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 The novelty of this study is to consider the vibration analysis of a sandwich structure using 

shear and normal deformation beam theory (SNDBT) with a porous core and various 

reinforcement materials, including carbon nanorods (CNRs), graphene platelets (GPLs), and 

carbon nanotubes (CNTs), by considering the size effect based on modified couple stress 

theory (MCST) or nonlocal strain gradient theory (NSGT) on various elastic foundation such 

as Winkler, Pasternak, and Kerr, simultaneously. Also, each layer in the microbeam has 

different mechanical properties as a function of temperature. The governing equations of 

motion are derived using Hamilton's principle and the energy approach by considering the 

variational method, and then these equations are solved using Navier's method. The results 

are compared with those recently published by other scientists. The purpose of this study is 

to present a comprehensive and efficient innovative analytical framework for understanding 

the vibration behavior of a sandwich microbeams with different cores and reinforcements, 

and types of elastic foundations. In the higher-order shear and normal deformation theory by 

applying the stretching functions, the proposed model offers advantages that can increase the 

computational efficiency. In addition, a comprehensive parametric study is carried out to 

evaluate the effect of various properties, including porosity distributions, small-scale 

parameters, different elastic foundations, thickness, axial wave number, small-scale theories, 

volume fraction, and different reinforcements such as GPLs, CNTs, and CNRs. It is concluded 

that GPLs have the highest frequency, and CNRs have the lowest frequency. Also, by 

increasing the volume fraction of the reinforcements, the natural frequency of the sandwich 

microbeam increases for GPLs by 10%, the CNTs by 7%, and the CNRs by 4%. The current 

study shows that the considering of an elastic foundation for a beam has been demonstrated 

to result in an increase in the frequencies. Furthermore, the results with and without the 

thickness stretching effect show that the shear and normal beam theory improves the results. 

The natural frequency increases by 67.4%, when FG-XX is compared to FG-UU face sheets. It 

decreases by 24.8% when FG-OO is compared to FG-UU. The sandwich beams are compared 

to those without reinforcement. 
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1. Introduction 

Composite materials are used in the 
construction of objects that are intended for use 
in sensitive and complex industries based on the 
two characteristics of low weight and high 
stiffness. In recent decades, these materials have 
been widely used in many industries. The use of 
composite beams in a variety of structures in 
disciplines such as mechanical engineering, 
nanotechnology, biomedical engineering, and 
aerospace engineering is well documented. Also, 
at the micro/nanoscale, the most notable 
examples of such applications include micro long 
spans, micro shafts, micro blades, nanowires, and 
microtubules [1]. In light of the profound 
practical significance of engineering, the present 
study is dedicated to investigating the vibration 
behavior of sandwich micro-beams. Porous 
materials are materials that have cavities or holes 
in their structure. The cellular structure of this 
category of porous materials is described by a 
network of gas-filled pores or voids in a matrix. In 
general, porosity factors minimize the overall 
weight of Functionally Graded (FG) porous 
structures. This material has many properties, 
such as being lightweight and good insulation. 
These materials are usually used as cores of 
sandwich structures due to their unique 
properties [2-7].  

Some researchers have studied the vibration 
of microbeams with various reinforcements 
including carbon nanotubes (CNTs), carbon 
nanorods (CNRs), and graphene platelets (GPLs) 
[8-13]. Bargozini and Mohammadimehr [14] 
Discussed the behavior of nanocomposite beams 
reinforced with CNRs. They have employed both 
handmade and industrial methods to fabricate 
these composite sandwich beams. In their 
research, the synthesis of nanorods is achieved 
through a hydrothermal process, in which epoxy 
resin and CNRs derived from recycled materials 
are mixed together and subjected to a series of 
cycles to ensure uniform dispersion.  

Arani et al. [15] employed free vibration and 
buckling sandwich microbeam and used MCST to 
capture the size effect for polymer piezoelectric 
nanocomposite face sheet, carbon nanotube 
fiber, with microactuator and microsensor on 
elastic foundation. Bamdad et al. [16] studied the 
vibration and buckling of a magneto-
electroelastic sandwich Timoshenko beam. This 
beam has a porous core and a PVDF 
(polyvinylidene fluoride) layer whose properties 
depend on temperature. Based on the modified 
nonlocal elasticity theory, Rahmani et al. [17] 
illustrated the forced vibrations of a single-
walled carbon nanotube under a moving 
harmonic load. Zenkour [18] investigated the 
thermal buckling analysis of carbon nanotubes in 
visco-Pasternak's medium. He investigated the 

effects of foundation parameters, nonlocal 
parameters, and nanotube length on thermal 
buckling. In another work, Jena et al. [19-20] 
considered the buckling and vibration 
characteristics of nonlocal beams implanted in a 
Winkler-Pasternak elastic foundation. They used 
the von Kármán hypothesis to derive the 
governing equations of motion. Moreover, Bidgoli 
et al. [21] investigated the dynamic response and 
natural vibration characteristics of curved 
sandwich beams reinforced with porous cores, 
composite face sheets, and graphene platelets. 
The vibration and buckling of graphene platelets 
enhanced by porous beams were studied by 
Priyanka et al. [22], who exposed these platelets 
to different axial loads. Hosseini et al. [23] 
employed nonlocal strain gradient, material 
nonlinearity, and geometry to examine the 
nonlinear vibration of FG nanoporous beams. 
Ramteke et al. [24] investigated the impact of 
porosity on the mechanical and thermo-
mechanical properties of FG materials. They 
employed a modeling approach to investigate the 
behavior of FG materials without explicitly 
delineating the solution methodologies 
employed.  

Porous media are widely used in engineering 
structures due to their mechanical properties. In 
addition, carbon nanotubes or carbon nanorods 
have extraordinary physical properties that 
natural materials do not have. Furthermore, the 
size dependence effect becomes significant when 
the intrinsic length determined by the 
microstructure becomes comparable to the 
extrinsic length scale. That is to say, 
macrostructures have a size-dependence effect if 
the intrinsic length becomes comparable to its 
extrinsic length [25, 26] for the macroscale size 
effect. To consider the size effect at the micro-
scale, some researchers [27, 28] have employed 
the size effect based on modified couple stress 
(MCST) or nonlocal strain gradient (NSGT) 
theories. Also, some physics bases have been 
recently developed for the nonlocal strain 
gradient theory [29]. Mohammadian [30] used a 
nonlocal strain gradient Timoshenko beam 
model to analyze the free vibrations of carbon 
nanotubes. The calibration of small-scale 
parameters was achieved by a combination of 
genetic algorithm and molecular dynamics 
simulations, demonstrating a multifaceted 
approach to scientific investigation. Eroğlu et al. 
[31]utilized the concept of high-order sinusoidal 
shear deformation concept to study the 
temperature-dependent characteristics of FG 
porous materials and the free vibration of the 
nanobeam. They also investigated the scale 
effects using NSGT. Nuhu et al. [32] recently 
reviewed new theories of elasticity, including 
micro and nanoplates for nonlinear bending. 



 

3 

They considered several classifications of 
documents when presenting these non-classical 
theories.  

Some researchers worked on viscoelastic 
vibration analysis of a sandwich structure. Fatahi 
et al. [33] utilized a numerical model to forecast 
the performance of a piezoelectric energy 
harvester when situated on an auxetic substrate. 
They developed a numerical model to validate the 
performance of a piezoelectric beam. 
Mohammadi et al. [34] investigated the vibration 
behavior of a rotating viscoelastic nanobeam 
embedded in a visco-Pasternak foundation.  The 
researchers investigated the influence of linear 
and nonlinear thermal stress cases, as well as 
humidity, on the vibrations of the viscoelastic 
nanobeam. Their findings revealed that the 
vibration frequencies in the nonlinear thermal 
stress case are smaller than those obtained in the 
linear thermal stress case. Safarabadi et al. [35] 
studied the free vibration behavior of rotating 
nanobeams, taking into account the surface 
effects on their vibration frequencies. Their 
findings indicated that softer boundary 
conditions resulted in an augmented influence of 
angular velocity on the nanobeam vibration 
frequencies.  

Functionally graded materials for example, 
which have varying micro-structures from one 
material to another and the size of the 
microstructures involved ranges typically over 
several orders of magnitude, may not be 
adequately modeled by employing classical 
continuum mechanics alone but are probably 
more accurately analyzed using nonclassical 
continuum mechanics as well as using spatial 
variation of material properties. Li et al. [36] 
presented a free vibration analysis of nonlocal 
strain gradient beams made of functionally 
graded material. In their investigation of the 
nonlinear vibration characteristics of FG-GNPRC 
dielectric beams, Qian et al. [37] employed the 
Kelvin-Voigt model to capture the effects of 
internal damping. They derived the governing 
equations for the dielectric and viscoelastic 
Timoshenko beam by applying the effective 
medium theory and the rule of mixture to 
determine the material properties of the 
composites. Asgari et al. [38] investigated the 
simultaneous free vibration, buckling, and 
bending response of a sandwich beam with 
sinusoidal shear deformation theory for simply 
supported boundary conditions. In the study, 
they used a honeycomb core and shape memory 
alloy (SMA) in carbon nanotube-reinforced 
composite at the top and bottom of the core. The 
study showed with an enhancement in the 
thickness ratio, the heat flux decreases due to the 
increase in the thickness of the core. 
Brijeshgangil et al. [39] investigated the thermo-

mechanical properties of natural fiber-reinforced 
epoxy composites. Their study showed that the 
nanoparticles help in enhancing the interfacial 
bonding between the fiber and the composite. 
The study reported that nanoparticles exerted 
the most significant influence on the wear 
resistance of composites. Ni et al. [40] 
investigated the damped nonlinear dynamics of a 
cracked FG-GNPRC dielectric beam. Their 
analysis was based on Timoshenko's beam 
theory and von Kármán's nonlinear theory, which 
considers the effects of both mechanical 
excitation and electrical fields. They showed that 
the U, X, and O distributions have a minimal 
influence on the amplitude ratio. In another work, 
they [41] investigated the nonlinear vibration of 
FG-GNPRC dielectric beam with Kelvin-Voigt 
damping in a thermal environment. Jafari et al. 
[42, 43] worked on forced vibration 
control/active control of micro sandwich beams 
with various reinforced composites integrated by 
piezoelectric on Kerr’s elastic foundation using 
MCST. Motalebi et al. [45] considered the 
vibration response of a sandwich plate reinforced 
by GPLs/GOAM. 

A review of the extant literature indicates that 
the development of high-order porous FG 
microbeams and their mechanical properties 
with temperature dependence, considering the 
effect of thickness stretching, remains relatively 
unknown. In recent times, there has been a 
notable shift in focus among researchers towards 
the study of small-scale structures. It has been 
demonstrated that the classical theories that 
have hitherto been employed to examine the 
behavior of materials at a macro level are no 
longer capable of predicting the behavior of 
materials at a small scale. This has led to the 
identification of shortcomings in the application 
of micro and nano sizes within the classical 
theories. Consequently, a theoretical framework 
has been proposed for the investigation of 
material behavior at the micro and nano scales. 

The present study is to investigate the 
vibration of a sandwich micro-beam using the 
shear and normal deformation beam theory 
(SNDBT) and the mechanical characteristics that 
depend on temperature, while, the previous 
research has delved into these topics 
individually. The integration of insights from 
previous research, the novelty of this study is to 
consider the free vibration analysis of a sandwich 
structure using shear and normal deformation 
beam theory (SNDBT) with a porous core and 
various reinforcing materials, including CNRs, 
GPLs, and CNTs by considering the size effect 
based on MCST/NSGT on various elastic 
foundations such as Winkler, Pasternak, and 
Kerr, simultaneously. It is also hypothesized that 
the mechanical properties of the face sheet layer 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pmS54K8AAAAJ&sortby=pubdate&citation_for_view=pmS54K8AAAAJ:3x-KLxxGyuUC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pmS54K8AAAAJ&sortby=pubdate&citation_for_view=pmS54K8AAAAJ:3x-KLxxGyuUC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pmS54K8AAAAJ&sortby=pubdate&citation_for_view=pmS54K8AAAAJ:3x-KLxxGyuUC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pmS54K8AAAAJ&sortby=pubdate&citation_for_view=pmS54K8AAAAJ:3x-KLxxGyuUC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pmS54K8AAAAJ&sortby=pubdate&citation_for_view=pmS54K8AAAAJ:3x-KLxxGyuUC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pmS54K8AAAAJ&sortby=pubdate&citation_for_view=pmS54K8AAAAJ:KsTgnNRry18C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pmS54K8AAAAJ&sortby=pubdate&citation_for_view=pmS54K8AAAAJ:KsTgnNRry18C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pmS54K8AAAAJ&sortby=pubdate&citation_for_view=pmS54K8AAAAJ:KsTgnNRry18C
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and porous core are dependent on temperature. 
Moreover, the thickness stretching effect and the 
incorporation of various porosity and 
functionally graded nanoparticle distributions on 
the natural frequency are investigated. On the 
other hand, this study contributes to practical 
engineering applications in a significant way.  

2. Theory and Formulation 

2.1. The Constitutive and Kinematics 
Equations 

The displacement field of sandwich beams is 
determined by a higher-order normal and shear 
deformable beam, as expressed by the following 
equation. [22, 45, 46]: 
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In the displacement field, the axial 

displacement is considered as 
0u , and the shear 

and bending components are  defined as 
1 2,w w

. Also, 
stw  is the stretching effect and it is a 

function of , ,z x  and t  that defined as: 

(2) ( ) ( )( , , ) ,
st z
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where ( , )zw x t  denotes the normal 

displacement.   
This study employs the shear and normal 

deformation theory to examine the analysis of a 
sandwich of higher-order micro-beams with 
porous cores and face sheets by considering 
reinforcements including carbon nanotubes 
(CNTs), carbon nanorods (CNRs) and graphene 
platelets (GPLs). The three-pattern core of a 
sandwich microbeam is composed of CNT 
reinforcements arranged in five functionally 
graded patterns that are varied in the thickness 
direction in the top and bottom face sheet. 

A schematic representation of a sandwich 
beam is provided in Fig. 1a, which Fig. 1b 
illustrates the distribution of various types of 
carbon nanotubes (CNTs) throughout the face 
sheets and the porous core. The thickness of the 
face sheet layers is indicated by ℎ𝑡  and ℎ𝑏 , while 
the thickness of the core is indicated by ℎ𝑐 . In this 
model, it is assumed that there is a complete 
interconnection between the core and the face 
sheets. Figure 1.c illustrates the shape 
specification of the sandwich microbeam with a 

length of L , thicknesses of 
t

h , 
b

h  for the top and 

bottom face layers, and also, 
c

h  for a core 

thickness. The total thickness is 
b c t

h h h h= + + . 

The beam has a porous core and carbon 
nanotube-reinforced composite (CNTRC) on 
various elastic foundations including Kerr, 
Pasternak, and Winkler foundations as shown in 
Figures 1c,1d,1e, respectively. 

 

 
(a) 

 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Fig. 1. A schematic view of (a) sandwich beam (b) Distribution 
with various types of CNTs in face sheets(c) A schematic view 

of porous core on Kerr's foundation(d) A schematic view of 
porous core on Pasternak’s foundation (e) A schematic view 
of porous core on Winkler’s foundation. 
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The assumption of core/skin (face sheet) is 

considered as follows: 
1- It is assumed that the connection between 

the core and face sheet layers (skin) becomes as 
fully bonded. On the other hand, the 
delamination phenomenon does not occur. 

2- In order to increase the strength-to-weight 
ratio in the structure, the weight of the core 
should be low, while the stiffness of the upper and 
lower face sheet layers (skin) should be high to 
increase this ratio. 

The strain-displacement relations of the beam 
are obtained as follows: 
 

 

where 
x

  and 
z
  are the normal strain in x  and 

z directions, respectively. 
xz
  is the shear strain. 

The rotation about the x, y, and z axes can be 
prepared as follows: 
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where ( , , )
i

i x y z =  are the rotation of the x, y, 

and z axes based on the modified couple stress 
theory. 

The constitutive  equations for the face sheets 
and core are defined as follows: 

 
,f c
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(5) 

 
in which stress and strain components of a 

sandwich micro-beam are illustrated by ij
  and 

kl
 , respectively. For each layer, 

ijkl
Q  denotes the 

stiffness matrix components. 
The linear constitutive equations for the 

bottom and top face sheet layers are presented as 
follows: 
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Q  are the elastic 

stiffness for the top and bottom face sheet layers. 
In addition, the constitutive equations of the 

core are expressed as follows: 
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2.2. The Size Effects at Micro Scale 

The size-dependent mechanical behavior has 
been observed experimentally, thus, the size 
effect should be taken into account for structures 
at the micro-scale. However, the non-classical 
continuum theories established to facilitate 
small-scale composites, such as the strain 
gradient elasticity, nonlocal theory, the couples 
stress theory, the modified couple stress theory, 
and the nonlocal strain gradient theory, are 
employed to conduct studies concentrated on 
vibration behavior response. Dynamic analysis of 
these structures at the micro-scale is performed 
using small-scale theories. At the nanoscale, 
nonlocal theory is employed. In their previous 
articles, the authors have compared these 
theories and concluded that the NSGT theory has 
yielded superior results at the micro-scale, thus 
in the present study, the nonlocal strain gradient 
theory is considered for a sandwich beam. 

2.2.1. Nonlocal Strain Gradient Theory 

The nonlocal strain gradient theory (NSGT) 
has recently been considered a prominent model 
for elucidating the structural mechanics at the 
micro-scale. This theory explicitly incorporates 
the nonlocal and material length scale 
parameters. By integrating nonlocal and strain 
gradient effects into traditional continuum 
mechanics, NSGT enables a more comprehensive 
understanding at the micro-scale. Numerous 
studies have adopted NSGT to investigate the 
mechanical behavior of these structures [47]. At 
the micro-scale, intermolecular forces and size-
dependent effects become significant, and 

classical continuum mechanics is unable to 
analyze the behavior of structures at this scale. 
Consequently, a series of size-dependent 
continuous medium mechanics theories have 
been presented by scientists. The nonlocal theory 
encompasses the micro-force information 
between atoms and molecules. This theory has 
been extensively applied in the domain of nano-
mechanics [48-49]. The elastic materials are 
defined by the fact that the state of stress is 
determined by the strains at all other body 
locations through the use of NSGT. [50-51]. In the 
nonlocal theory, the components of the 
mechanical stress tensor at an arbitrary spot are 
dependent on the strain components at all spots.  
This assumption is consistent with 
intramolecular interactions between distinct 
locations at the nanoscale. [50-51]. 
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where ( )2= ea and 0l  are nonlocal and strain 

gradient parameters, respectively.   

2.2.2. Modified Couple Stress Theory 

The modified couple stress theory is 
considered the size effect at the micro-scale. The 
curvature equation, strain energy variation, and 
kinematic energy variation of this theory, which 
is dependent on the small size effect, are 
expressed as follows. [45]:  
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2.3. The Materials Properties for Face Sheets 
and Core 

Carbon nanotubes were discovered by [52] 
rolling graphene platelets. Based on the reaction 
parameters of the synthesis route employed, a 
variety of CNTs can be produced. 

In this article, the rule of mixture is required 
to determine the effective properties of materials. 
Consequently, the effects of elastic and shear 
modulus for nanocomposite materials are 
correlated. 

The mechanical properties of the face sheet 
are considered for PMMA material to be 
strengthened with single-walled carbon 
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nanotubes following the equation as the 
extended mixture rule. [11, 16, 53, 54]: 
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where 

11CNTE  and 
mE  denote the value of 

Young's modulus of CNTs and matrix for 
nanocomposite, respectively, 

12CNTG  and 
mG  are 

the shear modulus of CNTs and matrix, 
respectively, 

CNT , 
m  are the density of CNTs 

and matrix and 
CNTV  and 

mV  are the volume 

fractions of the CNTs and matrix, respectively. 
According to the CNT distribution patterns, 

the volume fraction of CNTs (
CNTV ) is defined as 

follows 
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FG X

z
VCNT V

h
FG O

h h
VCNT z V

h

  +
 = +  

  
  

  +
 = −  

  
  

=

  +
 = −  

  
  

 

 
 
 
 

 
 
 
 

(13) 
 

In this research, the influence of the material 
face sheet and the material core are considered to 
be temperature dependent. The specification of 
the face sheets and the core of the three-layer 
micro-beam are expected to vary based on 
temperature. The influence of the top and bottom 
surface layers of the material is investigated and 
compared with CNR and GPL. There are 
variations in CNT dispersion across the thickness 
of these sandwich beam face sheet layers. In this 
sandwich beam model, the aligned CNTs are 
symmetrical on the top and bottom face sheet 
layers. 

 
 
 
 
 
 
 
 
 
 

Table 1. The mechanical properties of matrix and CNTs for temperature-dependent materials [55]   

Material properties           

CNT 
11 ( )CNTE Pa  -4 -7 2 3 1- 0 21

((1+(1.5849×10 )×( T)+(3.5390×10 )×( T) +(-3.7070×10 )×( T) ))×(5.6466×10 )    

 
12 ( )CNTG Pa    

- 25 -7 1 3- 91
((1+(8.3093×10 )×( T)+(-1.7803×10 )×( T) +(8.5651×10 )×( T) ))×(1944.5×10 )  

 
0(1/ )K  -3 -6 3-112 9

((1+(2.5039×10 )×( T)+(-5.3839×10 )×( T) +(3.2738×10 )×( T) ))×(3.4584×10 )    
 

3( / )CNT kg m  1400 

  
CNT  0.175 

Matri
x 

( )mE Pa  9
(3.52 - 0.0034× T)10  

Table 2. The mechanical properties of CNR for temperature-dependent materials [14] 
 

Material properties           

CNR ( )11CNRE Pa  ( ) 122 -9 30.76798-0.00052061 0.0000008916 -0.535 10 10T T T  +    

 
12 ( )CNRG Pa  ( ) 122 -9 3 ×0.16891 0.000417145 -0.0000005358 0.5375 10 10T T T+   +   

 
0(1/ )K  ( ) -62 -8 3-0.13502 0.00275003 -0.0000034644 0.1364 10 10T T T +   +   

 
3( / )CNR kg m  1400 
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CNR  0.175 

 
The intermediate layer of this beam model is 

made of porous material, and Fig. 1 depicts the 
geometry of a porous core with dimensions of 
length. L  and thickness 

ch . Also, 

( ), ( ), ( )E z G z z  are Young's modulus, shear 

modulus, and density of porous core, respectively 
that are defined for various porous core 
distributions as follows [55, 57, 58]: 

Symmetric distribution 

Table 3. The mechanical properties of GPL with 
temperature-dependent materials [56] 

  

Material Properties 
   
  
  

GPL ( )11GPLE Pa  
9(1087.8 0.26  1 ) 10− T   

 
0(1/ )K  ( 6)(13.92 0.0299 ) 10T −−  

 
3( / )GPL kg m  1062.5 

  
GPL  0.186 

1 0

1 0

1

( ) (1- cos( ))

( ) (1- cos( ))

( ) (1- cos( ))

c

c

m

c

z
E z E e

h
z

G z G e
h

z
z e

h






 

=

=

=

 

 
 
 

(14) 
 

Asymmetric distribution 

1 0

1 0

1

( ) (1- cos( ))
4

( ) (1- cos( ))
4

( ) (1- cos( ))
4

c

c

m

c

z
E z E e

h
z

G z G e
h

z
z e

h

 

 

 
 

= +

= +

= +

 

 
 

(15) 
 
 

Uniform distribution 

 

 
(16) 

 

2

0

0 0

1 1 2 2
( 1 1)e

e e


 
= − − − +  

 

 
(17) 

 

Where 0
e  and m

e  are the porosity 

parameters that are defined as follows: 

1

0

2

1
E

e
E

= −  

1

2

1
m

e



= −  

 
 
 

(18) 

 

 

    (18) 

 

The equation of thermoelasticity proposed by 
Toloukian and Ho is considered as follows.[31, 
56]. 

 

(-1) 2 3

0 (-1) 1 2 3
P = P *(P T +P T+P T +P T +1)  (19) 

 
The temperature-dependent material 

constants of the porous core, which is composed 
of SUS304, Si3O4, and ZrO2 are considered in 
Table 4 [57, 60].  
 

Table 4. Mechanical properties of the porous core with temperature-dependent material constants   

Material properties (-1)P  
0P  

1P  
2P  

3P  

SUS304 ( )E Pa  0 201.01×109 3.079×10−4 -6.534× 10−7 0 

 
0(1/ )K  0 12.33×10−6 8.086×10−4 0 0 

 
3( / )kg m  0 8166 0 0 0 

    0 0.3262   -2.002×10−4  3.797×10−7  0 

ZrO2 ( )E Pa  0 244.27×109 -1.371×10−3 1.214×10−6 
-
3.681×10−10 

 
0(1/ )K  0 12.766×10−6 -1.491×10−3 1.006×10−5 

-
6.778×10−11 

 
3( / )kg m  0 3657 0 0 0 

   0 0.2882 1.133×10−4 0 0 

1 0

1 0

1 0 0

( ) (1 )

( ) (1 )

( ) (1 1 )

E z E e

G z G e

z e e





  

= −

= −

= − −
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Si3O4 ( )E Pa  0 348.43×109 -3.070×10−4 2.160×10−7 
-
8.946×10−11 

 
0(1/ )K  0 5.8723×10−6 9.095×10−4 0 0 

 
3( / )kg m  0 2370 0 0 0 

   0 0.24 0 0 0 

2.4. The Governing Equations of Motion  

The equations of motion are obtained by 
Hamilton's principle as follows: 

0 0

( - ) 0
t t

dt T U dt   = =   
 
(20) 
 

where T represents the variation of the kinetic 

energy, while U denotes the variation of the 

strain energy. Consequently, the initial step is to 
ascertain the strain energy of the sandwich 
microbeam, which encompasses both the face 
sheets and the core. 

The strain energy variation can be written 
based on MCST as follows: 

 

2

2

( ) ( ) ( ) ( ) ( )

c
t

c
t

h
h

xx x zz z xz xz xy xy yz yz
h

h

U m m dzdA          

+

− −

= + + + + 
 

 
 
 
(21) 

The sandwich micro beams are placed on an 
elastic foundation, in which, Kerr's model elastic 

foundation consists of 
Sk shear layer stiffness, 

uk  and 
lk are the upper and lower spring 

stiffness, 
f

U  is reported as follows: 

Kerr

f Kerr e
U U dA f wdA  = =   

ker 2

2

1 2 1 2

( ) ( )

( )( ( , ) ( , ) ( ) ( , )) ( ) ( ( , ) ( , ) ( ) ( , ))

r l u S u
e

l u l u

l u S u
z z

l u l u

k k k k
f w w

k k k k

k k k k
w x t w x t g z w x t w x t w x t g z w x t

k k k k

= − 
+ +

= + + −  + +
+ +

 

(22) 

where  Sk is the shear layer stiffness, 
uk  and lk

are the upper and lower spring stiffness. 

The Pasternak’s and Winkler’s foundation 
models are defined as follows: 

Pasternak’s, 
 

2

2

1 2 1 2

( ) ( )

( )( ( , ) ( , ) ( ) ( , )) ( ) ( ( , ) ( , ) ( ) ( , ))

Pasternak

Pasternak

Past

f e

e w p

w z p

erna

z

k

U U dA f wdA

f k w k w

k w x t w x t g z w x t k w x t w x t g z w x t

  = =

= − 

= + + −  + +

 
 

 
(23) 

 

where wk  and pk  are two parameters of elastic 

foundations. 
Winkler’s, 
 

1 2

( )

( )( ( , ) ( , ) ( ) ( , ))

Winkler

Winkler

Win

z

k

f e

e w

w

ler

U U dA f wdA

f k w

k w x t w x t g z w x t

  = =

=

= + +

 
 

 
 

(24) 
 

where 
wk  is the spring constant of the Winkler 

foundation. 
Then, the variations of the kinetic energy for 

the sandwich micro-beam are obtained as 
follows: 

2

2

( ) ( )
c

t

c
t

h
h

h
h

u u w w
T dz dzdA

t t t t
    

+

− −

   
= +

    
 

(25) 
 

The governing equations of motion for a 
sandwich micro-beam can be derived by 
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considering the strain energy, kinetic energy, and 
nonlocal constitutive relations using NSGT. 
Substituting Eq. (17) into Eqs. (20) and (22), the 

corresponding relationships are obtained as 
follows:   

( )

( )

2 3

2 2 2 2 0 1

0 0 0 12 2

2 (0) 32 4 4

2 2 2 2 ker 2 2 0 1 2

1 0 1 22 2 2 2 2 2 2
2 2 2

1 2

0 02 2 2

:(1 ) 1 ( ) ( )

1
:(1 ) (1 ( ) ) 1 ( ) (

2

)

x

xy rx
e fz

z
g

uN w
u l ea I I

x t x t
M uM w w

w l ea f ea I I I
x x x t x t x t

w w w
I I I

t t t







   
−  = −  −          

 −  + − −  = −  − +
           

+ + +
  

( )

2 (2) 2 (0) (1)2

2 2 2 2 ker

2 0 2 2 2 2 2 2 2
3 4 4 2 2 2

2 2 0 1 2 1 2

0 02 2 2 2 2 2 2 2

2

0

4 4 1 1 2
:(1 ) (1 ( ) )

43

1 ( ) ( )

:(1

xy xy yz rxx x X
e

z
f fz ff g

z

M M Mf g Q
w l ea f

x x xh x h h x x h
u w w w w w

ea I I I I I I
x t x t x t t t t

w l

     
 −  − + + + − − −  =
           

−  − + − + + +
        

− 

( )

2 (0) 2 (2) (1)

2 2 2 ker

2 2 2 2 2 2
2 2 2

2 2 1 2

2 2 2

8 4 1 1 2
) (1 ( ) ) ( )

4

1 ( ) ( )

xy xy yz rX x
z e

z
g g gg

M M MQ g
M ea g z f

x x xh h x h x h
w w w

ea I I I
t t t

    
 + − + − + − − 
       

= −  + +
  

        (26) 

where the resultant forces and moments in Eq. 
(26) are defined in Appendix A. By substituting 
Eq. (3), (6), and (7) into Eqs. Appendix A, the 

governing equations of motion for a sandwich 
beam are obtained as follows: 

 

2

2

0

43 3 5 5(3) (1) (3)
(0) (1) 2 (0) (1)0 01 2 1 2

02 3 2 3 2 4 5 2 5

3 3 3(1)
2 2 0 1 2

0 12 3 2 2 2

:

4 8 4
(

3 3
8

) (1 ( ) )( )

z

z
f

u

u uw w w w wA B A
A A l A A

xx x h x h x x h x
uw w wB

ea I I I
h x t x t x t



     
− − − − − −

     
  

− = −  − +
     

 

 
 

(27) 
 

    

1

3 54 4 2 6 6(4) (2) (4)
(1) (2) 2 (1) (2)0 01 2 1 2

03 4 2 4 2 2 5 6 2 6
4 4 4 4 4 4 6(2) (0) (2) (0) (0) (2) (0)

21 2 2 1

02 4 4 2 4 4 4 2 4

:

4 8 4
(

3 3
8

) (
2 4 4 2

z

z z z

w

u uw w w w wA B A
A A l A A

x x h x h x x x h x
w w w w w w wB C C C C C C

l
h x x h x x x h x



     
− − − − − −

      
      

− − − − − + − −
      6

36 6 6 6 4(2) (0) (0) (2) 2
2 ker 2 2 02 2 1

1 22 6 6 6 2 6 2 2 2 2
4 2 2 2

2 1 2

0 02 2 2 2 2

(1 ( ) ) (1 ( ) )(
4 4

)

rz z
e

z
fz g

x
uw w w w wC C C C

ea f ea I I
h x x x h x x x t x t

w w w w
I I I I

x t t t t


    

− − − + − − = −  −
        

   
+ + + +

    

          (28) 
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2

3 54 4 2 6 6(3) (4) (6) (4) (3) (4) (6)
20 01 2 1 2

02 3 2 4 4 4 4 2 2 5 2 6 4 6
4 2 2 2 2(4) (4) (2) (2) (4)

2 2

4 4 4 2 2 2 2 2 4

:

4 4 16 32 4 4 16
(

3 3 9 3 3 3 9
32 16 4 4 16

)
3

z

z z z

w

u uw w w w wA A A B A A A
l

h x h x h x h x h x h x h x
w w w w wB E E E E

h x h x h x h x h



     
− − − − − −

      
    

− + − − +
    

4(4)
2 2

02 4 4
4 4 4 2 2 2 2(2) (2) (4) (2) (2)

(0) (0)2 2 2

2 4 2 4 4 4 2 2 2 2 2 2
4 4 4 4 4(2) (2) (2)

2 (0) (0)2 2 1

0 2 4 4 4 2 4 2 4

16
(

4 4 16 4 4
)

4 4 2
( )

z z z z

z z

wE
l

x h x
w w w w w w wE E E E E

E E
h x h x h x h x x x h x

w w w w wE E C C
l E E

h x x x h x h x


−


      

− − + − + + −
      

    
− − + + − − −

    

4 4(4) (2)
2 2

4 4 2 4
4 4 6 6 6 6 6(4) (2) (2) (4) (2) (4) (2)

2 1 2 2

04 4 2 4 2 6 4 6 2 6 4 6 2 6
4 4 4 4(0) (2) (0) (0) (2)

1 2 2

4 2 4 4 4 2

2
2 2 2

( )
2 2 2

4 8 82 2

z z z z

z

w wC

h x h x
w w w w w w wC C C C C C C

l
h x h x h x h x h x h x h x

w w w wC C C C C

x h x x x h

 
−

 
      

+ − − − − − + −
      

    
− − − − +

   

4 6 6(0) (2)
2 1 2

04 6 2 6
6 6 6 2 2 4 4(0) (0) (2) (2) (2) (2) (2)

22 2 2

06 6 2 6 2 2 2 2 2 4 2 4
3 42

2 ker 2 2 0 1

2 2

(
4 2

8 8 8 8
) ( )

8 8 2

(1 ( ) ) (1 ( ) )(

z

z z z z

r

e f fz

w w wC C
l

x x h x
w w w w w w wC C C C C C C

l
x x h x h x h x h x h x

u w
ea f ea I I

x x t

 
− − −

  
      

− − + + − − −
      

 
− − = −  − +

  

4 2 2 2

2 1 2

0 02 2 2 2 2 2 2
)z

ff g

w w w w
I I I I

x t x t t t t

   
− + + +

      

 

 
 
 
 
 
(29) 

 
 

 

 

32 2 4(2) (4) (2) (2)
(1) 2 (1)0 01 2 1

02 2 2 4 2 4 2 3 2 4
4 2 2 2 2 2(4) (2) (2) (2)

(0) (0)2 2 2

4 4 4 2 2 2 2 2 2 2
4(2)

2 2

0 2

:

8 32 64 8
8 ( 8

3
32 64 4 4

)
3

4
(

z

z

z Z Z

w

u uw w wB B F B
B w l B

xh h x h x h h x h x
w w w w w wB F E E

E E
h x h x h x x x h x

wE
l

h x



   
− − − − −

    
     

− − − + + −
     


− −


4 4 4 2 2(2) (4) (2)
(0) (0)2 2 2

4 4 4 2 4 4 2 2 2
2 2 4 4 4 4(2) (4) (4) (2) (2) (4)

2 2 2

02 2 4 2 4 4 2 4 2 4 4 4
4 4(0) (2)

1 2

4 2 4

4 16 4
)

4 16 16 4 4 16
( )

(
4 2

Z Z

z z z z

w w w w wE E E
E E

x x h x h x h x
w w w w w wE E E E E E

l
h x h x h x h x h x h x

w wC C

x h x

    
+ + − + −

    
     

− + − − − +
     
 −

+ −
 

4 4 4 6 6(0) (0) (2) (0) (2)
22 1 2

04 4 2 4 6 2 6
6 6 6 4 4 4 4(0) (0) (2) (2) (4) (2) (4)

2 1 2

6 6 2 6 2 4 4 4 2 4 4 4
4(2) (2)

22

02 4

(
8 8 42 2

2 2
)

8 8 2 2

(
2

z Z

z Z z z

w w w w wC C C C C
l

x x h x x h x
w w w w w w wC C C C C C C

x x h x h x h x h x h x
wC C

l
h x

    −
− − + − −

    
      

− − + + + + −
      


+ − +


6 6 4 6 6 2(4) (2) (4) (2) (2)
1 2 2 2

2 6 4 6 2 4 4 6 2 6 4 2
2 4 4(2) (2) (2)

2 2

04 2 4 4 4 4
2 22 2

2 ker 2 1 2

2 2 2 2

2 2 8
)

2 2
8 8 8

( )

(1 ( ) ) ( ) (1 ( ) )(

z z

z z

r

e g g gg

w w w w w wC C C C C

h x h x h x h x h x h x
w w wC C C

l
h x h x h x

w w
ea g z f ea I I I

x x t t

     
+ + − + −

     
  

+ − − +
  

  
− − = − + +

   

2

2
)z

w

t





 

 
 
 
 
 

 
 
 

(30) 
 

where the variables in Eqs. (27)-(30) are defined 
in Appendix B. 

3. Solution Procedure 

In order to obtain solutions to the governing 
equations of motion for a sandwich micro-beam, 
it is possible to employ an analytical procedure 
based on Navier's technique. In the present study, 
this analytical procedure is used to identify 
solutions to the aforementioned equations, which 
are formulated as follows [61]: 

0

1 1

2
21

cos( )
( , )

( , ) sin( )

( , )
sin( )

( , )

sin( )

m

m

m

m

i t

m

i t

m

i t

mm
z

i t

zm

m
U x e
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(31) 
 

By substituting Eqs. (31) into Eqs. (27)-(30), 
the stiffness and mass matrices have obtained 
that are shown in Appendix C,D. 

4. Validation Study 

The initial step in the process is to verify the 
accuracy of the current work's outcomes. This 
may be accomplished by comparing the outcome 
of straightforward examples with an analysis of 
earlier research. This section includes an 
analytical assessment of the vibration behavior in 
a microcomposite beam including three layers. 

 First, the proposed methodology is validated 
by comparing the findings with the most recent 
research in this field. Comparison of 
dimensionless natural frequencies of simply 
supported micro symmetric (θ/− θ/ θ) composite 
beams whose material properties are assumed to 
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be 
1

  144 ,E GPa= 2
 E

3
  E=   9.65 ,GPa=

23
3.45 ,G GPa=

12 13
4.14G G GPa= =

12 13 23 , 0.3  = = = ,   25 ,h m=  

3
  1389.23 , 5

kg L

hm
 = =  

Table 5 presents a comparison of the 
dimensionless natural frequencies resulting from 
this solution, along with the corresponding 
results [22].  

 
Table 5. Comparison of the dimensionless natural 

frequencies micro composite beam between present work 
and obtained results by [22] 

Present work Ref. [22] 
 
 

 

Shear and normal 
beam theory 

Shear and normal 
beam theory 

Theory 

Naveir’s solution  Ritz 
Solution 
Method 

Solution 
method 

  Orientation 
(𝜃) 

1.8508 1.8501 0 
1.4968 1.3396 15 
0.8321 0.9232 30 
0.7494 0.7533 45 
0.6905 0.6968 60 
0.6867 0.6914 75 
0.6900 0.6960 90 

 

5. Results and Discussion 

5.1. Parametric Study 

This study uses, CNT, GPL and CNR face sheet 
materials as reinforcement (see Tables 1, 2, and 
3). SUS304, Si3N4, and ZrO2 are used as the porous 
core. Table 4 shows the material properties of the 
core. The sandwich beam has a length of 
  880L m= , a thickness of top and bottom face 

sheet layers becomes   8.8
t

h m=  and 

  8.8
b

h m= , respectively, and a core thickness of 

  158.4
c

h m= . The following values are used for 

analysis: following values are considered for 
analytical evaluation, efficiency parameter of 

CNTs,   = = =
1 2 3

0.137, 1.022, 0.715  , 

coefficients of porosity 0  0.6e = , volume 

fractions of CNTs and matrix PMMA

= =0.12, 0.88
CNT m

V V . It is considered nonlocal 

parameter 2( 2)ea m= , the strain gradient 

parameter 
0

17.6l m=  and the modified couple 

stress parameter 17.6
m

l m= .  

5.2. Vibration Analysis 

The results for vibration analysis of a 
sandwich micro beam according to the normal 
and shear deformation theory are obtained. The 
relationships and mechanical properties for a 
sandwich porous beam with CNTs/CNRs/GPLs 
face sheets, whose are presented in Tables 1,2,3. 

As shown Figure 2, comparing the frequency 
of the non-local strain gradient with various 
thickness ratios, increasing the thickness of the 
core causes to decrease the natural frequency 
because the stiffness of the micro-sandwich beam 
reduces. This figure shows how the thickness of a 
sandwich micro beam changes compared to its 
total thickness. On the other hands, when the 

/
c

h h  thickness ratio increases, the stiffness of 

the micro beam decreases. In addition, it shows in 

this figure that for = =
0

/ 75, 0.9
c

L l h h  is 

compared to ℎ𝑐=0.5h, as the microbeam becomes 
thinner, the stiffness decreases. As a result, the 
natural frequency decreases by 55%. 

 

 
Fig. 2. The effect of thickness ratio on the natural frequency  

 
This study considers both types of continuum 

theories, namely nonlocal and strain gradient 
parameters. The impact of varying 𝑙0 and 

( )2ea = on the frequency is also demonstrated in 

Figs. 3a and 3b, respectively. It can be observed 
that as the length-to-thickness ratio increases, 
the frequency declines. Additionally, when 
different strain gradient parameters are used, the 
results show that the natural frequency 
increases. In addition, it shows in Fig. 3a that for

= 5/L h , 
0

17.6l m= compared to 
0

10l m= , 

when the strain gradient parameter get smaller, 
the stiffness gets lower. This causes the natural 
frequency to decrease by 43%. The findings 
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indicate that the implementation of the nonlocal 
strain gradient theory enables the stiffening of 
the sandwich microbeam as the strain gradient 
parameter increases. 

Figures 3b and 3c illustrate the impact of the 
nonlocal parameter on the natural frequency of a 
sandwich microbeam, with

= =  = 0

0
17.6 , 0.12, 25

CNT
l m V T K . As 

illustrated in the figure, an increase in 
slenderness ratio results in a reduction in 
frequency. Additionally, the figures show a 
noticeable decrease in the slope of the curve as 
the nonlocal parameter increases. This 
phenomenon is attributed to the significant 
influence of the nonlocal parameter on the 
stiffness of the structure. The aforementioned 
phenomena indicate that the utilization of the 
nonlocal parameter enables the sandwich 
microbeam to manifest softening behaviors, with 
the increase of this parameter. In addition, in this 

Fig. 3c shows that for = 5/L h , 2( 4)ea m=

compared to 2( 12) mea = , An increase in the 

nonlocal parameter is associated with a decrease 
in stiffness. This causes the natural frequency to 
decrease by 66.5%.  The significance of the small-
scale parameter in the mechanical analysis of 
microstructures has been demonstrated. 

Furthermore, it is shown from the figures that 
the influence of small length scale parameters on 
the frequency is significant. It is shown that by 
increasing the strain gradient parameter and the 
nonlocal parameter, the natural frequency 
increases and decreases, respectively.  

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 3. (a) the effect of strain gradient parameter on the 
natural frequency, (b, c) the effects of nonlocal parameter on 

the natural frequency  

 
Figure 4 illustrates the vibration of a 

sandwich microbeam for the nonlocal parameter. 
The effect of different nonlocal parameters on 
first four natural frequencies are considered. It is 
shown that by increasing this parameter, the low 
and high frequencies of the microbeams 
decrease. These results indicate that the nonlocal 
parameters of the beam exert a greater influence 
on the high frequencies of sandwich microbeams 
than on the low frequencies. Calibration the 
nonlocal parameter and strain gradient 
parameters is attributed to the significant 
influence of the nonlocal parameter on the 
stiffness of the structure. Using Figs. 3 and 4, one 
can obtain the calibration of the nonlocal 
parameter and strain gradient parameters. 
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(a) (b) 

  
(c) (d) 

Fig. 4. Influence of nonlocal parameter on the natural frequency for different modes of the sandwich beam 

 
As stated by NSGT, two size effect parameters, 

namely, the nonlocal parameter ( )2ea =   and the 

strain gradient parameter 0l  are considered on the 

vibration behavior of the sandwich microbeam. As 
illustrated in Fig. 5, the impact of the size parameter on 
the first four natural frequencies of the sandwich 

microbeam is plotted against /L h . As illustrated in the 

figure, the frequency of NSGT rises when both the 
nonlocal parameter and the strain gradient parameter 
are taken into account. The application of this model 
results in a stiffening behavior for the sandwich 
microbeam, in comparison to the classical theory. 
Thus, this result leads to an increase in the value of 
frequency. 
 

  
(a) (b) 
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(c) (d) 

Fig. 5. The influence of nonlocal and strain gradient parameters on the first four natural frequencies of a sandwich microbeam

 

The stretching parameter ( )
st

w   in the 

displacement field is employed to account for the 
variation along the thickness direction. Figures 6a b 
illustrate the impact of the thickness stretching effect 
on the natural frequency of a sandwich microbeam. It 
can be observed that the frequency of sandwich beams 

is overestimated for / 7L h , indicating that thee 

thickness stretching effect has been overlooked. The 
results demonstrate that the SNDBT theory is capable 
of accounting for the thickness stretching effect and 
accurately predicting the frequency for varying length-
to-thickness ratios. 

 
(a) 
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(b) 

Fig. 6. (a, b) The effect of thickness stretching effect on the natural frequency of a sandwich microbeam

 
Figure 7 illustrates the influence of 

aspect ratio on frequency for varying 
volume fractions of CNTs. Aspect ratio 
(L/h) has been observed to result in a 
decline in the natural frequency, as 
evidenced in Fig. 7. It is shown that with 
increasing the volume fractions of CNTs, 
the stiffness of a sandwich microbeam 
increases and also, it leads to enhance the 
natural frequency.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 

Fig. 7. Length Influence to microbeam thickness ratio for different CNTs volume fraction on the natural frequency 

 
 

Figure 8a shows the effect of various 
distributions of carbon nanotubes (CNTs) 

including FG-AV, FG-XX, FG-UU, FG-OO and FG-VA 
on the natural frequency. The results 
demonstrate that the FG-OO distribution exhibits 
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the lowest natural frequency, while the FG-XX 
distribution has the opposite effect. Additionally, 
the beam's inherent frequency reaches its 
maximum when the FG-XX CNT distribution is 
applied. The structural stiffness and natural 
frequency of the structure change when different 
reinforcement distributions are used in the face 
sheet layer. The natural frequency increases by 
67.4%, when FG-XX is compared to FG-UU face 
sheets, and it decreases by 24.8% when FG-OO is 
compared to FG-UU. Fig. 8b illustrates the impact 
of the porosity coefficient on the natural 
frequency of the sandwich beams. This figure 
depicts how the frequency of the beams 
decreases as the porosity coefficient of the core 

increases. In the experimental results, one can be 
mixed the resin with carbon nanotubes or carbon 
nanorods by ultrasonic tools. In this case, it is 
assumed that two materials (matrix as well as 
nano particles) are mixed as uniform, (one can 
see [13], and [14]) while; in practice, it is not 
possible as functionally graded that they mixed. 
Then, the created nanocomposite is placed upper 
and lower porous core layers. In theoretical 
results, the functionally graded carbon 
nanotubes using Eq. (13) for the top and bottom 
face sheets in a sandwich structure are 
considered. Figure 8 shows the various natural 
frequency distributions. 

 
(a) 

 
(b) 
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Fig. 8. (a) The influence of aspect ratio on natural frequency for different CNTs distribution, (b) Porosity coefficient effects (𝑒0) core 
on the natural frequency for different CNT patterns 

 
Figure 9 illustrates the influence of the core-to-   

face sheet thickness ratio ( /
c f

h h ) on frequency.       

on frequency. As the beam's aspect ratio increases,     

the frequency decreases. An increase in the ratio of 

/
c f

h h results in a reduction in the values of natural 

frequency, indicating a softer structure.  
 

 
Fig. 9. Influence of core-to-face sheet thickness ratio of a sandwich microbeam to natural frequency 

 
The influence of various porosity distributions 

including asymmetric, symmetric, and uniform 
distributions on the natural frequency is illustrated in 
Fig. 10. The natural frequency values are highest in 

asymmetric distributions and lowest in uniform 
distributions. 
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Fig. 10. Influence of thicknesses ratio for different porosity distribution types on the natural frequency 

 
Figure 11 shows how the frequency of a 

sandwich beam is affected by the various types of 
reinforcement including (CNT, CNR, GPL) in the 
face sheet layer. As the figure shows, graphene  

 
platelets (GPL) have the highest frequency, 
followed by carbon nano rods (CNRs), which have 
the lowest frequency. To verify and compare the 
nanomaterials used in this study, it has been 
shown that adding reinforcement increases the 

frequency of beams with 5
L

h
= . The sandwich 

beams are compared to without reinforcement, 

by an increase in the volume fraction of the 
reinforcements, the stiffness and the frequency of 
the sandwich micro beam increases. The GPLs 
increase the frequency by 10%, the CNTs by 7%, 
and the CNRs by 4%. It has been shown that 
adding reinforcement has been demonstrated to 
enhance both the stiffness and the frequency of 
the sandwich beam. CNRs are used as 
reinforcement that are made with cheap 
materials. They are similar to another 
nanocomposite in terms of mechanical 
properties. CNRs are much more economical than 
CNTs because they are made using a green 
process [14]. This makes them a good alternative 
for nanocomposites in many industries. 
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Fig. 11. The effect of various reinforcements in the face sheet layers on natural frequency of a sandwich microbeam 

 
Figure 12a illustrates the frequency behavior 

of the microbeam for three distinct elastic 
foundations: Winkler’s, Pasternak’s and Kerr’s 
foundations. It can be observed that an increase 
in frequency is evident when considering the 

stiffness of the aforementioned foundations. As 
illustrated in Figure 12b, the consideration of 
Kerr elastic foundation compared to without any 
elastic foundation increases the natural 
frequency of a sandwich microbeam. 

 
(a) 
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(b) 

Fig. 12. (a, b) Effect of different elastic foundation on natural frequency 

 
Figure 13a illustrates the effect of different 

Kerr elastic foundation parameters on the natural 
frequency. It can be observed from this figure 
that an increase in shear layer stiffness Ks 
parameter leads to enhance in the natural 
frequency. Figure 13b shows the variation of the 

upper elastic foundation on the natural 
frequency. It can be concluded that an increase in 
the elastic foundation parameters results in an 
increase in the frequency of the structure. 
Furthermore, it is evident that the stiffness of the 
springs (Ku, Kl) plays a significant role in the 
vibrational behavior of the system.  

 
(a) 
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(b) 

Fig. 13. (a, b) The effect of different Kerr elastic foundation parameters (Kl. Ks. Ku) on the natural frequency 

 

This section presents the vibration of 
sandwich microbeams with different material 
porous cores and examines the influence of 
various temperature changes. Figure 14a and b 
illustrate the natural frequency of the sandwich 
microbeam for different temperature conditions. 
It can be observed that as the temperature of the 

microbeam increases, the natural frequency 
decreases, because the structure becomes 
softener. This demonstrates the crucial role 
temperature dependency plays in influencing the 
vibration behavior of microbeams through 
temperature changes. Also, it is shown that Si304 
and SUS304 have the highest and lowest natural 
frequencies, respectively. 

 
(a) 
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(b) 

Fig. 14. (a, b) The effect of different material porous cores on the natural frequencies 

 
There are many different theories for small-

scale structures. The mechanical behavior of such 
micro-scale objects is not adequately modeled by 
the classical theories. In this section, the effect of 
size dependence on small scale on the natural 
frequencies of sandwich microbeams is 
investigated. These models include NSGT, SGT, 
NT, and MCST. As shown in Fig. 15, the 
comparison of the material small-scale 
parameter based on various theories and the 
classical theory on the natural frequency is 

investigated. Considering the small-scale 
characteristic parameters, NSGT and SGT have 
the same range of natural frequencies. The 
accuracy of NSGT and SGT was also compared 
with that of MCST and CT. As shown in this figure, 
the comparison results indicated that the reason 
for the difference between the frequencies 
predicted by the two higher-order theories NSGT, 
SGT, and classical theory can be easily illustrated 
by the additional material and non-local 
parameters in the constitutive equations of 
sandwich microbeams. 
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Fig. 15. Comparison of the material length scale parameter to different theories and classical theory on the natural frequency 

 

6. Conclusions 

The objective of this study is to investigate a 
vibration analysis of a sandwich microbeam for various 
reinforcements including GPLs, CNTs, and CNRs in the 
face sheet layers and different porous materials in the 
core using the shear and normal deformation beam 
theory (SNDBT), where the material properties are 
dependent to temperature. Also, to consider the size 
effect, the various small-scale theories including 
modified couple stress theory (MCST) and nonlocal 
strain gradient theory (NSGT) are investigated. These 
microbeams are placed on different elastic foundations 
including Kerr, Pasternak, and Winkler. This study 
makes a significant contribution to the realm of 
practical engineering applications by integrating 
insights from previous research for analyzing the 
vibration of porous FG beams with different elastic 
supports, Pasternak, Kerr, and Winkler elastic 
foundations, and different reinforcements. 
Additionally, this study incorporates various porosity 
distributions including asymmetric, symmetric, and 
uniform in the core for a sandwich microbeam. It also 
provides valuable results on the free vibration 
behavior of porous microbeams resting on elastic 
foundations. The results, both with and without 
thickness stretching, demonstrate that the shear and 
normal beam theory improves the results. The various 
parameters, including different size effect theories, 
porosity distribution, core-to-face sheet thickness 
ratio, axial wave number, aspect ratio, different 
temperatures, volume fractions of CNTs, and different 
reinforcements such as GPLs, CNTs, and CNRs, are 
investigated for their effect on the natural frequency of 
a sandwich microbeam. This comparison will allow for 

the selection of the most suitable reinforcements, 
taking into account both industry requirements and 
economic considerations. The most significant findings 
of this research are presented as follows: 

1- Increasing the length-to-thickness ratio of a 
micro-sandwich beam results in a decrease in 
the natural frequency due to a reduction in 
stiffness. However, this phenomenon also leads 
to a softening of the structure. 

2- The findings indicate that an increase in the 
strain gradient parameter results in an elevated 
frequency, which can be attributed to the 
enhanced stiffness of the microstructure. The 
influence of nonlocal parameters on the first 
four natural frequencies of a sandwich 
microbeam is illustrated. The findings 
demonstrate that the nonlocal parameters of the 
beam exert a greater influence on the high 
frequencies of sandwich microbeams than on 
the low frequencies. The results show that using 
nonlocal strain gradient theory can make a 
sandwich microbeam soften and stiffen. Small 
length scale parameters have a significant effect 
on the frequency, as shown by the increase in 
strain gradient and non-local parameters that it 
leads to increase and decrease the natural 
frequency, respectively. 

3- It showed that for 
0

75
L

l
= , with increasing of 

c
h  

from 0.5h  to 0.9h , the natural frequency 

decreases by 55%, because the structure 
becomes softener.  

4- The findings indicate that the frequency of 
sandwich beams may be overestimated for L/h > 
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7 in the absence of thickness stretching. The 
shear and normal deformation beam theory can 
account for the thickness stretching effect and 
yield highly accurate results. 

5- The results demonstrated the impact of 
various distributions of CNTs (FG-AV, FG-
XX, FG-UU, FG-OO, and FG-VA) on the 
natural frequency. It was observed that FG-
OO exhibited the lowest natural frequency, 
while FG-XX demonstrated the highest. 
Also, the stiffness and natural frequency of 
the structure change when different 
reinforcement distributions are used in the 
face sheet layer. The natural frequency 
increases by 67.4%, when FG-XX is 
compared to FG-UU face sheets. It 
decreases by 24.8% when FG-OO is 
compared to FG-UU.  

6- The findings indicate that as the porosity 
coefficient of the core increases, the 
frequency of the beams tends to decrease. 
This phenomenon can be observed by 
comparing the natural frequency values of 
beams with different porosity 
distributions. As the distributions become 
more 2asymmetric, the natural frequency 
values tend to be higher, while for uniform 
distributions, the values tend to be lower. 

7- The study showed how different 
reinforcements (such as GPL, CNT, and 
CNR) affect the frequency of a sandwich 
beam in the face sheet layer. The frequency 
of graphene platelets is displayed as the 
highest frequency, followed by carbon 
nanotubes and carbon nanorods, which 
have the lowest frequency. It can be seen 
that CNRs have relatively good strength, 
are made with low-cost materials, and can 
be considered a good alternative for 
nanocomposites in many industries. The 
sandwich beams are compared to those 
without reinforcement, by increasing the 
volume fraction of the reinforcements, the 
stiffness and the frequency of the sandwich 
microbeam increases. The GPLs increase 
the frequency by 10%, the CNTs by 7%, 
and the CNRs by 4%. 

8- The results of the present study show that 
consideration of Pasternak's, Kerr's and 
Winkler's foundations leads to a significant 
increase in the frequencies for a 
microbeam, respectively. 

9- The impact of shear layer stiffness (𝐾𝑠) is 
more important, and it has more influence 
than other elastic foundation parameters. 
It was found that when the stiffness of the 
shear layer is increased, the frequency 
goes up. By making the springs (𝐾𝑢 , 𝐾𝑙), 
stiffer, a higher rise in the frequency of the 
microbeam is seen. 

10- The frequency of the sandwich 
microbeam with different porous cores 
for various temperature conditions is 
illustrated. It can be observed that as the 
temperature increases, the frequency is 
reduced. Additionally, It can also be seen 
that the temperature dependence of the 
materials has a significant impact on the 
vibration stimulation. 

11- The results demonstrated that NSGT and 
SGT exhibited identical ranges of natural 
frequency. The precision of NSGT and SGT 
was also evaluated in comparison to that 
of the classical theory. The findings 
revealed that the discrepancy between 
the frequencies predicted by the two 
higher order theories, NSGT and SGT, and 
the classical theory can be attributed to 
the inclusion of additional scale and 
nonlocal parameters in the constitutive 
equations. 

 

Nomenclature 

 
L Length of 

micro beam 
ECNT Elastic 

modulus of 
CNTs 

u0 Axial 
displacemen
t 

GCNT Shear 
modulus of 
CNTs 

w1,
w2 

Shear and 
bending 
components 
of 
displacemen
t 

( )E z  Elastic 
modulus of 
porous 
Core 

σij Stress 
components 
of sandwich 
micro beam 

( )G z  Shear 
modulus of 
porous 
Core 
 

εkl Strain 
components 
of sandwich 
micro beam 

( )z  Mass 
density of 
porous 
Core 
 

ht Thickness of 
top face 
sheet 

e0 Coefficient
s of 
porosity 

hb Thickness of 
bottom face 
sheet 

em Coefficient
s of mass 
density 

mV  Volume 
fractions of 
matrix 

0
l  Strain 

gradient 
length 
scale 
parameter 
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CNTV  Volume 
fractions of 
CNTs 

( )2 = ea  
Nonlocal 
parameter 

f  The mass 
density of 
face layers 

lm Material 
length 
scale 
parameter 
 

f  Poisson’s 
ratio of face 
layers 

χij Curvature 
tensor 

ρm The mass 
density of 
the matrix 

μ(z) Lame’s 
parameter 

ʋm Poisson’s 
ratio of 
matrix 

δT Variation 
of kinetic 
energy 

h Thickness of 
sandwich 
beam 
 

δU Variation 
of strain 
energy 

 

Acknowledgments 

The authors would like to thank the referees 
for their valuable comments and also thank a lot 
for increasing the quality of the present work. 
Also, they disclosed receipt of the following 
financial support for the research, authorship, 
and/or publication of this article. Also, they are 
thankful to the Iranian Nanotechnology 
Development Committee for their financial 
support and the University of Kashan for 
supporting this work through Grant No. 
1311761/3. 

Funding Statement 

This work was supported by the Iranian 
Nanotechnology Development Committee and 
the University of Kashan [Grant No. 1311761/3]. 

Conflicts of Interest 

The author declares that there is no conflict of 
interest regarding the publication of this article. 

Appendixes 

Appendix A 

The resultant forces and moments in Eqs. (26) 
are defined as follows: 

2

3

2

(0)

(2) 2

(1)

x x

x x

x xz

x x

xx x

Z z

x xz

xy xy

xy xy

yz yz

N dz

M zdz

Q dz

f z dz

f z dz

M zdz

g z dz

M M dz

M M z dz

M M zdz















=

=

=

=

=

=

=

=

=

=












 

Appendix B 

The variables in Eqs. (27)-(30) are defined as 
follows: 
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Appendix C 

To find the elements of the stiffness matrix, 
substitute Eq. (31) into Eq. (27) through Eq. 
(30). 
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Appendix D 

By substituting Eqs. (31) into Eqs. (27)-(30), 
the elements of the mass matrix are derived as 
follows: 

2 2

2 2

11 0 0

2 3

12 1 1

2 3

13

14

2 3

21 1 1

2 2 4 2 2

22 2 0 2 0

2 2 4 2 2

23 0 0

2 2

24

2 3

31

2 2 4 2 2

32 0 0

2 2 4 2

33

( )

0
f f

fz fz

g g

f f

fz fz

ff ff

ea

M I I q

M I q I q

M I q I q

M

M I q I q

M I q I I q I q

M I q I I q I q

M I I q

M I q I q

M I q I I q I q

M I q I q











 

 





 

 

=

=

= − −

= +

= − −

=

= +

= − + −

= − + −

= − −

= − −

+ − − +

= − − − 2

0 0

2 2

34

41

2 2

42

2 2

43

2 2

44

0
g g

g g

g g

gg gg

I q I

M I I q

M

M I I q

M I I q

M I I q









−

= − −

=

= − −

= − −

= − −  

References 

[1] Kheirikhah, M., Ghiasvand, M., Gohari, S. and 
Burvill, C., 2023. Free vibration analysis of 
composite sandwich beams reinforced by 
functionally graded graphene 
nanoplatelets. Mechanics of Composite 
Materials, 59(5), pp. 959-976. 

 [2] Arshid, E., Amir, S. and Loghman, A., 2024. 
Aero-hygro-thermoelastic size-dependent 
analysis of ncmf-reinforced gnps sector 
microplates located between piezoelectric 
patches in supersonic flow considering 
surface stress effects. Mechanics Based 
Design of Structures and Machines, 52(9), pp. 
6911-6972. 

[3] Mohammadimehr, M., Mehrabi, M. and 
Mousavinejad, F.S., 2021. Magneto-
mechanical vibration analysis of single-
/three-layered micro-timoshenko porous 
beam and graphene platelet as 
reinforcement based on modified strain 
gradient theory and differential quadrature 
method. Journal of Vibration and Control, 
27(15-16), pp. 1842-1859. 

[4] Adiyaman, G., 2024. Free vibration analysis 
of a porous 2d functionally graded beam 
using a high-order shear deformation 
theory. Journal of Vibration Engineering and 
Technologies, 12(2), pp. 2499-2516. 

[5] Khakpour, M., Bazargan-Lari, Y., 
Zahedinejad, P. and Kazemzadeh-Parsi, M.-

J., 2022. Vibrations evaluation of 
functionally graded porous beams in 
thermal surroundings by generalized 
differential quadrature method. Shock and 
Vibration, 2022(1), pp. 8516971. 

[6] Marandi, S.M. and Karimipour, I., 2023. Free 
vibration analysis of a nanoscale FG-
CNTRCs sandwich beam with flexible core: 
Implementing an extended high order 
approach. Engineering Structures, 276, p. 
115320. 

[7] Mohamed, I., Kahya, V. and Şimşek, S., 2024. 
A new higher-order finite element model for 
free vibration and buckling of functionally 
graded sandwich beams with porous core 
resting on a two-parameter elastic 
foundation using quasi-3d theory. Iranian 
Journal of Science and Technology, 
Transactions of Civil Engineering, 2024, pp. 
1-26. 

[8] Zhang, L., Xu, Z., Gao, M., Xu, R. and Wang, G., 
2023. Static, dynamic and buckling 
responses of random functionally graded 
beams reinforced by graphene platelets. 
Engineering Structures, 291, p. 116476. 

[9] Alibar, M.Y., Safaei, B., Asmael, M. and 
Zeeshan, Q., 2021. Effect of carbon 
nanotubes and porosity on vibrational 
behavior of nanocomposite structures: A 
review. Archives of Computational Methods 
in Engineering, 2021, pp. 1-37. 

[10] Zamani, H., 2021. Frequency analysis of fg-
cnt–reinforced composite doubly curved 
panels on visco-pasternak medium. 
Advanced Composites and Hybrid Materials, 
4, pp. 830-844. 

[11] Wu, Z., Zhang, Y. and Yao, G., 2023. Natural 
frequency and stability analysis of axially 
moving functionally graded carbon 
nanotube-reinforced composite thin plates. 
Acta Mechanica, 234(3), pp. 1009-1031. 

[12] Safaei, M., Malekzadeh, P. and Haghighi, 
M.G., 2024. Out-of-plane moving load 
response and vibrational behavior of 
sandwich curved beams with gplrc face 
sheets and porous core. Composite 
Structures, 327, p. 117658. 

[13] Noruzi, A., Mohammadimehr, M. and 
Bargozini, F., 2024. Experimental free 
vibration and tensile test results of a five-
layer sandwich plate by comparing various 
carbon nanostructure reinforcements with 
sma. Heliyon, 10(10), e31164. 

[14] Bargozini, F. and Mohammadimehr, M., 
2024. The theoretical and experimental 
buckling analysis of a nanocomposite beams 
reinforced by nanorods made of recycled 
materials. Polymer Composites, 45(4), pp. 
3327-3342. 



 

29 

[15] Ghorbanpour Arani, A., Babaakbar-Zarei, H., 
Pourmousa, P. and Eskandari, M., 2018. 
Investigation of free vibration response of 
smart sandwich micro-beam on winkler–
pasternak substrate exposed to multi 
physical fields. Microsystem Technologies, 
24, pp. 3045-3060. 

[16] Bamdad, M., Mohammadimehr, M. and 
Alambeigi, K., 2019. Analysis of sandwich 
timoshenko porous beam with 
temperature-dependent material 
properties: Magneto-electro-elastic 
vibration and buckling solution. Journal of 
Vibration and Control, 25(23-24), pp. 2875-
2893. 

[17] Rahmani, O., Shokrnia, M., Golmohammadi, 
H. and Hosseini, S., 2018. Dynamic response 
of a single-walled carbon nanotube under a 
moving harmonic load by considering 
modified nonlocal elasticity theory. The 
European Physical Journal Plus, 133, pp. 1-
13. 

[18] Zenkour, A., 2018. Nonlocal elasticity and 
shear deformation effects on thermal 
buckling of a cnt embedded in a viscoelastic 
medium. The European Physical Journal 
Plus, 133(5), pp. 196. 

[19] Jena, S.K., Chakraverty, S. and Malikan, M., 
2020. Vibration and buckling 
characteristics of nonlocal beam placed in a 
magnetic field embedded in winkler–
pasternak elastic foundation using a new 
refined beam theory: An analytical 
approach. The European Physical Journal 
Plus, 135(2), pp. 1-18. 

[20] Jena, S.K., Chakraverty, S., Mahesh, V., 
Harursampath, D. and Sedighi, H.M., 2022. 
Free vibration of functionally graded beam 
embedded in winkler-pasternak elastic 
foundation with geometrical uncertainties 
using symmetric gaussian fuzzy number. 
The European Physical Journal Plus, 137 (3), 
p. 399. 

[21] Bidgoli, E.M.-R. and Arefi, M., 2023. Effect of 
porosity and characteristics of carbon 
nanotube on the nonlinear characteristics of 
a simply-supported sandwich plate. 
Archives of Civil and Mechanical Engineering, 
23(3), p. 214. 

[22] Priyanka, R. and Pitchaimani, J., 2022. Static 
stability and free vibration characteristics of 
a micro laminated beam under varying axial 
load using modified couple stress theory 
and ritz method. Composite Structures, 281, 
p. 115028. 

[23] Hosseini, S.A., Hamidi, B.A. and Maboudi, G., 
2022. On new nonlinearity in third-order 
elastic modulus for vibrational analysis of fg 
porous beam based on nonlocal strain 
gradient and surface energy by modified 

homotopy perturbation method. The 
European Physical Journal Plus, 137(4), pp. 
1-18. 

[24] Ramteke, P.M. and Panda, S.K., 2023. 
Computational modelling and experimental 
challenges of linear and nonlinear analysis 
of porous graded structure: A 
comprehensive review. Archives of 
Computational Methods in Engineering, 
30(5), pp. 3437-3452. 

[25] Li, S., Zheng, W. and Li, L., 2024, 
Spatiotemporally nonlocal homogenization 
method for viscoelastic porous 
metamaterial structures, International 
Journal of Mechanical Sciences, 282, p. 
109572. 

[26] Li, S. and Li, L., 2024, A homogenization 
method incorporating surface effect for thin 
metamaterial structure. International 
Journal of Engineering Science, 201, p. 
104093. 

[27] Dehkordi, H.R.B. and Beni, Y.T., 2023. Size-
dependent coupled bending-torsional 
vibration of functionally graded carbon 
nanotube reinforced composite timoshenko 
microbeams. Archives of Civil and 
Mechanical Engineering, 23(3), p. 186. 

[28] Mehralian, F., Beni, Y.T. and Zeverdejani, 
M.K., 2017. Nonlocal strain gradient theory 
calibration using molecular dynamics 
simulation based on small scale vibration of 
nanotubes. Physica B: Condensed Matter, 
514, pp. 61-69. 

[29] Li, R., Li, L. and Jiang Y., 2025, A physics-
based nonlocal theory for particle-
reinforced polymer composites. Journal of 
Mechanical Sciences, 285, p. 109800. 

[30] Mohammadian, M., 2022. Application of the 
modified fourier series method and the 
genetic algorithm for calibration of small-
scale parameters in the nonlocal strain 
gradient nanobeams. Mathematical Methods 
in the Applied Sciences, 45(10), pp. 6325-
6345. 

[31] Eroğlu, M., Esen, İ. and Koç, M.A., 2024. 
Thermal vibration and buckling analysis of 
magneto-electro-elastic functionally graded 
porous higher-order nanobeams using 
nonlocal strain gradient theory. Acta 
Mechanica, 235(2), pp. 1175-1211. 

[32] Nuhu, A.A. and Safaei, B., 2023. On the 
advances of computational nonclassical 
continuum theories of elasticity for bending 
analyses of small-sized plate-based 
structures: A review. Archives of 
Computational Methods in Engineering, 
30(5), pp. 2959-3029. 

[33] Fatahi, M.H., Hamedi, M. and Safarabadi, M., 
2021. Experimental and numerical 
implementation of auxetic substrate for 

callto:201(2024),%20104093
callto:201(2024),%20104093
callto:285(2025),%20109800


 

30 

enhancing voltage of piezoelectric sandwich 
beam harvester. Mechanics of Advanced 
Materials and Structures, 29(27), pp. 6107-
6117. 

[34] Mohammadi, M., Safarabadi, M., Rastgoo, A. 
and Farajpour, A., 2016. Hygro-mechanical 
vibration analysis of a rotating viscoelastic 
nanobeam embedded in a visco-pasternak 
elastic medium and in a nonlinear thermal 
environment. Acta Mechanica, 227, pp. 
2207-2232. 

[35] Safarabadi, M., Mohammadi, M., Farajpour, 
A. and Goodarzi, M., 2015. Effect of surface 
energy on the vibration analysis of rotating 
nanobeam. Journal of Solid Mechanics, 7(3), 
pp.  299-311. 

[36] Li, L., Li, X. and Yu, Y., 2016. Free vibration 
analysis of nonlocal strain gradient beams 
made of functionally graded material. 
International Journal of Engineering Science, 
102, pp. 77-92. 

[37] Qian, Q., Zhu, F., Fan, Y., Hang, Z., Feng, C. and 
Yang, J., 2023. Parametric study on 
nonlinear vibration of FG-GNPRC dielectric 
beam with kelvin–voigt damping. Thin-
Walled Structures, 185, p. 110617. 

 [38] Asgari, M., Mohammadimehr, M., 
Arabzadeh-Ziari, M. and Arabzadeh-Ziari, E., 
2024. Static bending, vibration, and 
buckling responses of a sandwich beam 
composed of five layers considering 
honeycomb core and CNTRC with sma 
particles and temperature-dependent 
material properties using SSDT. Mechanics 
of Advanced Composite Structures, 12(1), pp. 
153-168. 

[39] Brijeshgangil, B., Bharadvaj, M. and Yadav, J., 
2024. Thermo-mechanical and wear 
properties of natural fibre-reinforced epoxy 
composites for structural applications. 
Mechanics of Advanced Composite 

Structures, 12(1), pp. 141-152. 
[40] Ni, Z., Zhu, F., Fan, Y., Yang, J., Hang, Z. and 

Feng, C., 2023. Numerical study on damped 
nonlinear dynamics of cracked fg-gnprc 
dielectric beam with active tuning. Thin-
Walled Structures, 192, p. 111122. 

[41] Hang, Z., Ni, Z., Yang, J., Fan, Y., Feng, C. and 
Wang, S., 2024, Nonlinear vibration of FG-
GNPRC dielectric beam with kelvin-voigt 
damping in thermal environment. 
International Journal of Structural Stability 
and Dynamics, 24(12), p. 2450130. 

[42]  Jafari, M., Mohammadimehr, M., 2025, 
Forced vibration control of Timoshenko’s 
micro sandwich beam with CNT/GPL/CNR 
reinforced composites integrated by 
piezoelectric on Kerr’s elastic foundation 
using MCST, Journal of Computational 
Applied Mechanics 56 (1), 15-42. 

[43] Jafari, M., Mohammadimehr, M., 2024, 
Active control for higher order micro 
sandwich beam with various cores 
integrated by piezoelectric layers based on 
MSGT on the Pasternak foundation, Journal 
of Vibration and Control, 
10775463241291126. 

[44] Motalebi, V., Mohammadimehr, M., 
Bargozini, F., Vibration response of 
sandwich plate reinforced by GPLs/GOAM, 
Mechanics Research Communications 141, 
104334 

[45] Nguyen, N.-D., Nguyen, T.-K., Thai, H.-T. and 
Vo, T.P., 2018. A ritz type solution with 
exponential trial functions for laminated 
composite beams based on the modified 
couple stress theory. Composite Structures, 
191, pp. 154-167. 

[46] Shariati, M., Shishesaz, M., Sahbafar, H., 
Pourabdy, M. and Hosseini, M., 2021. A 
review on stress-driven nonlocal elasticity 
theory. Journal of Computational Applied 
Mechanics, 52 (3), pp. 535-552. 

[47] Chen, D., Wang, Y., Zheng, S., Liang, Y. and 
Sun, S., 2024. Isogeometric analysis of bi-
directional functionally graded porous 
micro-beam with geometrical imperfections 
using nonlocal strain gradient theory. 
Journal of Vibration Engineering and 
Technologies, 2024, pp. 1-13. 

[48] Lim, C., 2010. On the truth of nanoscale for 
nanobeams based on nonlocal elastic stress 
field theory: Equilibrium, governing 
equation and static deflection. Applied 
Mathematics and Mechanics, 31(1), pp. 37-
54. 

[49] Ghayesh, M.H. and Farajpour, A., 2019. A 
review on the mechanics of functionally 
graded nanoscale and microscale 
structures. International Journal of 
Engineering Science, 137, pp. 8-36. 

[50] Sahmani, S., Aghdam, M.M. and Rabczuk, T., 
2018. Nonlinear bending of functionally 
graded porous micro/nano-beams 
reinforced with graphene platelets based 
upon nonlocal strain gradient theory. 
Composite Structures, 186, pp. 68-78. 

[51] Faghidian, S.A., 2021. Contribution of 
nonlocal integral elasticity to modified 
strain gradient theory. The European 
Physical Journal Plus, 136 (5), p. 559. 

[52] Iijima, S., 1991. Helical microtubules of 
graphitic carbon. Nature, 354 (6348), pp. 
56-58. 

[53] Mohammadimehr, M., Okhravi, S. and 
Akhavan Alavi, S., 2018. Free vibration 
analysis of magneto-electro-elastic 
cylindrical composite panel reinforced by 
various distributions of cnts with 
considering open and closed circuits 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pmS54K8AAAAJ&sortby=pubdate&citation_for_view=pmS54K8AAAAJ:3x-KLxxGyuUC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pmS54K8AAAAJ&sortby=pubdate&citation_for_view=pmS54K8AAAAJ:3x-KLxxGyuUC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pmS54K8AAAAJ&sortby=pubdate&citation_for_view=pmS54K8AAAAJ:3x-KLxxGyuUC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pmS54K8AAAAJ&sortby=pubdate&citation_for_view=pmS54K8AAAAJ:3x-KLxxGyuUC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pmS54K8AAAAJ&sortby=pubdate&citation_for_view=pmS54K8AAAAJ:3x-KLxxGyuUC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pmS54K8AAAAJ&sortby=pubdate&citation_for_view=pmS54K8AAAAJ:9tXw7Op4-u0C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pmS54K8AAAAJ&sortby=pubdate&citation_for_view=pmS54K8AAAAJ:9tXw7Op4-u0C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pmS54K8AAAAJ&sortby=pubdate&citation_for_view=pmS54K8AAAAJ:9tXw7Op4-u0C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pmS54K8AAAAJ&sortby=pubdate&citation_for_view=pmS54K8AAAAJ:9tXw7Op4-u0C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pmS54K8AAAAJ&sortby=pubdate&citation_for_view=pmS54K8AAAAJ:KsTgnNRry18C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pmS54K8AAAAJ&sortby=pubdate&citation_for_view=pmS54K8AAAAJ:KsTgnNRry18C


 

31 

boundary conditions based on fsdt. Journal 
of Vibration and Control, 24(8), pp. 1551-
1569. 

[54] Eghbali, M. and Hosseini, S.A., 2023. On 
moving harmonic load and dynamic 
response of carbon nanotube-reinforced 
composite beams using higher-order shear 
deformation theories. Mechanics of 
Advanced Composite Structures, 10 (2), pp. 
257-270. 

[55] Jooybar, N., Malekzadeh, P. and Fiouz, A., 
2016. Vibration of functionally graded 
carbon nanotubes reinforced composite 
truncated conical panels with elastically 
restrained against rotation edges in thermal 
environment. Composites Part B: 
Engineering, 106, pp. 242-261. 

 [56] Xu, Z. and Huang, Q., 2019. Vibro-acoustic 
analysis of functionally graded graphene-
reinforced nanocomposite laminated plates 
under thermal-mechanical loads. 
Engineering Structures, 186, pp. 345-355. 

[57] Amir, S., Soleimani-Javid, Z. and Arshid, E., 
2019. Size-dependent free vibration of 
sandwich micro beam with porous core 
subjected to thermal load based on ssdbt. 
ZAMM‐Journal of Applied Mathematics and 

Mechanics/Zeitschrift für Angewandte 
Mathematik und Mechanik, 99(9), p. 
e201800334.  

[58] Mirjavadi, S.S., Mohasel Afshari, B., Shafiei, 
N., Rabby, S. and Kazemi, M., 2018. Effect of 
temperature and porosity on the vibration 
behavior of two-dimensional functionally 
graded micro-scale timoshenko beam. 
Journal of Vibration and Control, 24(18), pp. 
4211-4225. 

[59] Touloukian, Y., Powell, R., Ho, C. and 
Nicolaou, M. 1974. Thermophysical 
properties of matter, the tprc data series. 
Volume 10. Thermal diffusivity. Data book. 
Purdue Univ., Lafayette, IN (USA). 
Thermophysical and Electronic Properties. 

 [60] Joueid, N., Zghal, S., Chrigui, M. and Dammak, 
F., 2023. Thermoelastic buckling analysis of 
plates and shells of temperature and 
porosity dependent functionally graded 
materials. Mechanics of Time-Dependent 
Materials, 2023, pp. 1-43. 

[61] Safari, M., Mohammadimehr, M. and Ashrafi, 
H., 2021. Free vibration of electro-magneto-
thermo sandwich timoshenko beam made 
of porous core and GPLRC. Advanced Nano 
Research, 10(2), pp. 115-128. 

 


