, R is a right p.π-Baer ring. Consider the subring S = {(a, b) ∈
Z ⊕ Z | a ≡ b(modp)}, where p is a prime number. The only idempotents of S are (0, 0) and (1, 1). For projection
invariant principal left ideal S(0, p), we have rS(S(0, p)) = (p, 0)S, that dose not contain a nonzero idempotent of S.
Hence S is not right p.π-Baer ring.

Proposition 2.21. A ring R is right p.π-Baer if and only if whenever I is a projection invariant principal left ideal
of R there exists e ∈ Sr(R) such that I ⊆ Re and rR(I) ∩Re = (1− e)Re.

Proof . Assume R is right p.π-Baer and I is a projection invariant principal left ideal of R. Then there exists
c ∈ Sl(R) such that rR(I) = cR. Hence I ⊆ R(1 − c). Let e = 1 − c, then I ⊆ Re and e ∈ Sr(R). Now
rR(I) ∩ Re = (1 − e)R ∩ Re = (1 − e)Re. Conversely, let I be a projection invariant principal left ideal of R and
assume there exists e ∈ Sr(R) such that I ⊆ Re and rR(I)∩Re = (1− e)Re. Let α ∈ rR(I). Then α = eα+ (1− e)α.
So αe = eαe+ (1− e)αe. But αe ∈ rR(I) ∩Re, hence αe = (1− e)αe and so eαe = 0. Since e ∈ Sr(R), 0 = eαe = eα
and α = (1− e)α ∈ (1− e)R. Hence rR(I) ⊆ (1− e)R. Thus R is right p.π-Baer. □

Observe that Proposition 2.21 is the right p.πBaer analogue of characterization of a right p.q-Baer ring in [7,
Proposition 1.9]. However, contrary to the right p.q-Baer case in [7, Corollary 1.10], following example shows that
I + (1− e)Re is not essential in Re.

Example 2.22. Let R be the free ring Z < x, y >. Since R is domain, R is right p.π-Baer. Take I = Rx. Since 0 and
1 are the only idempotents of R, I is a projection invariant principal left ideal of R. Then rR(I)∩Re = 0 = (1− e)Re,
and I + (1− e)Re = I is not essential in R.

Proposition 2.23. Let R be a right p.π-Baer ring. If every essential left ideal of R is an essential extension of a
projection invariant principal left ideal of R, then R is left nonsingular.

Proof . Let 0 ̸= x ∈ Zl(R). Then lR(x) ≤ess R. By hypothesis, there exists a projection invariant principal left
ideal I of R such that I ≤ess lR(x). So I ≤ess R. Hence Ix = 0 implies that x ∈ rR(I) = eR, because R is right
p.π-Baer. It is clear that I ⊆ lR(rR(I)) = R(1−e). Since I is essential in R, e = 0 and hence x = 0, a contradiction. □

If R be an abelian right p.π-Baer ring, then R is right nonsingular, since every right p.p ring is right nonsingular.

Theorem 2.24. Let R =
∏

i∈K Ri. Then R is a right p.π-Baer ring if and only if Ri is a right p.π-Baer ring for each
i ∈ K.

Proof . Let πi, be ith projection homomorphism of R =
∏

i∈K Ri. Assume that each Ri is a right p.π-Baer ring and
I is a projection invariant principal left ideal of R. Then there exists ei = e2i ∈ Ri such that rRi

(πi(I)) = eiRi. Now
put e = (ei)i∈K ∈ R. Clearly, πi(e) = ei for each i ∈ K. Thus rR(I) = eR and hence R is a right p.π-Baer ring.

Conversely, assume R is a right p.π-Baer ring, then each projection invariant principal left ideal Ii of Ri can consider
as a projection invariant principal left ideal of R, since R is a right p.π-Baer ring, rR(Ii) = eR. If put ei = πi(e), then
we have rRi(Ii) = eiRi. Therefore Ri is a right p.π-Baer ring. □

Definition 2.25. A ring R is called principally left (right ) π-extending if every projection invariant principal left
(right) ideal of R is essential in a left (right) ideal is generated by an idempotent of R.

Theorem 2.26. Let R be a left nonsingular ring. Then R is principally left π-extending if and only if R is right
p.π-Baer and RI ≤ess lR(rR(I)) for every projection invariant principal left ideal I of R.
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Proof . Assume RR is principally left π-extending and I be a projection invariant principal left ideal of R. Then
there is e = e2 ∈ R such that RI ≤ess Re. Since Z(RR) = 0, rR(I) = rR(Re) = (1 − e)R. So R is right p.π-
Baer. Hence lR(rR(I)) = lR((1 − e)R) = Re. Thus, RI ≤ess lR(rR(I)). Conversely, assume R is right p.π-Baer and

RI ≤ess lR(rR(I)) for every projection invariant principal left ideal I of R. Since R is right p.π-Baer, rR(I) = eR.
Now, lR(rR(I)) = lR(eR) = R(1 − e) = Rc, for some c = c2 ∈ R. Therefore RI ≤ess Rc. Then RR is principally left
π-extending. □

Lemma 2.27. [2, Lemma 2.4] Assume RR is nonsingular. Then the following conditions are equivalent:

(i) Every closed right ideal of R is a right annihilator.

(ii) R is right cononsingular.

(iii) For each IR ≤ RR, IR ≤ess rR(lR(I)).

Corollary 2.28. Let R is right nonsingular and right cononsingular. Then R is left p.π-Baer if and only if RR is
principally right π-extending.

Proof . This follows from Lemma 2.27 and Theorem 2.26. □

Note: If R be a right p.π-Baer ring with Sl(R) = B(R), then R have no nonzero nilpotent projection invariant
principal left ideal. Assume I ̸= 0 be nilpotent projection invariant principal left ideal. Then In = 0 and In−1 ̸= 0 for
some positive integer n. Since R is right p.π-Baer, rR(I) = eR for some e = e2 ∈ R. But In−1 ⊆ rR(I) = eR. Then
eIn−1 = In−1, hence we obtain In−1 = eIn−1 = In−1e = 0, a contradiction.

For a ring R and (R,R)-bimodule M , the trivial extension of R by M is the ring T (R,M) = R
⊕

M with the
addition componentwise and the following multiplication:

(a1,m1)(a2,m2) = (a1a2, a1m2 +m1a2),

where a1, a2 ∈ R and m1,m2 ∈ M. Ring T is isomorphism to the ring of matrices

(
a m
0 a

)
, where a ∈ R and m ∈ M ,

see [11, 15].

Theorem 2.29. Let R be an abelian ring and define

Rn := {


a a12 · · · a1n
0 a · · · a2n
...

...
. . .

...
0 0 · · · a

 | a, aij ∈ R},

with n a positive integer ≥ 2. If Rn be a right p.π-Baer ring, then R is right p.π-Baer.

Proof . Let I = Ra be projection invariant principal left ideal of R, where a ∈ R. Consider

A =


a 0 · · · 0
0 a · · · 0
...

...
. . .

...
0 0 · · · a

 ∈ Rn.

Since R is an abelian ring, by [11, Lemma 2], Rn is an abelian ring, hence RnA is a projection invariant prin-
cipal left ideal of Rn. Then, rRn

(RnA) = eRn for some e = e2 ∈ Rn. So there exists f = f2 ∈ R such that e =
f 0 · · · 0
0 f · · · 0
...

...
. . .

...
0 0 · · · f

 . It is clear that


af 0 · · · 0
0 af · · · 0
...

...
. . .

...
0 0 · · · af

 = 0, so fR ⊆ rR(Ra). Next let b ∈ rR(Ra), then Rab = 0.

Clearly,


b 0 · · · 0
0 b · · · 0
...

...
. . .

...
0 0 · · · b

 ∈ Rn is contained in rRn
(RnA) = eRn, so b = fb ∈ fR. Therefore R is right p.π-Baer. □
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The following example shows that the converse assertion fails.

Example 2.30. Let R = Z. Since R is domain, R is right p.π-Baer. Let R2

(
0 1
0 0

)
be a projection invariant principal

left ideal of R2, then for a, b ∈ R,

rR2

(
R2

(
0 1
0 0

))
= rR2

((
a b
0 a

)(
0 1
0 0

))
= rR2

((
0 a
0 0

))
=

{(
0 d
0 0

)
| d ∈ Z

}
,

is not generated by an idempotent. Let

(
0 d
0 0

)
∈

(
f 0
0 f

)
R2 for f = f2 ∈ R. Then

(
0 d
0 0

)
=

(
fa fb
0 fa

)
. Hence

d = 0, a contradiction. Thus R2 is not right p.π−Baer.

3 p.π-Baer Matrix Rings

In this section, we characterize right p.π-Baer 2-by-2 generalized triangular matrix rings. Throughout this section,

R =

(
A M
0 B

)
denotes a 2-by-2 generalized upper triangular matrix ring where A and B are rings and M is a

(A,B)-bimodule.

Theorem 3.1. Let R =

(
A M
0 B

)
be an abelian 2-by-2 generalized upper triangular matrix ring where A and B are

rings and M is a (A,B)-bimodule. Then R is right p.π-Baer if and only if the following conditions are satisfied:

(i) A and B are right p.π-Baer rings.

(ii) For every a ∈ A, m ∈ M and b ∈ B there exist e = e2 ∈ A , k ∈ M and f = f2 ∈ B such that

(a) rA(Aa) = eA and ek + kf = k.

(b) f ∈ rB(Bb) ∩ rB(Aak +Am+Mb).

(c) If δ ∈ B and y ∈ M such that Bbδ = 0 and Aay + (Amδ +Mbδ) = 0, then δ ∈ fB and y ∈ eM + kB.

Proof . Let I be projection invariant principal left ideal of A, then there exist a ∈ A, such that I = Aa. Clearly,

K =

(
Aa 0
0 0

)
is projection invariant principal left ideal of R. Since R is right p.π-Baer,

rR

((
Aa 0
0 0

))
=

(
e k
0 f

)(
A M
0 B

)
=

(
eA eM + kB
0 fB

)
,

where e = e2, f = f2 and ek + kf = k. Thus rA(Aa) = eA and hence A is right p.π-Baer. Similarly, B is right

p.π-Baer. For each a ∈ A,m ∈ M and b ∈ B, ideal K = R

(
a m
0 b

)
= {

(
αa αm+ xb
0 βb

)
| α ∈ A, x ∈ M,β ∈ B} is a

projection invariant principal left ideal of R. Let

(
αa αm+ xb
0 βb

)
∈ R

(
a m
0 b

)
, then

(
αa αm+ xb
0 βb

)(
e k
0 f

)
=

(
αae αak + (αm+ xb)f
0 βbf

)
= 0.

Thus, rA(Aa) = eA, f ∈ rB(Bb) and f ∈ rB(Am + Mb + Aak), because k = ek + kf , so Aak = Aaek + Aakf ,
then Aak = Aakf . Let δ ∈ B and y ∈ M such that Bbδ = 0 and Aay + (Amδ +Mbδ) = 0. Then(

Aa Am+Mb
0 Bb

)(
0 y
0 δ

)
=

(
0 0
0 0

)
.

Hence

(
0 y
0 δ

)
∈ rR(R

(
a m
0 b

)
) =

(
eA eM + kB
0 fB

)
, then δ ∈ fB and y ∈ eM + kB.

Conversely, assume A and B are right p.π-Baer rings and there exist e = e2 ∈ A, k ∈ M and f = f2 ∈ B such

that conditions (a), (b) and (c) hold. From condition (a) follows that

(
e k
0 f

)
is an idempotent. Also, it is clear that



8 Moradi, Haj Seyyed Javadi, Moussavi(
e k
0 f

)
R ⊆ rR(R

(
a m
0 b

)
). Now assume

(
γ y
0 δ

)
∈ rR(R

(
a m
0 b

)
), then for α ∈ A, x ∈ M and β ∈ B, we have(

αa αm+ xb
0 βb

) (
γ y
0 δ

)
=

(
0 0
0 0

)
. Therefore Aaγ = 0, Aay + (Am + Mb)δ = 0 and βbδ = 0. By condition (c),

δ ∈ fB and y ∈ eM + kB. Therefore

(
γ y
0 δ

)
∈
(
e k
0 f

)
R. Then R is right p.π-Baer. □

4 p.π-Baer Polynomial Extensions

In this section, we investigate the behavior of the p.π−Baer condition with respect to polynomial extension
R[x](R[[x]]).

Lemma 4.1. [2, Lemma 4.1] Let e(x) ∈ R[x](R[[x]]), where e(x) = e0 + e1x+ · · ·+ enx
n(e(x) = e0 + e1x+ · · · ).

(i) e(x) = (e(x))2 if and only if ek =
∑

i+j=k eiej , for 0 ⩽ k and 0 ⩽ i, j ⩽ k. Hence, e(x) = 0 if and only if e0 = 0.

(ii) If e(x) = e0 + e1x+ · · ·+ enx
n = (e(x))2, then

∑n
i=0 ei = (

∑n
i=0 ei)

2 ∈ R.

(iii) Assume that e(x) = (e(x))2. Then,

(a) ei ∈ I(R), for all i ⩾ 0. Hence, I(R[x]) ⊆ I(R)[x] and I(R[[x]]) ⊆ I(R)[[x]].

(b) ei, e0ei, eie0 ∈ N(R), for all i ⩾ 1 where N(R) denotes the subring of R (not necessarily with unity) generated
by the nilpotent elements of R.

(iv) Let I be a right ideal of R. Then I is (principal) projection invariant if and only if I[x] (respectively, I[[x]])
is a (principal) projection invariant right ideal in R[x] (respectively, R[[x]]).

Theorem 4.2. Let R[x](R[[X]]) be a right p.π-Baer ring, then R is a right p.π-Baer.

Proof . Assume that I = Ra is a projection invariant principal left ideal of R. By Lemma 4.1 I[x] = R[x]a is a
projection invariant principal left ideal of R[x]. Thus rR[x](R[x]a) = e(x)R[x]. We claim that rR(Ra) = e0R. By
hypothesis R[x]ae(x) = 0, then ae0 = 0 and hence e0R ⊆ rR(Ra). Now let b ∈ rR(Ra), then R[x]ab = 0 and so
b ∈ rR[x](R[x]a) = e(x)R[x]. Hence b = e(x)g(x), where g(x) ∈ R[x]. So e(x)b = b, hence b = e0b ∈ e0R. Therefore,
rR(Ra) = e0R, hence R is a right p.π−Baer ring. □

Theorem 4.3. Let R be a ring with Sl(R) = B(R). If R be right p.π-Baer ring, then R[x] is right p.π-Baer.

Proof . Assume I[x] = R[x]p(x) be a projection invariant principal left ideal of R[x], where p(x) = c0 + c1x+ · · ·+
cnx

n ∈ R[x]. By Lemma 4.1, Rci is a projection invariant principal left ideal of R. Then there exists ei ∈ Sl(R)
such that rR(Rci) = eiR, for i = 0, 1, · · · , n. Let e = e0e1 · · · en. Then e ∈ Sl(R) and eR =

⋂n
i=0 rR(Rci). Hence

eR[x] ⊆ rR[x](R[x]p(x)).

It is clear that rR[x](R[x]p(x)) ⊆ rR[x](Rp(x)). Now, let α(x) ∈ rR[x](Rp(x)) and g(x) = b0 + · · · + bkx
k ∈ R[x].

Then
g(x)p(x)α(x) = b0p(x)α(x) + · · ·+ bkx

kp(x)α(x) = b0p(x)α(x) + · · ·+ bkp(x)α(x)x
k = 0.

Hence α(x) ∈ rR[x](R[x]p(x)). So rR[x](R[x]p(x)) = rR[x](Rp(x)). Now let α(x) = a0 + a1x + · · · + amxm ∈
rR[x](Rp(x)), then Rp(x)α(x) = 0. For any b ∈ R, we have the following system of equations:

(0) bc0a0 = 0

(1) bc0a1 + bc1a0 = 0

(2) bc0a2 + bc1a1 + bc2a0 = 0

(3) bc0a3 + bc1a2 + bc2a1 + bc3a0 = 0

...

(k) Σi+j=kbciaj = 0

(n+m) bcnam = 0.

From equation (0), a0 ∈ rR(Rc0) = e0R, where e0 ∈ Sl(R). Take b = se0 in equation (1), where s ∈ R, then
se0c0a1 + se0c1a0 = 0. But se0c0a1 = 0, as e0 is central idempotent. So bc1a0 = 0. Hence a0 ∈ rR(Rc1) = e1R
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where e1 ∈ Sl(R). Thus a0 ∈ e0e1R. So bc0a1 = 0, and a1 ∈ rR(Rc0) = e0R. In equation (2), take b = se0e1.
Then se0e1c0a2 + se0e1c1a1 + se0e1c2a0 = 0. But se0e1c0a2 = se0e1c1a1 = 0. Hence se0e1c2a0 = bc2a0 = 0. So
a0 ∈ e0e1e2R. Equation (2) simplifies to

(2)
′
bc0a2 + bc1a1 = 0.

Take b = se0 in equation (2)
′
. Then se0c0a2 + se0c1a1 = 0 and so, bc1a1 = se0c1a1 = 0, as se0c0a2 = 0. Thus

a1 ∈ rR(Rc1) = e1R. Then a1 ∈ e0e1R, and bc0a2 = 0, so a2 ∈ rR(Rc0) = e0R. We have a0 ∈ e0e1e2R, a1 ∈ e0e1R
and a2 ∈ e0R. Now in equation (3), take b = se0e1e2. Continuing this procedure yields ai ∈ eR for all i = 0, 1, · · · , n.
Hence α(x) ∈ eR[x]. Thus R[x] is right p.π-Baer. □

5 Minimal Prime Ideals of p.π-Baer Rings

In this section, we investigate the condition, every prime ideal contains a unique minimal prime ideal, in a right
p.π−Baer ring. Let P be a prime ideal of a ring R. O(P ) and O(P ) be defined as

O(P ) = {a ∈ R|aRs = 0, for some s ∈ R \ P} and O(P ) = {x ∈ R|xn ∈ O(P ), for some n ∈ N}.

In [6] Birkenmeier et al. show that if O(P ) = P for every minimal prime ideal P of a right p.q-Baer ring R,
then every prime ideal of R contains a unique minimal prime ideal. In this section, we derive some conditions which
ensure that a prime ideal P = O(P ) in the class of ablian right p.π−Baer rings. Let N(R) denote the set of nilpotent
elements of a ring R. A ring is called 2-primal if P (R) = N(R). Every commutative ring is 2−primal. It is clear that
O(P ) ⊆ P and O(P ) ⊆ O(P ). Since O(P )/O(P ) is the set of all nilpotent elements in the ring R/O(P ), the condition
that P = O(P ) gives us important information about the ring R/O(P ). For any subset A of R, let supp(A) be the
set of all prime ideals P such that A ⊈ P . If A = {a}, we write supp(a). For any P ∈ Spec(R), one can show that
{supp(s)|s ∈ R} forms a base on Spec(R). This induced topology on Spec(R) is called the hull-kernel topology on
Spec(R). From Dauns and Hofmann, Spec(R) is a compact space. Let κ(R) = ∪R/O(P ) be the disjoint union of rings
R/O(P ) with P ∈ Spec(R). For any a ∈ R, let â : Spec(R) → κ(R) be defined by â(P ) = a+ O(P ). Then κ(R) is a
sheaf of rings over Spec(R) with the topology on κ(R) generated by a base {â(Supp(s))|a, s ∈ R}, and â is a global
section for a ∈ R. We mean a sheaf representation whose base space is Spec(R) and whose stalks are the quotients
R/O(P ).

Lemma 5.1. Let P be a prime ideal of a ring R with IFP. Then O(P ) =
⋃

s∈R\P lR(sR).

Proof . Assume x ∈ O(P ). Then there is s ∈ R \ P such that xRs = 0. Thus xs = 0 and hence xsR = 0. Then
x ∈ lR(sR) ⊆ ∪s∈R\P lR(sR). Now let x ∈ ∪s∈R\P lR(sR), then there is s ∈ R \ P such that x ∈ lR(sR). So xsR = 0,
hence xs = 0. Since R satisfies IFP, xRs = 0, which implies that x ∈ O(P ). □

Proposition 5.2. Let P be a prime ideal of ring R and BP = {e ∈ R| e is a central idempotent such that e /∈ P}.
Then BP is a denominator set.

Proof . It is clear that 1 ∈ BP . BP is multiplicatively closed. Assume e, f ∈ BP and ef ∈ P . Observe that
(ef)2 = ef . So eRf ⊆ P , a contradiction. Hence ef /∈ P . Now let e ∈ BP and a ∈ R such that ea = 0. Then
ae = ea = 0. □

Lemma 5.3. Let P be a prime ideal of an abelian right p.π-Baer ringR. ThenO(P ) = {a ∈ R|aRe = 0, e ∈ R\P} = T

Proof . Let x ∈ O(P ). Then xRs = 0 for some s ∈ R \ P . Since Rxs = 0, s ∈ rR(Rx) = eR. So s = es and thus
e /∈ P . Now we have xeR = 0 and since e is central, then xRe = 0, hence x ∈ T . The reverse containment is obvious.
□

Lemma 5.4. Let P be a prime ideal of an abelian right p.π-Baer ring R. Then O(P ) =
∑

Rf , where f ∈ P.

Proof . Let a ∈ O(P ). Then by Lemma 5.3 there exists idempotent e ∈ R \ P , such that aRe = 0. So ae = 0 and
hence a = a(1− e) ∈ R(1− e) ⊆

∑
R(1− e). Therefore O(P ) ⊆

∑
R(1− e). Now let e be idempotent of R such that

e /∈ P . It is clear that (1 − e)Re = 0, then (1 − e) ∈ O(P ), hence R(1 − e) ⊆ O(P ). Therefore
∑

R(1 − e) ⊆ O(P ).
Set 1− e = f , then O(P ) =

∑
Rf , where the sum is taken for all central idempotents f ∈ R such that f ∈ P. □
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Lemma 5.5. Let P and Q be prime ideals of an abelian right p.π-Baer ring R, such that Q ⊆ P. Then O(P ) = O(Q).

Proof . By definition it is clear that O(P ) ⊆ O(Q). From Lemma 5.4, O(Q) ⊆ O(P ), thus O(Q) = O(P ). □

Theorem 5.6. Let R be an abelian right p.π-Baer ring such that for any minimal prime ideal B of R, O(B) = B.
Then the following hold:

(i) R is 2-primal ring.

(ii) Every prime ideal of R contains a unique minimal prime ideal.

(iii) For every prime ideal P of R, the ring R/O(P ) is 2-primal and P (R/O(P )) is a completely prime ideal.

Proof . (i) From Proposition 2.12 ring R is reduced. So, R is 2-primal.

(ii) Assume Q be a prime ideal of R which contains minimal prime ideals P1 and P2. Lemma 5.5 yields that
O(P1) = O(Q) and O(P2) = O(Q). So P1 = O(P1) = O(P2) = P2.

(iii) Let Q/O(P ) be a prime ideal of R/O(P ). By Lemma 5.4, O(P ) ⊆ O(Q). Let B be the unique minimal
prime ideal of R contained in P . From Lemma 5.5, we have B = O(B) = O(P ) ⊆ O(Q) = K ⊆ Q, where K is the
unique minimal prime ideal of R contained in Q. Therefore B = K = O(P ). Then O(P )/O(P ) is the unique minimal
prime ideal of R/O(P ). Consequently, N(R/O(P )) = O(P )/O(P ) = P (R/O(P )). Thus R/O(P ) is 2-primal. From
[3, Lemma 2.1] B is completely prime in R. Then P (R/O(P )) is completely prime ideal in R/O(P ), as B = O(P ). □

Proposition 5.7. Let P be a prime ideal of an abelian right p.π-Baer ring R with R = I(R). Then P is a left
essential ideal of R or P = eR for some idempotent e ∈ R.

Proof . Let P be a prime ideal of R and it is not left essential ideal. Then there is a nonzero projection invariant
principal left ideal Ra, where a ∈ R, such that P ∩Ra = 0. So P ⊆ rR(Ra) = eR. But RaeR = 0 ⊆ P. Hence eR ⊆ P.
So P = eR. □

Proposition 5.8. Let P be a prime ideal of an abelian right p.π-Baer ring R with R = I(R). Then either

(i) O(P ) is left essential in P ; or

(ii) O(P ) = eR.

Proof . Let O(P ) is not left essential in P . Then there is a nonzero projection invariant principal left ideal Ra of R
such that Ra ⊆ P and O(P )∩Ra = 0. So O(P ) ⊆ rR(Ra) = eR. But RaeR = 0 or aRe = 0. If e /∈ P , then a ∈ O(P ),
a contradiction. Hence e ∈ P , then eR ⊆ P. It is clear that eR(1− e) = 0 ⊆ P . Then e ∈ O(P ). □

A ring R [3] satisfies the CZ2 condition if whenever (xy)n = 0 with x, y ∈ R and n a positive integer, then
xmRym = 0 for some positive integer m.

Corollary 5.9. If R is an abelian right p.π-Baer and P is a prime ideal of R, then O(P ) is the unique minimal prime
ideal of R contained in P and O(P ) is completely prime.

Proof . It is clear that R is reduced. Hence R is 2-primal and satisfies CZ2 condition. By [[3], Theorem 2.3(ii)], for
any minimal prime ideal Q of R, O(Q) = Q. From Theorem 5.6, there exists a unique minimal prime ideal B of R
such that B ⊆ P . By Lemma 5.5 O(B) = O(P ). So B = O(B) = O(P ). Since R is reduced, for every prime ideal P of
R, O(P ) = O(P ), then O(P ) is a minimal prime ideal, and hence by [[3], Proposition 1.1 (iii)], O(P ) is a completely
prime ideal. □

Proposition 5.10. Let R be an abelian right p.π-Baer ring. If N(R) is an ideal, then O(P ) is an ideal of R for every
prime ideal P of R.

Proof . Let x, y ∈ O(P ). So there exist positive integers n,m such that xn, ym ∈ O(P ). From Lemma 5.3 there
exist central idempotents e, f ∈ R \ P , such that xnRe = 0 and ymRf = 0. Let r ∈ R, then xnre = 0 ∈ N(R) and
ymrf = 0 ∈ N(R). Since N(R) is completely semiprime, xre ∈ N(R). So there exists a positive integer k such that
(xre)k = 0 = (xr)ke. Hence (xr)kRe = (xr)keR = 0. So xr ∈ O(P ). Similarly rx ∈ O(P ). Now we have (x− y)ef =
xef − yef ∈ N(R), as N(R) is ideal. So there exists a positive integer t such that [(x − y)ef ]t = 0 = (x − y)tef.
Therefore (x − y)tRef = 0, as ef is a central idempotent. We claim that ef /∈ P . Assume ef ∈ P . Then Ref ⊆ P ,
hence eRf ⊆ P. Since P is prime, either e ∈ P or f ∈ P. It is a contradiction. So ef /∈ P . Then (x − y) ∈ O(P ).
Hence O(P ) is an ideal of R. □
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Theorem 5.11. Let R be an abelian right p.π-Baer ring. Then for every prime ideal P of R, R[B−1
P ] ≃ R/O(P ).

Proof . It is clear {a ∈ R|aRe = 0 for some e ∈ BP } ⊆ {a ∈ R | ae = 0, for some e ∈ BP }. Now let a ∈ R such that
ae = 0, for some e ∈ BP . Then a = a(1− e). So aRe = a(1− e)Re = a(1− e)eR = 0. Thus {a ∈ R|aRe = 0 for some
e ∈ BP } = {a ∈ R|ae = 0 for some e ∈ BP }. From Lemma 5.3 {a ∈ R | ae = 0 for some e ∈ BP }={a ∈ R|aRe = 0,
for some e ∈ BP } = O(P ). Since R[B−1

P ] is the right ring of fractions with the denominator set BP , there is a ring
homomorphism ϕ : R → R[B−1

P ] and R[B−1
P ] = {φ(a)φ(e)−1|a ∈ R and e ∈ BP }. Also, since O(P ) = {a ∈ R|ae = 0,

for some e ∈ BP }, it is clear that the kernel of φ is O(P ). For any e ∈ BP , φ(e) is an idempotent in R[B−1
P ] which

is invertible. Thus φ(e) = 1 for any e ∈ BP . So R[B−1
P ] = φ(R) that is a homomorphic image of R with the kernel

O(P ). So R[B−1
P ] ≃ R/O(P ). □

Lemma 5.12. [4, Lemma 3.1] A ring R has a representation as a subdirect product of the rings R/O(P ), where P
ranges through all prime ideals of R.

Lemma 5.13. Let R be an abelian right p.π-Baer ring. Then R is a subdirect product of R/O(P ), where P ranges
through all minimal prime ideals.

Proof . Assume P be a minimal prime ideal and Q be a prime ideal of R containing P . By Lemma 5.5, O(P ) = O(Q).
So

⋂
P∈Spec(R) O(P ) =

⋂
P∈MinSpec(R) O(P ). The result follows by Lemma 5.12. □

Lemma 5.14. [14, Lemma 3.9] Let R be a ring with a nontrivial central idempotent e. Then for every prime ideal P
of R, O(P ) ̸= 0.

Corollary 5.15. Let R be an abelian right p.π-Baer ring which is not prime. Then for prime ideal P of R, O(P ) ̸= 0.

Proof . Since R is not prime, there exists a nonzero element a ∈ R such that rR(Ra) ̸= 0. Also, since R is an abelian,
Ra is projection invariant principal left ideal, so rR(Ra) = eR ̸= 0. Therefore by Lemma 5.14, O(P ) ̸= 0. □

Theorem 5.16. Let R be an abelian right p.π-Baer ring such that O(P ) ̸= 0 for any minimal prime ideal P of R.
Then R has a nontrivial representation as a subdirect product of the rings of fractions R[B−1

P ], where P ranges through
all minimal prime ideals.

Proof . Theorem 5.11 and Lemma 5.13, yield the result. □

Proposition 5.17. Let R be an abelian left p.π-Baer ring. If P and Q are prime ideals of R, then we have the
following results:

(i) O(P ) = {x ∈ R|x = xe, for some central idempotent e ∈ P}.

(ii) If Q ⊆ P, then O(P ) = O(Q).

(iii) R[B−1
P ] ≃ R/O(P ).

(iv) If for any minimal prime ideal B of R, O(B) = B, then:

(a) R is 2-prime.

(b) Every prime ideal of R contains a unique minimal prime ideal.

(c) O(P ) is the unique minimal prime ideal of R contained in P .

Proof . (i) Let x ∈ O(P ). Then there is s ∈ R \ P such that xRs = 0. Thus, x ∈ lR(sR) = Re, where e = e2 ∈ R.
Therefore, x = xe. Clearly, e ∈ P. Then, O(P ) ⊆ {x ∈ R|x = xe, for some central idempotent e ∈ P}. Now, assume
x = xe for some idempotent e ∈ P. Then x(1− e) = 0, so xR(1− e) = 0. Since (1− e) /∈ P , we have x ∈ O(P ). The
proof is complete.

The proofs of (ii), (iii) and (iv) are similar to the proofs of Lemma 5.5, Theorems 5.6 and 5.11, respectively. □
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