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Abstract

In this paper, we study the multiobjective semi-infinite programming problem with inequality constraints, in which the
objective and the constraint functions are not necessarily continuous. If Ω is a local cone approximation, we consider
the notion of Ω-subdifferential for functions. Then, we present the Karush-Kuhn-Tucker type necessary and sufficient
optimality conditions under an Abadie type qualification for the considered problems via Ω-subdifferential.
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1 Introduction

A multiobjective semi-infinite programming (MSIP, in brief) is an optimization problem where two or more ob-
jectives are to be minimized on a set of feasible solutions described by arbitrarily many constraint functions. Since
this type of problem arises in many engineering problems (e.g., robotics, mathematical physics, optimal control, trans-
portation problems, Chebyshev approximation, etc) became an active field of research in applied mathematics; see
[6, 10, 23].

In this paper, we shall use the concept of local cone approximation and the associated subdifferential in order to
construct Karush-Kuhn-Tucker (KKT, in short) type necessary and sufficient optimality conditions for the following
multiobjective semi-infinite programming problems:

(P ) : inf ϑ(x) :=
(
ϑ1(x), . . . , ϑp(x)

)
s.t. ϕj(x) ≤ 0, j ∈ J,

where the nonempty index set J is arbitrary (not necessarily finite or equipped with some topology), and the objective
functions ϑi as i ∈ I := {1, . . . , p} and the constraint functions ϕj as j ∈ J are defined from Rn to R (not necessarily
differentiable or locally Lipschitz or convex or continuous). When J is finite, (P ) coincides with the classic multiobjec-
tive optimization problem (MOP, in brief). The KKT optimality conditions are definitely among the most important
results in MOP theory; see the books [3, 4] and their references. When p = 1, MSIP reduces to the semi-infinite
programming problem (SIP, in brief). Optimality conditions for SIP with continuous functions have been studied
by many authors; see for example [6, 23] in linear case, [6, 25] in convex case, [21] in quasiconvex case, [13] in DC
(difference of convex functions) case, [10] in smooth case, and [12, 18, 14, 17, 26] in locally Lipshitz case. The only
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paper that presents some optimality conditions for SIP with arbitrary functions (continuous or noncontinuous) has
been written by Kanzi [15]. The results of [15] are stated via Ω-subdifferential where Ω is a local cone approximation.

There are several works available dealing with optimality conditions for MSIP. For instance, for differentiable
MOSIPs, some optimality conditions in Fritz-John (FJ, briefly) type have been presented by Caristi et al. [1]. Kanzi
and his coauthors present some KKT optimality conditions for MSIP with linear, convex, and locally Lipschitz functions
in [5], [20] and [2, 9, 16], respectively. Thus, it should be useful and interesting to study optimality conditions for
MSIP with an arbitrary function (continuous or noncontinuous). As the best as our knowledge goes, no paper presents
optimality conditions for MSIP via Ω-subdifferential where Ω is a local cone approximation. As the extension of
Kanzi’s results in [15] to multiobjective SIP, this paper fulls this gap.

The rest of the paper is organized as follows. In Section 2, we present basic definitions as well as some preliminary
results which are broadly employed in the paper. In Section 3, we present our main results, and these new results are
compared with earlier works in Section 4.

2 Notations and Preliminaries

Given a nonempty set S ⊆ Rn, we denote by S, intS, conv(S), and cone(S) the closure of S, the interior of S, the
convex hull of S, and the convex cone (containing the origin) of S, respectively. The polar cone of S is defined by

S≤ := {d ∈ Rn | ⟨x, d⟩ ≤ 0, ∀x ∈ S},

where ⟨., .⟩ exhibits the standard inner product in Rn. Notice that S≤ is always a closed convex cone. The bipolar

Theorem states that
(
S≤)≤ = cone(S), where cone(S) denotes the closed convex cone of S (see [11]).

Theorem 2.1. [11] For a given S ⊆ Rn,

� if S is finite, then cone(S) is closed.

� if S is compact and 0n /∈ conv(S), then cone(S) is closed.

Theorem 2.2. [11] If the convex function Θ : Rn → R attaints its minimum of a convex set C ⊆ Rn at x0 ∈ C, then

0n ∈ ∂Θ(x0) +N(C, x0),

where 0n shows the zero vector in Rn, N(C, x0) denotes the normal cone on C at x0, defined as

N(C, x0) :=
{
y ∈ Rn | ⟨y, x− x0⟩ ≤ 0, ∀x ∈ C

}
,

and ∂Θ(x0) denotes the convex subdifferential of Θ at x0, i.e.,

∂Θ(x0) := {ξ ∈ Rn | Θ(x)−Θ(x0) ≥
〈
ξ, x− x0

〉
, ∀x ∈ Rn}.

As a consequence of bipolar Theorem, we recall from [11, pp. 137] that if C ⊆ Rn is an arbitrary set, then

N(C≤, 0n) = cone(C). (2.1)

It should be mentioned [11] that if Π := {Cγ | γ ∈ Γ} is a collection of convex sets in Rn, then:

cone
( ⋃
γ∈Γ

Cγ

)
=

⋃
{Cγ1

,...,Cγn}⊆Π

⋃
(λ1,...,λn)∈Rn

+

n∑
ν=1

λνCγν , (2.2)

where R+ denotes the set of nonnegative real numbers.

Definition 2.3. A set-valued mapping Ω : 2R
n×Rn → 2R

n

is called a local cone approximation, if to each set S ⊆ Rn

and to each point x0 ∈ Rn a cone Ω(S, x0) is associated, with the following properties:

•Ω(S − x0, 0n) = Ω(S, x0).

•Ω
(
T (S), T (x0)

)
= T

(
Ω(S, x0)

)
, for each non-singular linear mapping T : Rn → Rn.

•Ω(S ∩ Ux0 , x0) = Ω(S, x0), for each neighborhood Ux0 of x0.

•Ω(S, x0) = ∅, for all x0 /∈ S.

•Ω(S, x0) = Rn, for all x0 ∈ int(S).

•Ω(S, x0) + C ⊆ Ω(S, x0), for each cone C ⊆ Rn with S + C ⊆ S.
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Two important examples for local cone approximation are the contingent cone T (S, x), and the interior directions
cone I(S, x), with are defined, respectively, as follows:

T (S, x0) :=
{
z ∈ Rn | ∃tk ↓ 0,∃zk → z, such that x0 + tkzk ∈ S ∀t ∈ N

}
,

I(S, x0) :=
{
z ∈ Rn | ∃Uz,∃λ > 0,∀t ∈ (0, λ),∀z∗ ∈ Uz such that x0 + tz∗ ∈ S

}
,

where Uz denotes the neighborhood of z.

Definition 2.4. Let Ω be a local cone approximation. If f is a given function from Rn to R and x0 ∈ Rn, then

� the extended real-valued function fΩ(x0; .) : Rn → R ∪ {±∞}, defined by

fΩ(x0; v) := inf
{
r ∈ R | (v, r) ∈ Ω

(
epif, (x0, f(x0)

)}
,

is called the Ω-directional derivative of f at x0, where epif denotes the epigraph of f , i.e.,

epif :=
{
(x, r) ∈ Rn × R | f(x) ≤ r

}
.

� the set
∂Ωf(x0) :=

{
ξ ∈ Rn | ⟨ξ, v⟩ ≤ fΩ(x0; v) ∀v ∈ Rn

}
,

is called the Ω-subdifferential of f at x0.

Definition 2.5. A local cone approximation Ω is said to be perfect if for all S ⊆ Rn and x0 ∈ Rn, Ω(S, x0) is convex
and

int
(
Ω(S, x0)

)
⊆ I(S, x0).

Definition 2.6. Let f : Rn → R and x0 ∈ Rn be given. A perfect local cone approximation Ω is said to be fx0-perfect
if

f int(Ω)(x0; 0n) = 0.

Definition 2.7. A local cone approximation Ω is said to be additive if from its fx0
1 -perfectness and fx0

2 -perfectness
we can conclude its (f1 + f2)

x0-perfectness, i.e.,

f
int(Ω)
i (x0; 0n) = 0, i = 1, 2, then (f1 + f2)

int(Ω)(x0; 0n) = 0.

An important example for additive local cone approximation is the Clark tangent cone T C(S, x), defined as follows:

T C(S, x0) :=
{
z ∈ Rn | ∀xk

S−→ x0,∀tk ↓ 0, ∃zk → z, such that xk + tkzk ∈ S ∀t ∈ N
}
,

where xk
S−→ x0 means that {xk} is a sequence in S converging to x0. Also, T C is gx̄-perfect for each locally

Lipschitz function g : Rn → R and x̄ ∈ Rn; see [4] for details. In fact, if we choose Ω = T C, that the inclusion
intT C(S, x̄) ⊆ I(S, x̄) holds. Moreover, regarding the associated Ω-directional derivatives, for a locally Lipschitz
function g : Rn → R

fT C(x̄; v) = lim sup
t→0+ x→x̄

f(x+ tv)− f(x)

t
, ∀v ∈ Rn,

∂T Cf(x̄) =
{
ξ ∈ Rn | ⟨ξ, v⟩ ≤ fT C(x̄; v), ∀v ∈ Rn

}
,

and f intT C(x̄; 0n) = 0. In the following Theorems we summarize some important properties of the Ω-directional
derivative and the Ω-subdifferential which are widely used in what follows.

Theorem 2.8. [4, Section 4] Suppose that Ω is a fx0-perfect local cone approximation. Then

(a) v → fΩ(x0; v) is a convex function.

(b) ∂Ωf(x0) is a compact set.
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(c) fΩ(x0; v) = max
{
⟨ξ, v⟩ | ξ ∈ ∂Ωf(x0)

}
, for all v ∈ Rn.

(d) ∂int(Ω)f(x0) = ∂Ωf(x0) = ∂ Ωf(x0).

Theorem 2.9. [15, Lemma 3.1] Suppose that Ω is a fx0 -perfect local cone approximation. Then

f int(Ω)(x0; v) ≥ lim sup
t↓0 u→v

f(x0 + tu)− f(x0)

t
, ∀v ∈ Rn.

Notice that the subadditive formula

∂Ω
(
f1 + f2

)
(x0) ⊆ ∂Ωf1(x0) + ∂Ωf2(x0), (2.3)

is not valid for Ω-subdifferential in general.

3 Main Results

At starting point of this section, we present some properties of Ω-directional derivative of functions.

Theorem 3.1. Let f : Rn → R and x0 ∈ Rn be given. If Ω is a local cone approximation, for each λ ≥ 0 we have:

• (λf)Ω(x0; v) = λfΩ(x0; v), for all v ∈ Rn.

• ∂Ω(λf)(x0) = λ∂Ωf(x0).

Proof .

• Let λ ≥ 0 be fixed. We define the linear function Tλ : Rn+1 → Rn+1 as Tλ(u, τ) := (u, λτ), for all (u, τ) ∈ Rn × R.
By second property of Definition 2.3, we have

Ω
(
epi(λf),

(
x0, λf(x0)

))
= Ω

(
Tλ(epif), Tλ

(
x0, f(x0)

))
= Tλ

(
Ω
(
epif,

(
x0, f(x0)

)))
=

{
(u, λτ) | (u, τ) ∈ Ω

(
epif,

(
x0, f(x0)

))}
.

From this we imply that (λf)Ω(x0; v) = λfΩ(x0; v), for all v ∈ Rn.

• Since the equality is clearly true for λ = 0, we suppose that λ > 0. Owing to above equality, we get

∂Ω(λf)(x0) =
{
ξ ∈ Rn | ⟨ξ, v⟩ ≤ (λf)Ω(x0; v) ∀v ∈ Rn

}
=

{
ξ ∈ Rn | ⟨ξ, v⟩ ≤ λfΩ(x0; v) ∀v ∈ Rn

}
=

{
ξ ∈ Rn |

〈
ξ

λ
, v

〉
≤ fΩ(x0; v) ∀v ∈ Rn

}
=

{
λξ′ ∈ Rn | ⟨ξ′, v⟩ ≤ fΩ(x0; v) ∀v ∈ Rn

}
= λ∂Ωf(x0).

□

The following Corollary is a direct consequent of Theorem 3.1.

Corollary 3.2. Let f : Rn → R, x0 ∈ Rn, and λ > 0 be given. If Ω is a fx0-perfect local cone approximation, then
Ω is also a (λf)x0-perfect local cone approximation.
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Now, we introduce some symbols and recall a definition. The feasible set of problem (P ) is denoted by 𭟋, i.e.,

𭟋 :=
{
x ∈ Rn | ϕj(x) ≤ 0, j ∈ J

}
.

For each x̂ ∈ 𭟋, with convention
⋃

∅Xt = ∅, put

J(x̂) :=
{
j ∈ J | ϕj(x̂) = 0

}
, and BΩ(x̂) :=

⋃
j∈J(x̂) ∂Ωϕj(x̂).

Definition 3.3. A feasible point x̂ ∈ 𭟋 is called a properly efficient solution to (P ) when there exist some scalars
αi > 0 as i ∈ I such that

p∑
i=1

αiϑi(x̂) ≤
p∑

i=1

αiϑi(x), ∀x ∈ 𭟋.

Definition 3.4. We say that (P ) satisfies the Ω-Abadie qualification (Ω-AQ, in brief) at x̂ ∈ 𭟋 if(
BΩ(x̂)

)≤ ⊆ T (𭟋, x̂).

Now, we can present our main result.

Theorem 3.5 (Necessary Optimality Condition). Assume that x̂ ∈ 𭟋 is a properly efficient solution of (P ), and
the additive local cone approximation Ω is ϑx̂i -perfect as i ∈ I. If the Ω-AQ is satisfied at x̂, then there exist some
positive scalars αi > 0 (for i ∈ I) such that

0n ∈ ∂Ω

( p∑
i=1

αiϑi

)
(x̂) + cone

(
BΩ(x̂)

)
. (3.1)

If in addition, cone
(
BΩ(x̂)

)
is a closed cone, then there exist some non-negative numbers βj ≥ 0 (j ∈ J(x̂)), with

finitely many of them being nonzero, such that

0n ∈ ∂Ω

( p∑
i=1

αiϑi

)
(x̂) +

∑
j∈J(x̂)

βj∂Ωϕj(x̂). (3.2)

If in addition, the subadditive formula (2.3) holds for Ω, we have

0n ∈
p∑

i=1

αi∂Ωϑi(x̂) +
∑

j∈J(x̂)

βj∂Ωϕj(x̂). (3.3)

Proof . Since x̂ is a properly efficient solution of (P ), we can find some positive scalars λi > 0 as i ∈ I such that

p∑
i=1

αiϑi(x̂) ≤
p∑

i=1

αiϑix), ∀x ∈ 𭟋,

and hence, x̂ is a minimizer of function

p∑
i=1

αiϑi on 𭟋. Let v∗ ∈ T (𭟋, x̂) be given. Then, there exists a sequence

{vk} ⊆ Rn converging to v∗ and a positive sequence {tk} ⊆ R+ converging to zero such that x̂ + tkvk ∈ 𭟋 for each
k ∈ N. By virtue of Theorem 2.9 we get

( p∑
i=1

αiϑi

)int(Ω)

(x̂; v∗) ≥ lim sup
t↓0 u→v∗

( p∑
i=1

αiϑi

)
(x̂+ tu)−

( p∑
i=1

αiϑi

)
(x̂)

t

≥ lim sup
k→∞

( p∑
i=1

αiϑi

)
(x̂+ tkvk)−

( p∑
i=1

αiϑi

)
(x̂)

tk

≥ 0, (3.4)
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where the final inequality holds by local minimality of x̂ for

p∑
i=1

αiϑi on 𭟋. Let v ∈
(
cone

(
BΩ(x̂)

)≤
. Since

(
cone

(
BΩ(x̂)

)≤
=

(
BΩ(x̂)

)≤
and the Ω-AQ holds, we have v ∈ T (𭟋, x̂), and hence

( p∑
i=1

αiϑi

)int(Ω)

(x̂; v) ≥ 0 by

(3.4). Thus, ( p∑
i=1

αiϑi

)int(Ω)

(x̂; v) ≥ 0, ∀v ∈
(
cone

(
BΩ(x̂)

)≤
. (3.5)

Because ϑ
int(Ω)
i (x̂; 0n) = 0, we have (αiϑi)

int(Ω)(x̂; 0n) = 0 for i ∈ I by Theorem 3.1. From this and additivity

assumption of Ω, we get
( p∑

i=1

αiϑi

)int(Ω)

(x̂; 0n) = 0. This equality, (3.5), and the fact that 0n ∈
(
cone

(
BΩ(x̂)

)≤
(by

Definition of polar cone) imply that the following optimization problem has a local solution at ṽ := 0n:

min
( p∑

i=1

αiϑi

)int(Ω)

(x̂; v)

s.t. v ∈
(
cone

(
BΩ(x̂)

)≤
.

Since the objective function and the constraint set of the above problem are convex (see Theorem 2.8(a)), by
Theorem 2.2 we give

0n ∈ ∂
(( p∑

i=1

αiϑi

)int(Ω)

(x̂; ·)
)
(0n) +N

((
cone

(
BΩ(x̂)

)≤
, 0n

)
. (3.6)

At this point, owing to (2.1), we get

N
((
cone

(
BΩ(x̂)

)≤
, 0n

)
= cone

(
BΩ(x̂)

)
, (3.7)

and with regard to the Definition of ∂Ω, and
( p∑

i=1

αiϑi

)int(Ω)

(x̂; 0n) = 0, we have

∂
(( p∑

i=1

αiϑi

)int(Ω)

(x̂; ·)
)
(0n) =

{
ξ ∈ Rn |

( p∑
i=1

αiϑi

)int(Ω)

(x̂;w)−
( p∑

i=1

αiϑi

)int(Ω)

(x̂; 0n) ≥
〈
ξ, w − 0n

〉
, ∀ w ∈ Rn

}
=
{
ξ ∈ Rn |

( p∑
i=1

αiϑi

)int(Ω)

(x̂;w) ≥
〈
ξ, w

〉
, ∀ w ∈ Rn

}
=∂int(Ω)

( p∑
i=1

αiϑi

)
(x̂).

The above equality, (3.6) and (3.7), imply that

0n ∈ ∂int(Ω)

( p∑
i=1

αiϑi

)
(x̂) + cone

(
BΩ(x̂)

)
= ∂Ω

( p∑
i=1

αiϑi

)
(x̂) + cone

(
BΩ(x̂)

)
,

where the final equality holds by Theorem 2.8(d). Thus, (3.1) is proved. Consequently, if cone
(
BΩ(x̂)

)
is closed, then

0n ∈ ∂Ω

( p∑
i=1

αiϑi

)
(x̂) + cone

(
BΩ(x̂)

)
. (3.8)

The convexity of ∂Ωϕj(x̂) as j ∈ J(x̂) and (2.2) concludes that we can find some βj ≥ 0 as j ∈ J(x̂), with finitely
many of them being nonzero, such that

cone
(
BΩ(x̂)

)
=

∑
j∈J(x̂)

βj∂Ωϕj(x̂).
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The above equality and (3.8) imply

0n ∈ ∂Ω

( p∑
i=1

αiϑi

)
(x̂) +

∑
j∈J(x̂)

βj∂Ωϕj(x̂),

and hence, (3.2) is proved. If the subadditive formula (2.3) holds for Ω, we have

∂Ω

( p∑
i=1

αiϑi

)
(x̂) ⊆

p∑
i=1

αi∂Ωϑi(x̂),

and hence

0n ∈
p∑

i=1

αi∂Ωϑi(x̂) +
∑

j∈J(x̂)

βj∂Ωϕj(x̂).

Therefore, (3.3) is proved, and the proof is complete. □

For presenting the sufficient optimality condition, the following theorem and definition will be required.

Theorem 3.6. Let f1, f2 : Rn → R and x0 ∈ Rn be given. If the subadditive formula (2.3) holds for fx0

k -perfect local
cone approximation Ω as k = 1, 2, we have(

f1 + f2
)Ω

(x0; v) ≤ fΩ1 (x0; v) + fΩ2 (x0; v), ∀v ∈ Rn.

Proof . Owing to Theorem 2.8[c], for each v ∈ Rn we have(
f1 + f2

)Ω
(x0; v) = max

{
⟨ξ, v⟩ | ξ ∈ ∂Ω

(
f1 + f2

)
(x0)

}
≤ max

{
⟨ξ, v⟩ | ξ ∈ ∂Ωf1(x0) + ∂Ωf2(x0)

}
= max

{
⟨ξ1 + ξ2, v⟩ | ξ1 ∈ ∂Ωf1(x0), ξ2 ∈ ∂Ωf2(x0)

}
= max

({
⟨ξ1, v⟩ | ξ1 ∈ ∂Ωf1(x0)

}
+
{
⟨ξ2, v⟩ | ξ2 ∈ ∂Ωf2(x0)

})
≤ max

{
⟨ξ1, v⟩ | ξ1 ∈ ∂Ωf1(x0)

}
+max

{
⟨ξ2, v⟩ | ξ2 ∈ ∂Ωf2(x0)

}
= fΩ1 (x0; v) + fΩ2 (x0; v).

The proof is complete. □

Definition 3.7. Let Ω be a local cone approximation and η : Rn × Rn → Rn be a given function. The function
f : Rn → R is said to be Ωη- invex at x0 ∈ Rn when

f(x)− f(x0) ≥ fΩ
(
x0; η(x, x0)

)
, ∀x ∈ Rn.

Note that the above Definition is a generalization of η-invex functions, introduced in [7, 8, 24]. The following
simple Corollary will be used in sequel.

Corollary 3.8. Let f1, f2 : Rn → R and x0 ∈ Rn and nonnegative scalars λ1, λ2 be given. If the subadditive formula
(2.3) holds for fx0

k -perfect local cone approximation Ω and fk is Ωη- invex at x0 for k = 1, 2, then λ1f1 + λ2f2 is Ωη-
invex at x0.

Proof . Since for each x ∈ Rn, we have

fk(x)− fk(x0) ≥ fΩk
(
x0; η(x, x0)

)
, k = 1, 2,

then
λ1

(
f1(x)− f1(x0)

)
+ λ2

(
f2(x)− f2(x0)

)
≥ λ1f

Ω
1

(
x0; η(x, x0)

)
+ λ2f

Ω
2

(
x0; η(x, x0)

)
.

Owing to the Theorems (3.1) and (3.6), the above inequality implies that(
λ1f1 + λ2 + f2

)
(x)−

(
λ1f1 + λ2 + f2

)
(x0) ≥

(
λ1f1 + λ2 + f2

)Ω(
x0; η(x, x0)

)
,

and the result is proved. □

Now, the sufficient optimality condition can be stated as follows.
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Theorem 3.9 (Sufficient Optimality Condition). Suppose that the subadditive formula (2.3) holds for ϑx̂i -perfect
local cone approximation Ω and ϑi is Ωη- invex at x̂ ∈ 𭟋 for i ∈ I. Furthermore, assume that there exist a finite index

set Ĵ ⊆ J(x̂), scalars αi > 0 for i ∈ I, and numbers β ≥ 0 for j ∈ Ĵ such that

0n ∈
p∑

i=1

αi∂Ωϑi(x̂) +
∑
j∈Ĵ

βj∂Ωϕj(x̂).

If the ϕj (for j ∈ Ĵ) functions are Ωη- invex at x̂, then x̂ is a properly efficient solution for (P ).

Proof . According to the assumption, we can find some ξ̂i ∈ ∂Ωϑi(x̂) and ζ̂j ∈ ∂Ωϕj(x̂) as (i, j) ∈ I × Ĵ such that

p∑
i=1

αiξ̂i +
∑
j∈Ĵ

βj ζ̂j = 0n. (3.9)

We claim that
p∑

i=1

αiϑi(x̂) ≤
p∑

i=1

αiϑi(x), ∀x ∈ 𭟋. (3.10)

Suppose on the contrary, there exists x∗ ∈ 𭟋 such that

p∑
i=1

αiϑi(x̂) >

p∑
i=1

αiϑi(x
∗). This inequality, the Ωη- invexity

of ϑi as i ∈ I, the validity of subadditive formula (2.3), Theorem 2.8, and Corollary (3.8) imply that

〈 p∑
i=1

αiξ̂i, η(x
∗, x̂)

〉
≤ max

{〈 p∑
i=1

αiξi, η(x
∗, x̂)

〉
|

p∑
i=1

αiξi ∈ ∂Ω

( p∑
i=1

αiϑi

)
(x̂)

}
≤ max

{ p∑
i=1

αi

〈
ξi, η(x

∗, x̂)
〉
| ξi ∈ ∂Ωϑi(x̂)

}
≤

p∑
i=1

αi max
{〈
ξi, η(x

∗, x̂)
〉
| ξi ∈ ∂Ωϑi(x̂)

}
=

p∑
i=1

αiϑ
Ω
i

(
x̂, η(x∗, x̂)

)
=

( p∑
i=1

αiϑi

)Ω(
x̂, η(x∗, x̂)

)
≤

( p∑
i=1

αiϑi

)
(x∗)−

( p∑
i=1

αiϑi

)
(x̂) < 0. (3.11)

On the other hand, multiplying (3.9) by η(x∗, x̂), we get

〈 p∑
i=1

αiξ̂i, η(x
∗, x̂)

〉
+
〈∑

j∈Ĵ

βj ζ̂j , η(x
∗, x̂)

〉
= 0.

This equality and virtue of (3.11) conclude that
〈∑

j∈Ĵ

βj ζ̂j , η(x
∗, x̂)

〉
> 0, and hence,

〈
ζ̂j0 , η(x

∗, x̂)
〉
> 0 for some

j0 ∈ Ĵ with βj0 > 0. Now, Ωη- invexity of ϕj0 and j0 ∈ Ĵ ⊆ J(x̂) imply that

ϕj0(x
∗) = ϕj0(x

∗)− ϕj0(x̂) ≥
〈
ζ̂j0 , η(x

∗, x̂)
〉
> 0.

This is contradiction, since it was assumed that x∗ ∈ 𭟋. This contradiction proves the claim (3.10), and the result
is proved. □
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4 Comparison with Earlier Works

In this section we compare our developments with some known results. We suppose that the functions ϑi and ϕj
as (i, j) ∈ I × J are locally Lipschitz. Since T C is a additive local cone approximation which is ϑx̂i -perfect for all
i ∈ I, and subadditive formula (2.3) holds, the following Theorem, which is proved in [12], is a direct consequence of
Theorem 3.5.

Theorem 4.1. Assume that x̂ ∈ 𭟋 is a properly efficient solution of (P ) with locally Lipschitz functions. If the
T C-AQ is satisfied at x̂, then there exist some positive scalars αi > 0 (for i ∈ I) such that

0n ∈
p∑

i=1

αi∂T Cϑi(x̂) + cone
(
BT C(x̂)

)
.

If in addition, cone
(
BT C(x̂)

)
is a closed cone, then there exist some non-negative numbers βj ≥ 0 (j ∈ J(x̂)), with

finitely many of them being nonzero, such that

0n ∈
p∑

i=1

αi∂T Cϑi(x̂) +
∑

j∈J(x̂)

βj∂T Cϕj(x̂). (4.1)

Note that the above Theorem has been proven in [9] under a qualification condition that is stronger than T C-AQ.
So, a part of [9] is an Corollary of Theorem 4.1. Also, if we consider an arbitrary index set T and add the equality
constraints ψt(x) = 0 as t ∈ T to (P ) for locally Lipschitz functions ψ : Rn → R, by rewriting each ψt(x) = 0
as ψt(x) ≤ 0 and −ψt(x) ≤ 0, we find the necessary optimality conditions that are presented in [19]. Moreover,
taking p = 1 in (P ), we obtain the results of [14] from Theorem 4.1. Observe that, the sufficient conditions that are
stated in [12], are consequences of Theorem 3.9. We should mention that, by tacking the local cone approximation Ω,
Theorems 3.5 and 3.9 imply the necessary and sufficient optimality conditions under Meachel-Penot, Dini-Hadamard,
and Clarke-Rockafallar subdifferentials; see [4] for study the Definitions and properties. Also, if the functions ϑi and
ϕj are convex for i ∈ I and j ∈ J , Theorems 3.5 and 3.9 conclude the results in [5]. As a very special case, we can
deduce the results of [20] for linear multiobjective semi-infinite optimization problem, from Theorems 3.5 and 3.9.
The following example shows that the condition of closedness of cone

(
BΩ(x̂)

)
can not be waved for getting (4.1) in

Theorem 4.1.

Example 4.2. Suppose that ϑ1(x) = ϑ2(x) = −x1, n := 2, J := N ∪ {0}, and ϕj(x) is the support function of the
following set

Uj = {x ∈ R2 | x21 + (x2 − 1− j)2 ≤ (1 + j)2, x1 ≥ 0, x2 ≥ 0}.

The set of feasible solutions for the problem (P ) is

S = {x ∈ R2 | x1 ≤ 0, x2 ≤ 0 }.

It is easy to verify that ϑi and ϕj as i ∈ I and j ∈ J are locally Lipschitz functions and x̂ = 02 is a properly
efficient solution for (P ). We observe that

T C(S, x̂) = S, ∂T Cϕj(x̂) = Uj , ∂T Cϑ1(x̂) = ∂T Cϑ2(x̂) = {(−1, 0)},

cone
(
BT C(x̂)

)
= {x ∈ R2 | x1 ≥ 0, x2 < 0} ∪ {02}.

Since
(
BT C(x̂)

)≤
= S, T C-AQ is satisfied at x̂. Note that cone

(
BT C(x̂)

)
is not closed. It is easy to see that there

is no sequence of scalars as in Theorem 4.1 satisfying (4.1). Moreover, a short calculation shows that for α1 = α2 =
1

2
we have

02 ∈ α1∂T Cϑ1(x̂) + α2∂T Cϑ2(x̂) + cone
(
BT C(x̂)

)
.

As the final point, we observe that the restrictive assumption in Theorem 4.1 is the closedness of cone
(
BT C(x̂)

)
.

Let us mention some important conditions that ensure the closedness of cone
(
BT C(x̂)

)
.

(i): If J is a finite set and ϕj functions are continuously differentiable as j ∈ J , their Clarke subdifferentials contain
single element, and so, the closedness condition of cone

(
BT C(x̂)

)
automatically holds by Theorem 2.1.
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(ii): Whenever J is a finite set and the functions ϕj are piecewise affine, their Clarke subdifferentials are (unions of)
points and polyhedrons, and hence, cone

(
BT C(x̂)

)
is finitely generated and naturally closed.

(iii): According to compactness of Clarke subdifferential, and using Theorem 2.1, we conclude that if 0n /∈ conv
(
BT C(x̂)

)
,

then cone
(
BT C(x̂)

)
is closed.
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