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Abstract

The purpose of this paper is devoted to establish the existence of a solution for a general class of nonlinear integral
equations with weakly-singular terms. Our technique is based on the P-theorem associated with the Hausdorff M.N.C.
Furthermore, we provide an example to demonstrate the practicality of the result obtained.
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1 Introduction

One of the most commonly used methods is the concept of noncompactness measure (M.N.C). The root of this
concept goes back to the famous work of Kuratowski [13]. This method plays a vital role in the publications of
research [2]. In 1955, an extension of this direction was introduced by Italian mathematician Darbo [4]. He studied
the existence of fixed points for condensing operators, generalising the Schauder fixed point theorem and the Banach
contraction principle. After this pioneering work, the number of research papers dealing with Darbo fixed point
theorem has increased considerably in recent years [1, 3, 5, 6, 7, 12, 14, 16, 19, 20, 22]. In 2016, by the assistance of
the measure of noncompactness and Petryshyn’s fixed point theorem (P− theorem), Kazemi and Ezzati established
that the sublinear conditions in the Darbo fixed point theorem are an additional condition [10]. We employ the idea
of Kazemi and Ezzati to the existence of solutions for weakly singular integral equations as follows:
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s
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(
x(β1(t)), x(β2(t)), . . . , x(βs(t))

)
.

The paper is structured as follows. In Section 2, we collect some definitions, lemmas and theorems, which are essen-
tial to prove our main results. In Section 3, we establish and prove a new existence theorem by utilising P− theorem
for NIEs (1.1). In Section 4, we also give an example to support our main theorem. Finally, in section 5, the paper
concludes.
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2 Auxiliary facts and notations

In this section, we will review several definitions and theorems, providing additional facts to enhance understanding.

• X: Real Banach space;

• B̄φ0 : Closed ball at center 0 with radius φ0 ;

• ∂B̄φ0
: Sphere in 𭟋 around 0 with radius φ0 > 0;

Definition 2.1. [13] Let A is a bounded subset of a Banach space X, and

χ(A) = inf{ε > 0 : A maybe covered by finitely multiple sets of diameter ≤ ε} (2.1)

is called the Kuratowski M.N.C.

Definition 2.2 ([9]). The Hausdroff M.N.C is defined as

µ(A) = inf{ε > 0 : ∃ a finite ε-net for A in X}. (2.2)

These M.N.C are mutually alike as follows

µ(A) ≤ χ(A) ≤ 2µ(A)

for any bounded set A ⊂ X.

Theorem 2.3 ([18]). Let A , Ã ∈ X and λ ∈ R . Then

(i) µ(A) = 0 if and only if A is relatively-compact;

(ii) A ⊆ Ã implies µ(A) ≤ µ(Ã) ;

(iii) µ(Ā) = ψ(ConvM) = µ(A);

(iv) µ(A ∪ Ã) = max{µ(A), µ(Ã)};
(v) µ(λA) =| λ | µ(A);
(vi) µ(A+ Ã) ≤ µ(A) + µ(Ã).

In the pursuing, we will operate in the space C([0, d]) with the usual norm

∥x∥ = sup{|x(φ)| : φ ∈ [0, d]}.

Identify that the modulus of continuity of a function x ∈ C([0, d]) is defined as

ω(x, ε) = sup{|x(φ)− x(φ̃)| : |φ− φ̃| ≤ ε}.

Theorem 2.4. [11] In C([0, d]), the M.N.C (2.2) is equivalent to

µ(A) = lim
ε→0

sup
x∈A

ω(x, ε) (2.3)

for all bounded sets A ⊂ C([0, d]).

Definition 2.5. Assume that T : X → X be a continuous mapping of X. T is called a k-set contraction if for all
H ⊂ X with H bounded, T (H) is bounded and χ(TH) ≤ kχ(H), 0 < k < 1. If

χ(TH) < χ(H), for all χ(H) > 0,

then T is called densifying (or condensing) map [17].

Now, we recall the well known theorem of Petryshyn’s.

Theorem 2.6. [18], Assume that T : B̄φ0
→ X be a densifying mapping which satisfies the boundary condition,

T (x) = kx, for some x in ∂Bφ0 with k ≤ 1, (2.4)

then the set of fixed points of T in B̄φ0 is non-empty.
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3 Main results based on P−theorem

In this section, we consider the following assumptions to verify the existence of a solution for functional NIEs (1.1).
W1) : Let g ∈ C([0, d]× Rs,R), f ∈ C([0, d]× Rm,R) and the following functions are continuous:

βi : [0, d] → [0, d], for 1 ≤ i ≤ s,

αj : [0, d] → [0, d], for 1 ≤ j ≤ m,

γk : [0, d] → [0, d], for 1 ≤ k ≤ n,

W2) : There exists nonnegative constants qi, λj for 1 ≤ i ≤ s, 1 ≤ j ≤ m such that∣∣∣∣g(t, x1, x2, . . . , xs)− g(t, y1, y2, . . . , ys)

∣∣∣∣ ≤ s∑
i=1

qi
∣∣xi − yi

∣∣
∣∣∣∣f(t, x1, x2, . . . , xm)− f(t, y1, y2, . . . , ym)

∣∣∣∣ ≤ m∑
j=1

λj
∣∣xj − yj

∣∣.
W2) : There exist nonnegative φ0 such that sup

{
g + fMd ln d

}
≤ φ0, with

(∑s
i=1 qi +M

∑m
j=1 λj

)
< 1, where

M =sup

{∣∣u(t, τ, x1, x2, . . . , xn)∣∣; t, τ ∈ [0, d], xi ∈ [−φ0, φ0] ∀1 ≤ i ≤ n

}
.

Theorem 3.1. Assuming (W1)-(W3) hold, the NIE (1.1) has at least one solution in X = C([0, d]).

Proof . Define the operator ∇ : B̄ϕ0
→ X as follows:

(∇x)(t) = g
(
t, (x(βi(t)))

s
i=1

)
+ f

(
t, (x(αj(t)))

m
j=1

) ∫ t

0

ln |t− τ |u
(
t, τ, (x(γk(t)))

n
k=1

)
dτ. (3.1)

We divided the proof into several steps.

Step 1. The operator ∇ is continuous on the ball Bφ0 . Consider arbitrary x, y ∈ Bφ0 and ε > 0 such that
∥x− y∥ < ε, we have

|(∇x)(t)− (∇y)(t)| =
∣∣∣∣g(t, (x(βi(t)))si=1
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+ f
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(
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k=1
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∣∣∣∣
+
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)]
dτ

∣∣∣∣
≤

∣∣∣∣g(t, (x(βi(t)))si=1
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qi
∣∣x(βi(t))− y(βi(t))
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j=1

λj
∣∣x(αj(t))− y(αj(t))

∣∣×M d ln d+ sup(f) d ln d ω(x, ε)

≤

 s∑
i=1

qi +M d ln d

m∑
j=1

λj

 ∥x− y∥+ sup(f) d ln d ω(x, ε),
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where

sup(f) =

{∣∣f(t, x1, x2, . . . , xm)
∣∣ : t ∈ [0, d], xi ∈ [−φ0, φ0] for1 ≤ i ≤ n

}
,

ω(x, ε) = sup

{∣∣u(t, τ, x1, x2, . . . , xn)− u(t, τ, y1, y2, . . . , yn)
∣∣; t, τ ∈ [0, d], xi, yi ∈ [−φ0, φ0] for1 ≤ i ≤ n, ∥x− y∥ ≤ ε

}
.

The uniformly continuously u = u(t, τ, x1, x2, . . . , xn) on [0, d]2 × [−φ0, φ0]
n implies that ω(x, ε) → 0 as ε → 0.

Then, the operator ∇ is continuous on B̄φ0 .

Step 2. We show that the operator ∇ fulfils the condensing map in view of measure µ. For arbitrary ε > 0 and
x ∈ Ψ ⊂ X is bounded set and t1, t2 ∈ [0, d] such that |t2 − t1| ≤ ε, we obtain∣∣∣∣(∇x)(t2)− (∇x)(t1)

∣∣∣∣
=

∣∣∣∣g(t2, (x(βi(t2)))si=1

)
+ f

(
t2, (x(αj(t2)))

m
j=1
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0

ln |t2 − τ |u
(
t2, τ, (x(γk(τ)))

n
k=1

)
dτ

− g
(
t1, (x(βi(t1)))

s
i=1

)
− f

(
t1, (x(αj(t1)))
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) ∫ t1

0

ln |t1 − τ |u
(
t1, τ, (x(γk(τ)))

n
k=1

)
dτ

∣∣∣∣
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∣∣∣∣g(t2, (x(βi(t2)))si=1

)
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(
t2, (x(βi(t1)))

s
i=1

)∣∣∣∣+ ∣∣∣∣g(t2, (x(βi(t1)))si=1

)
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(
t1, x

s
i=1(βi(t1))

)∣∣∣∣+∣∣∣∣f(t2, (x(αj(t2)))
m
j=1
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0

ln |t− τ2|u
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0
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(
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n
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s
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)∣∣∣∣+ ∣∣∣∣g(t2, (x(βi(t1)))si=1

)
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(
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s
i=1

)∣∣∣∣+
+

{∣∣∣∣f(t2, (x(αj(t2)))
m
j=1
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(
t2, (x(αj(t1)))

m
j=1
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m
j=1
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(
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0
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(
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+

∣∣∣∣f(t1, (x(αj(t1)))
m
j=1

) ∫ t2

0

ln |t2 − τ |
{
u
(
t2, τ, (x(γk(τ)))

n
k=1

)
− u

(
t1, τ, (x(γk(τ)))

n
k=1

)}
dτ

∣∣∣∣
+

∣∣∣∣f(t1, (x(αj(t1)))
m
j=1

) ∫ t2

0

u
(
t1, τ, (x(γk(τ)))

n
k=1

)(
ln(t2 − τ)− ln(t1 − τ)

)
dτ

∣∣∣∣
+

∣∣∣∣f(t1, (x(αj(t1)))
m
j=1

) ∫ t2

t1

ln |t1 − τ |u
(
t1, τ, (x(γk(τ)))

n
k=1

)
dτ

∣∣∣∣
≤

s∑
i=1

qi
∣∣x(βi(t2))− x(βi(t1))

∣∣+ ωg(ε) +

( m∑
j=1

λj
∣∣x(αj(t2))− x(αj(t1))

∣∣+ ωf (ε)

)
× d ln d M

+ sup(f)|t2 ln t2
∣∣ωu(ε) + sup(f)M |t2 − t1|+ sup(f)t2|t2 − t1|+ sup(f)|t2 − t1| ln |t2 − t1|,

where

ωf (ε) = sup

{∣∣f(t2, x1, x2, . . . , xm)− f(t1, x1, x2, . . . , xm)| : t2, t1 ∈ [0, d], xi ∈ [−φ0, φ0], for 1 ≤ i ≤ m, |t2 − t1| ≤ ε

}
,

ωg(ε) = sup

{∣∣g(t2, x1, x2, . . . , xs)− g(t1, x1, x2, . . . , xs)| : t2, t1 ∈ [0, d], xj ∈ [−φ0, φ0], for 1 ≤ j ≤ m, |t2 − t1| ≤ ε

}
,

ωu(ε) = sup

{∣∣u(t2, τ, x1, x2, . . . , xn)− f(t1, τ, x1, x2, . . . , xn)| : t2, t1 ∈ [0, d], xk ∈ [−φ0, φ0],

for 1 ≤ k ≤ m, |t2 − t1| ≤ ε

}
.
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From the above inequalities, we can conclude

ω(∇x, ε) ≤
s∑

i=1

qiω(x, ω(β, ε)) + ωg(ε) +

( m∑
j=1

λjω(x, ω(α, ε)) + ωf (ε)

)
Md ln d

+ sup(f)|t2 ln t2
∣∣ωu(ε) + ε sup(f)M + ε sup(f)t2 + ε sup(f) ln ε.

By taking supremum over Ψ and ε→ 0, we obtain

µ(∇Ψ) ≤
( s∑
i=1

qi +M

m∑
j=1

λj
)
µ(Ψ). (3.2)

Assumption (W3) together (2.5) implies that ∇ is a condensing map.

Step 3. Suppose that x ∈ ∂m̄φ0
and if ∇x = ζx then we get ∥∇x∥ = ζ∥x∥ = ζφ0. Thus, (W3) implies that∣∣∣∣(∇x)(t)∣∣∣∣ =g(t, (x(βi(t)))si=1

)
+ f

(
t, (x(αj(t)))

m
j=1

) ∫ t

0

ln |t− τ |u
(
t, τ, (x(γk(t)))

n
k=1

)
dτ (3.3)

≤ φ0,

therefore, ∥∇x∥ ≤ φ0 implies that ζ ≤ 1. for all t ∈ [0, d], hence ∥Gz∥ ≤ t0, so this show that k ≤ 1. □

4 Application via illustrative example

In this section, we present an example of functional integral equations to illustrate the usefulness of our result.

Example 4.1. Consider the following NIEs in X = C([0, 1]), as follows

x(t) = t4

3(1+t4)

(
x(
√
t) + x(t2)

)
+ t2+x(

√
sin t)

12(1+t)

∫ 1

0

ln |t− τ |
(

3
√
x(τ) + ln(1 + |x(τ2)|)

)
dτ. (4.1)

Here,

� β1(t) =
√
t, β2(t) = t2, α1(t) =

√
sin t, γ1(τ) = τ , and γ2(τ) = τ2,

� g(t, x1, x2) =
t4

3(1+t4)x1 +
t4

3(1+t4)x2, f(t, x1) =
t2+x1

12(1+t) ,

� u(t, τ, x1, x2) = 3
√
x1 + ln(1 + |x2|).

It is evident that ∣∣∣∣g(t, x1, x2)− g(t, y1, y2)

∣∣∣∣ = ∣∣∣∣ t4

3(1+t4)x1 +
t4

3(1+t4)x2 −
t4

3(1+t4)y1 −
t4

3(1+t4)y2

∣∣∣∣
≤ 1

3

∣∣x1 − y1
∣∣+ 1

3

∣∣x2 − y2
∣∣

and ∣∣∣∣f(t, x1)− f(t, y1)

∣∣∣∣ = ∣∣∣∣ t2+x1

12(1+t) −
t2+y1

12(1+t)

∣∣∣∣ ≤ 1
12

∣∣x1 − y1

∣∣∣∣.
Based on the above inequalities, it can be deduced that q1 = 1

3 , q2 = 1
3 , λ1 = 1

12 . In order to verify assumption
(W3) observe that the inequality appearing in this assumption has the form

2
3φ0 +

φ0+1
12

(
3
√
φ0 + ln(1 + |φ0|)

)
≤ φ0.

It is easy to verify that the number φ0 ∈ [0.3103, 4.01835]. Hence, all conditions of Theorem3.1 are fulfill, then the
equation (4.1) has at least one solution in C[0, 1].
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5 Conclusion

The central aim in the theory of integral equations revolves around the existence and uniqueness of solutions.
Therefore, several researchers have shared their findings and methodologies in this field. In alignment with this, the
authors of this paper present a new approach using measures of noncompactness and the P-theorem for a nonlinear
weakly singular integral equation. This method offers several advantages over similar techniques, including fewer
conditions and no need to confirm the operator’s mapping of a closed convex subset onto itself. The outcomes of this
research are diverse and noteworthy, making it intriguing and deserving of further investigation in subsequent studies.
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