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Abstract

Structural equation models have been extensively applied to medical, and social sciences, the most important latent
variable models are structural equation models. Structural equation modeling (SEM) is a popular multivariate tech-
nique for analyzing the interrelationships between latent variables. In general, structural equation models includes of
a measurement equation to characterize latent variables through multiple observable variables and a mean regression
type structural equation to investigate how the explanatory latent variables affect the outcomes of interest. In this
study, we apply Bayesian least absolute shrinkage and selection operator (Lasso) procedure to conduct estimation in
the Quantile SEM, and compare this estimator with estimator of Bayesian Quantile Structural equation model, and
apply the use of the Markov chain Monte Carlo (MCMC) method by Gibbs sampler to conduct Bayesian inference.
The simulation was implemented assuming-different distributions of the error term for the structural equations model
and values of the parameters for small sample size.
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1 Introduction
1.1 Structural equation modeling (SEM)

Structural equation modelling (SEM) is a versatile class of models that allow for complicated modelling of corre-
lated multivariate data to examine interrelationships between observable and latent variables. Many extensively used
statistical models, such as regression, factor analysis, canonical correlations, and analysis of variance and covariance,
are included in this class of models, which is well recognized in social and psychological sciences [10].

Most applications of SEMs are related to the study of interrelationships among latent variables. In particular,
they are useful for examining the effects of explanatory latent variables on outcome latent variables of interest. In
such situations, researchers usually consider what observed variables should be selected from the whole data set for
the analysis and how these observed variables are grouped to form latent variables.

The structural equation model consists of two components, as follows:
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1. Let y; = (Yi1,-,¥ip)T be a p x 1 vector representing the ith observation in a random sample of size n, and
w; = (Wi1, .., wiq)T be a g x 1 vector of latent variables with (¢ < p). The link between y; and w; is defined by
the following measurement equation:

y; = Ac; + Aw; + &4, 1=1,..,n (1.1)

where A(p x r1) and A(p x ¢) are matrices of unknown coefficients, ¢;(r1 x 1) is a vector of fixed covariates, and
g;(p x 1) is a random vector of error terms.
2. n; can be assessed in the following structural equation

Then the quantile SEM is defined by Equations and [12]. To analyze the interrelationship among
latent variables, let partition w; = (n!,¢2)T, where 1;(q; x 1) denote outcome latent variables and &;(ga x 1) is
explanatory latent variables. To simplify, we assume that ¢; = 1. The primary goal of SEM is to analyze the
behaviour of latent variable n; given the information n contained in a set of explanatory latent variables &;.

The purpose of the measurement equation in an SEM is to relate the latent variables in w to the observed variables
in y. It represents the link between observed and latent variables, through the specified factor loading matrix A, the
vector of measurement error € is used to take the residual error into account. The important issue in formulating the
measurement equation is to specify the structure of the factor loading matrix A, based on the determination of the
observed variables in the study. Any element of A can be a free parameter or a fixed parameter with a predetermined
value.

The positions and the pre-assigned values of the fixed parameters are decided based on the prior knowledge of the
observed and latent variables, and they are also related to the interpretations of the latent variables. It can also be
known from previous studies [10].

2 Quantile structural equation model (QSEM)

The primary aim of SEM is to analyze the behaviour of the latent variable n; given the information contained in a
set of explanatory latent variables &;. This is done in traditional SEM by calculating the conditional mean of (1;\&;)
and fixed covariates d;(r2 x 1) as follows [12]:

where B(gq1 X r2) and I'(g; X ¢g2) are the matrices of unknown coefficients to be estimated. The conditional mean does
not provide a complete description of the interrelationship among latent variables. A more comprehensive analysis
can be achieved from a combination of Q(n;\&;,d;), the conditional quantile of n;, under various quantiles 7 € (0,1)
as follows:

Qr(ni\&i,di) = Brd; +T:&;, i=1,...n. (2.2)

The coefficient matrices B, and I', have a subscript 7 because they might not be equal for different quantiles.
Unlike in conventional SEMs, here the distribution of §; is undefined. The only assumption is that the 7-quantile
of d; is 0 to guarantee that holds. The rest of the paper is organized as follows. In section [2 we present
the Quantile Structural equation model (QSEM). In section [3| we present Bayesian inference of QSEM model with
display the conditional distributions of parameters and latent variable within the Bayesian analysis, in section [d] we
present Regularization technique in Bayesian Quantile SEM (Bayesian lasso) and display the conditional distributions
of parameters and latent variable within the Bayesian lasso analysis by using Gibbs sampling. And in section [5, we
perform simulation studies to examine the performance of the method used with different error term distributions.
We conclude with condensed conclusions in section [

3 Bayesian inference for quantile structural equation model

To speed up and increase the performance of the Bayesian method in the analysis of the QSEM model, and for
the reasons mentioned previously, this research was based on the proposal of Kozumi and Kobayshi [6] in using the
mixed representation of the skewed Laplace distribution (AL) for random error in the model. According to Wang’s
assumption [I2], that will be adopted in this research for the error terms, specifically ¢;; the kth component of the
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error terms ¢; is distributed AL(0, ok, 0.5) for measurement equation (1.1)) the median regression, and d; is distributed
AL(0, 0y, 7) for structural equation (1.2)) the 7-quantile regression. Noting that the variables ey;; and e,; are the
nuisance variables for augmenting e;; and 6; [12].

Let 6, the unknown parameters in equation (1.1)), and 6, unknown parameters in equation (1.2)), and 6 = (0, 6.,),
then the Bayesian for Quantile SEM by the following hierarchical representation:

(Wi /70 €0, By, €)' Np(Aci + Awi, ¥;) (3.1)
(ni/&, Ouss i) ! N(Brd; +T+& + Ki€yi, Kaopen;). (3.2)

ens < exp(oy)

7.1.d
eyik ~ exp(oyk)

& "R NG, (0, @)
where ey = (eyi, ...,eyip)T, U; = diag(8oy1eyit; ..., 80ypeyip), and e, = (enl,...,enn)T. Let Ay = (A, A) = (M\yij),
and in the structural equation , the unknown parameters are A,,» = (B;,I';). Some elements of 6, must be fixed
for identification purposes, for the measurement equation, an index matrix M = (I,;) as its identification matrix is
created as follows [I0]: when I,; = 1 if Ay, is subject to estimation and I,x; = 0 if the value of Ayy; for the purpose
of identification, is prefixed. The following conjugate prior distribution in Bayesian quantile SEM are:

e For measurement equation as follows:

alyk ~ Nr1+q(AOyka HOyk)
ax ~ T(aoyk, boyk) (3.3)

e For structural equation as follows:

92w7’ ~ r2+q2(A0w; HOw)

0;1 ~ F(GJOUa bOo’)

&~ ~ Wishart(Rg, po) (3.4)

where (Aoyk, Aoyks boyks Aow, Goo s by, ) are hyperparameters and the positive-definite Hyyr, Ho,, are also hyperpa-
rameters, Noting that the values are given from previous research or professional knowledge.

Let Y = (y1,.-,yn), C=(c1,...,¢n), D =(dy,...,d,) and Q = (wy, ...,w,) be the matrix of latent variable. Given
the complexity of the model, direct inference of the common posterior distribution p(Q2,6\Y,C, D, e,) is difficult and
complex. However, the full conditional distributions of the latent variables and all parameters are common. Therefore,
the Gibbs sampling method is used as an easy and uncomplicated method in obtaining Bayesian estimators, so that
the Gibbs sampling tool can be implemented easily, and a Bayesian estimate is taken for each parameter to be the
average of the sample random observations derived from each iteration.

As is well known the Bayesian estimate of parameters are obtained from the joint posterior distribution p (Q,0\Y, C,
D, e,)) by drawing samples iteratively for parameters and latent variables, each component of the posterior distribution
is generated by the Gibbs sampling method from its full conditional posterior distribution in an iteratively. The
Bayesian estimates of # and €2 are taken to be the sample mean of the random observations generated.

As mentioned earlier, the main objective is to use MCMC methods to obtain the Bayesian estimates of § and €2,
for this reason, a sequence of random observations from the joint posterior distribution [0, /Y] will be generated via
the Gibbs sampler which is implemented as follows. At the jth iteration with current value 0(j) [6]:

a. Generate a random variate Q(j + 1) from the condition [2/Y, 0(3)]

b. Generate a random variate 6(j + 1) from the condition [0/Y,Q(j + 1)] and return to step a if necessary
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Then the full conditional posterior distribution for Bayesian quantile SEM (BQSEM) as follows:

The Gibbs sampling algorithm is implemented with the following full conditional posterior distribution of param-
eters and latent variable [12].

Let 0, = (A,A),0, = (B-,T;),u; = (' ,w!)T v, = (dF, )7, U = (uq,...,u;), where Uy, be its submatrix with

rows corresponding to I;; = 0 are deleted, Y;* = (v, ..., y.;,) where

r1+q

Vi =Y — D Agrgttig (1= Tiy).

j=1

1. The full conditional posterior distribution of the latent variable 2. The y distribution ia as follows:

(yl/alyvnlvfu eyz) 12’ N, (ACZ + Aw“ )

(Y /0y, iy Eiy ey = (U;) 2 ex { Z i — 0L,u) T (y; —Qyui)}. (3.5)

It is known that
p(wi/(yi, 0y) o< p(wi/0y)p(yi/ (wi, 0y)))-
Then, the full conditional posterior distribution of the latent variable is

—1x%

(wi\yioyieyilyonenihu®) ~ No(pi, Z) (3.6)

%

where
*x—1 *—1 —1
= ATy — Acy) + (BTdi ] k16m>
2 220"
* —1
S =D +ATy A

i

Z . FT@FZ + kz(fnem‘ I, ®
o or’ P

wi
Y; = diag(8cy1€yi1, -y 8T ypyio)

2. The full conditional posterior distribution of the ey : for (i =1,...,n, k=1,...,p)

p(e;i}c\yika wis Oy, oyi) o< f(Yik, wi, O1yk, oyk) f(eyir\oyk)

. 2
20! 2 2071 ( ik 5
-1 yk yi [yl —01yruil
ple /‘k\yikawiael ks Oyk) X § =————7= €xXp (3.7)
vt Y Y 2 )3 [4|ylk 91yk“1| 1] yzk

—1
ﬂ—( yzk

Thus, the full conditional distribution of ey, is an inverse Gaussian distribution with parameter (4|y;x —
01, u;) ™t QO'_kl)
3. The full condltlonal posterior distribution of the 6,, for (k=1,...,p):

-1 -1

P01y, \Y, eyir, oyi) <Z> exp —%(Olyk — Mpp)T <Z> 01y, — Muag) (3.8)

01k Ak

where Mup, = Y11 ( Ho Aoy + 30, g ), and 3o, = Hy + 30, 8;;;67:;6 Thus, the full conditional
3-8

posterior distribution of the 8, in equation (3.8)) is a normal distribution.
4. The full conditional posterior distribution of the o, for k =1,...,p,

1 ¢ _
P(o \Y U, Ayg) o< (0,0)"Ho0t exp { <b0yk t3 Z |Yir — 91yk”i|> Uykl} (3.9)

i=1
Thus, the full conditional posterior distribution of the o, is Gamma distribution (n + agyk, boyr + % ->r,
[yik — OLyrui]).
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5. The full conditional posterior distribution of the ®:

n

p(®\Qs) o p(®) [ [ p(€i\®)

i=1

p(®\Qy) o ||~ (nHrotazt)/2 oy {—;tr [@ 1207 + Ry'Y)] } (3.10)

Since the right-hand side of (3.10]) is proportional to the density function of an inverted Wishart distribution
[14], it follows that the conditional posterior distribution of (®\s) is given by

[@\Qa] ~ TW,, (2095 + Ry ), 1 + pol
6. The full conditional posterior distribution of the e,; : for (i =1, ...,n)

p(e;il\wiv 90.)7 077) X f(w’m 0&)7 6771‘17 O-n)f(er;il\o—yk)

2

» = 7 = (%1 - m)

(€pi \wi, 0, 07) o § ———5= ¢ exp . (3.11)
271—(67]1' ) 2 —1

2
2[ni—Brd;—T'7&]| ni

Thus, the full conditional posterior distribution of the e, is the Inverse Gaussian distribution ( ko

7. The full conditional posterior distribution of the 6,

—1 -1
(00 \Q, ey, 0y) (Z)%1 exp (;1(@07 - Mugw)T(Z)_l(Hw - M’U,gw)> (3.12)

0., 0w

. — . . . T
where Mug, = 5o (Ho_wl@w +>0 %) and Y go, = Ho 4> 00, k;;:en Thus, the full conditional
posterior distribution of the 62, is a normal distribution.

8. The full conditional posterior distribution of the o, :

Ploy "\Q,0247) o (0, 1)" % " exp (bos + Y prlni — Ourvil)ory ! (3.13)
=1

Thus, the full conditional posterior distribution of the o, is Gamma distribution (n+aos, bos+Y i Pr |1 —Owrvil)-

4 Regularization technique in Bayesian quantile SEM (Bayesian Lasso)

Tibshirani [I1] proposed a penalty function for the linear regression model known as Lasso, which is abbreviated
for (Least Absolute Shrinkage and Selection Operator) [9]. It is one of the important techniques that were used in
estimating the parameters of regression models. This technique is of great importance in controlling the variance of
the model parameters and selecting the important variables in the model. It can reach explanatory models, and it is
also of great importance in reducing the prediction error [I1]. It was proposed to estimate the parameters of the linear
regression model and to perform the variable selection simultaneously [I]. The principle of the Lasso method is to
reduce the sum of squares of the residuals according to a constraint representing the absolute sum of the coefficients,
which are less than a certain constant. For the linear regression model. The Lasso estimator is the solution to the
following Li-penalized least squares problem [§]:

min} _(ys = B)* +73 18] (4.1)
=1

Jj=1

where Z?:l |B;] is penalty function or it is sometimes called Regularization function, Brasso = (B1, Bz, -y Bp) ~is a
tuning parameter (v > 0) that controls the penalty amount, such that the Lasso estimator is equal to the least squares
estimator when v = 0 and shrinks towards zero as «y increases.

The Bayesian inference in Lasso technique has gained great interest in recent years in estimating the regression
model because of its great importance in achieving the accurate inference of this model, Park and Casella [9], proposed

ks k2
2‘77ifB7-di7FT§i| ) 40‘7]

).
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a Bayesian framework of the Lasso (BaLasso), they assumed they considered the error term of the model is follow the
normal distribution (0, 0?), they proposed the Bayesian Lasso estimator of 3 is defined as the posterior mode of 3 by
assuming that conditionally independent double-exponential prior distribution by the following [5]:

7(8/0?) HQl - (4.2)

So that produces the same effect in contraction as in the original equation of Lasso, as in equation . As it is
known that in achieving the Bayesian analysis with this technique, the Laplace distribution is assumed independently
as a prior distribution of the model parameters. To facilitate Gibbs sampling in Bayesian inference, in most research,
the mixed representation of the Laplace function assumed by Andrews and Mallows [2] is used, so that the probability
density function of the Laplace distribution is written with a mixed representation of the two distributions (Normal
and Exponantial), as follows [3]:

o0 2
i —w\ﬂj\/a_/ L —B2/(202s;) V" _—~%s;/2
5. € = Tt -€ ds; 4.3
20 0 \/2ma?s; 2 / (4.3)

According to the hierarchical formula, 5 has a normal distribution, as follows:
[6/02a Sj] ~ NP(07 UZ'Sj)

where s; ~ exponential(2/7?), s; is diagonal matrix (s1,...,s,). The tuning parameter v* ~ I'(a,,b,), when a.,b,
are predefined hyperparameters, where it was specified by Feng et al. [3], we set a, = 1 and b, = 0.05 for obtaining
dispersed priors. Based on the previously described hierarchical structure, Blasso and Balasoo may be easily used in
more complex models, such as quantile regression models or quantile SEM, to conduct simultaneous estimation and
variable selection. Quantile regression was pointed out by Koenker and Bassett Jr [4], where the frequentist approach
to the estimation of coefficients is to solve the following optimization problem:

min} o (i = @i ) (4.4)
=1

where p,(z) = z(7—I(x < 0)) is the quantile loss function. Li and Zhu proposed the regularized quantile regression to
achieve estimation and variable selection, which uses the Lasso type penalty function, as follow []]:

n P
min}_pr(yi =2l 8)+7>_ 1851 (4.5)
=1

j=1

In a Bayesian quantile regression framework, we need to specify a working likelihood for the model error. According
to Yu and Moyeed [13], maximizing the likelihood under ALD error is equivalent to minimizing the objective loss
function (4.4)) of quantile regression skewed Asymmetric Laplace (ALD) has its probability density function as follows:

f o) =" D {—pT (y -~ “)}

where p is the location parameter, o is the scale parameter and (0 < 7 < 1) is the skewness parameter. According
to Yu and Moyeed (2001) implementing Bayesian inference for quantile regression [I3], if the error term ¢; are follow
AL(0,0,7), then the conditional likelihood function for the quantile regression model as follows [3]:

]l —7r)" n »—J;T
L(,B,O',y,X) — T (1 ) exp {21—1 pT(yl [ 6) } . (46)

on o

Hence, the minimization problem given by is equivalent to maximizing the likelihood function , for the
conditional likelihood function , we suffer computation difficulty due to the inherent non-differentiability of the
QR check function. Nevertheless, Kozumi and Kobayashi [6] proved that the skewed Laplace distribution can be
viewed as a mixture of normal and exponential distributions as follows [7]:

y=p+kie+ Vkooes (4.7)
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where ky = (1=27)/(t(1=7)), k2 =2/7(1 —7), ¢ ~ N[0,1], e ~ exp(1/0). The resulting conditional distribution of
y is normal, with a mean (u + k1e) and variance (keoe). The posterior distribution of 8 can be expressed as follows:

i ey — 2l B) }

g

£(8/4.X) o n(B) exp {— (4.8)

where () is a prior distribution, The prior distribution of 8 is not unique, but there have been many attempts by
researchers, initially Yu and Moyeed [I3] employed non-informative prior (m(8) o 1) which yielded a proper joint
posterior distribution, and the posterior mode of 3 is also identical to the solution to quantile regression in , and
based on the aforementioned normal mixture representation of (g;) Kozumi and Kobayashi [6] specified a conjugate
normal prior for 3, and the posterior of a normal distribution.

Feng et al. [3] have adopted Li et al. [7] proposing the Bayesian regularized quantile regression by employing
the double-exponential prior in equation , such that the maximization of the posterior of 3 is equivalent to the
minimization of equation in Lasso technique, to implement the Gibbs sampling we need to generate the unknowns
from the fully conditional posterior distributions. The fully conditional posterior distributions are provided below.

Thus, by using this prior distribution, an easy posterior distribution analysis is obtained, as well as an easy
possibility to apply the Gibbs sampling method. Then the Bayesian hierarchical model based on the hierarchical
model presented by Feng et al. [3] was used in estimating the parameters of the structural equation as well as
the measurement equation within the structural equations model using the Lasso technique, which was explained
in this section. The common conjugated prior distributions were used in the Bayesian analysis of the structural
equations model, as follows [3, [7]. To simplify the expression of the distributions, we define several notations. For the
measurement equation , we let Q = (w1, ...,wn), Ay = (A, A) = {A\yi;}, and define L, = {l,;} as its identification
matrix. That is, lyx; = 0 if the value of \y; is prefixed for identification purposes, and l,; = 1 if Ayy; is subject to
estimation.

We let u; = (¢, w!)T,U = (uy, ..., u,), and define U}, as the submatrix of U after removing the rows corresponding

AR

to lyk:j =0. Welet Y xk = (y * k17 ey Y K kn)T with

r2+q2
Uik = vk — O Agkgttig (1= Lyky)-
=1

For the median regression in measurement equation (1.1)), we can be expressed as follows:

ind

(yi/wi,ﬂy,eyi) ~ NP(ACZ+ALL)1,\I/Z)

To simplify the notations, let u; = (cI',w!)T,0, = (A, =), 0,.T be the kth row of 1, for k = 1,...,p. Then the

1077

distribution of (v;/w;, 6, ey;) is in the following form
ind
(Yi/wis 0y, eyi) ~ Np(Oiui, ¥y)
Oyr ~ N(Noyk, Hoyr)
eyik ~ exp(oyk)

Oyk — 1~ F(a'O'yk; bO'yk)

where ag, boy, Aoy and Hoyy (positive-definite matrix) are the hyperparameters and eyi = (eyil, ...,eyip)T7\Ili =
diag(8y1€yit, ..., 80 ypeyip) and the structural equation (1.2)) with Bayesian Lasso as follow: 3, = (81.,83,)%, v; =

ind ind _ .
(d?7€?)T7 (771‘/51‘79%,6771‘) ~ N(ﬂzvi,kleni,kQUneni)a §i ~ NQ2(07(I))7 ot~ WlShart(Rmpo), Br ~ "/2+Q2(Oas)a
where S = diag(s1, ..., Syp+qs)
20,,)
s; ~exp | —-
! ( 7?
72~ T(ay,by)

(7771 ~ F(O‘OrrvﬂOo)

eni ~ exp(oy)
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where agy,boy, Aoyr and Hoyy (positive-definite matrix) are the hyperparameters and e, = (enl,...,enn)T Due to
the complexity of the model, direct inference of the common posterior distribution p(€2,0\Y,C,D,e,) is difficult
and complex. However, the full conditional distributions of the latent variables and all parameters are common
distributions. Therefore, the Gibbs sampling method is used as an easy and uncomplicated way to obtain Bayesian
estimates for the parameters and the latent variable, so that the Gibbs sampling tool can be easily implemented, and
the Bayesian estimate for each parameter is taken to be the mean of the sample of random observations derived from
each iteration.

As is known, a Bayesian estimate for parameters is obtained from the posterior joint distribution p(Q2,6\Y,C, D, e,,)
by an iterative sampling of the parameters and latent variables, each component of the posterior distribution is
generated by the Gibbs sampling method From the conditional complete post hoc distribution iteratively [3]. Bayes
estimates for and were taken to be the sample mean for the random observations generated as mentioned in Section [3]

1. The full conditional posterior distribution of the ®:

n

p(®92) o p(@) [ p(E\®),  p(80) o |<I>|<“+P°+qz“>/2exp{—;tr (27 (2205 +R01>]}- (4.9)
i=1

2. The full conditional posterior distribution of o,

n o r2+q2
(0—171\93 57’7 Sja’Yj) ~ F(TL +as + 12 + g2, by + ZPT(nl - ﬂqjjvl) + % Z sj)
i=1 j=1
3. The full conditional posterior distribution of the e,; is a
Inverse Gaussian distribution ( 2 k2 > (4.10)
\Y ,— .
2 — Bod; — 1,8 4o,
4. The full conditional posterior distribution of 5,:
-1 -1
FBAR €y, 00) < f(1\Q €n,00) f(Br),  F(Br\Q €y, 00) X Noyyygy | D VES'ESD (4.11)
B B
where Y5 = (S71+ VE; V)7L
5. The full conditional posterior distribution of s;:
1 v
(s7 " \Brj, v, 0n) ~ Inverse — Gaussian (, ) (4.12)
/ ’ ! \/E‘BTj| On
6. The full conditional posterior distribution of Y:
Tj2-iiQ2 5
f(’YQ\Sjv UU) X f(Si\o'n)f(’YQ)a f(72\3j70'77) ~T <a0"/ + Y2 + q2, bO'y + ]2_0> . (413)
n

5 Simulation study

In this section, we employ simulation to evaluate the Bayesian quantile SEM’s empirical performance. We generated
the data set from SEM:
yi = Aci + Aw; + &5, ni = bidi + & + 1282 + 0

where p=9,g=3,¢g1 =1, o =2 and v = = 1.

The simulation study’s main purpose is to estimate the quantile regression coefficients b1, ; and v under different
quantiles with small sample size and compare them to their theoretical values. We are choose three sample size
n = (25,50,100) and the quantile we choose 7 = 0.25,0.5 and 0.75. The factor loading matrix A has the common
non-overlapping structure

1 Xo1 Ay O 0* 0 0* 0 OF
AT =10 0* 0* 1* X2 Ae2 0 0 O
0* 0 0* 0 0" 0 1 Ags o3
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where the zero and ones marked with are fixed in advance to allow for a clear interpretation of latent variables and
model identification, while the other A;; are unknown parameters. The true vales of parameters Aj; and a; in the
measurement equation are taken to be Aoy = A31 = As0 = Ag2 = Ag3 = Ag3 = 0.7, then the factor loading matrix A
will be in the following
1* 07 o7 0 0 0 0 0" O
AT =0 0* 0 1* 07 0.7 0 0* O
o* o0* 0 0 0 0 1* 0.7 0.7

The true values of parameters in the model are A = (0.5,---,0.5)7, by = 0.1 and I'; = (71,72) = (0.2,0.3) and the

1 02
02 1
and the fixed covariates ¢q; and d; are independently generated from standard normal distribution N (0, 1). Also, the
prior distributions and the hyperparameters are as follows:

explanatory latent variable & = (£;1,&:2)7 is assumed to follow a normal distribution N (0, ) where ® =

For the conjugate prior of Ayr ~ Nrl + g(Aoyr, Hoyk), the free elements in the prior mean Agy and Hoyy is
taken as a diagonal matrix with diagonal elements (10000), As well for structural equation the A, the prior mean
Aow = (1,0.7,0.7) and the covariance matrix Hg, = 100 an identity matrix. And for the conjugate inverse gamma
prior of oy, = (aoyk, boyr) = (1,1) and o, = (aos, bos) = (1,1). For the inverse Wishart prior of ®, we set pg = 1. For
the error terms for SEM ¢; and §;, we consider the following different distribution for &k =1, ..., p:

(1) ei’s and 6;’s follow the normal distribution N(0,0.4).
(ii) e;x’s and d;’s are distributed as the heavy- tailed central t-distribution ¢(5).

(iii) ;x’s and ¢;’s are distributed as the skewed In N(0,0.35).

In the case (i), the normal distribution was chosen for the error terms as it aligns with that of traditional SEM., In
the case (ii), the heavy-tailed t-distribution is used to assess the quantile SEM’s performance in the presence of outliers
in both the observed and latent variables. In Case (iii), the quantile SEM with skewed outcome latent variables is
evaluated using a log-normal distribution we run 10,000 iterations with the initial 2,000 observations dropped in the
burn-in phase on the basis of 100 replications where the program was written in R language. The performance of the
Bayesian quantile structured equation model (QSEM) is assessed using the bias and root mean square error (RMS),
where the root mean square error (RMS) is:

RMS(6) = {iZ(é - 9)}2

The Bayesian Quantile estimators referred to in section [3] and Bayesian Lasso estimators referred to in section [
were compared for the regression coefficients in the structural equation presented in Table|l} Table[2|and Table
for different distributions of error terms. Also, the estimates of the measurement equation coefficients were presented
in table 4| within the structural equations model with a sample size of 25.

Table 1: Bayesian estimators of the regression coefficients for structural equation for sample size n = 25, ¢; ~ N(0,0.4)

0i n=25 N (0 0.4)
BQSEM BQLsso
Par 7 RMS Bias RMS Bias
0.25 0.06807999 -0.0140986  0.063584 -0.0522042
b1+ 0.5 0.09094509  0.08902956  0.009783 -0.0093578

0.75  0.2809844 0.2372889 0.118061 0.08338740
0.25 0.16636208  0.1614523 0.076555 0.07208023
Yir 0.5 0.17667059  0.17661718  0.0930055 0.068673
0.75  0.1935929 0.1933980 0.09351625  0.05959757
0.25  0.57522667  0.5733104 0.39888852  0.07208023
Yor 0.5 0.63500834  0.62789313  0.4341381 0.433329
0.75  0.7171769 0.7129003 0.47395937  0.46795710

The results of the Quantile structural equation model were compared with Lasso estimators for the structural
equation (1.2]), which are shown in Tables andfor all the hypotheses of error distributions, which are N(0,0.4), ¢(5)
and LnN(0,0.35). It has been proven that Lasso estimators are more efficient because it is less MSE and Bias in the
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Table 2: Bayesian estimators of the regression coefficients for structural equation for sample size n = 25, &; ~ t(5)

0i n=25 t(5)
BQSEM BQLsso
Par 7 RMS Bias RMS Bias

0.25 0.07410148 -0.0118373  0.06568740  -0.0511498
bir 0.5 0.08304162  0.08054925 0.01297118 -0.0124334
0.75  0.2727498 0.2235936 0.10316629  0.07475327
0.25 0.1704115 0.16709373  0.06886815  0.06620751
YT 0.5 0.1763317 0.17632264  0.09179943  0.06549495
0.75  0.1869714 0.1860112 0.09142032  0.06389780
0.25 0.5614167 0.56016058  0.40046371  0.39962378
Yor 0.5 0.62791284  0.62107868  0.41763562  0.41597434
0.75  0.7293822 0.7253235 0.47400667  0.46586527

Table 3: Bayesian estimators of the regression coefficients for structural equation for sample size n = 25,e; ~ In N(0,0.35)

di n=25 In N(0,0.35)
BQSEM BQLsso
Par 7 RMS Bias RMS Bias

0.25 0.06419643 -0.0105932  0.05785819 -0.0484447
b1+ 0.5 0.06242667  0.06231965  0.00776956 -0.0074559
0.75  0.2656497 0.2214283 0.1096436 0.07971700
0.25 0.15787750 0.15453646  0.07084877 0.06884314
gits 0.5 0.16742392  0.16739034  0.087399142  0.06599080
0.75 0.2001441 0.1999136 0.1066480 0.06435982
0.25  0.54994305 0.54731377  0.41025828 0.40896808
Yor 0.5 0.61886252  0.61280847  0.42290513 0.4203174
0.75  0.7106546 0.7065425 0.4469011 0.43697801

Table 4: Bayesian estimates of the parameters for measurement equation for sample size n = 25 with &; ~ N(0,0.4)

n=25 &l N (0 0.4) n=25 =i N (00.4) n=25 i N(00.4)
1=0.75
1=0.25 =0.5
BQSEM BQLsso
BQSEM BQLsso BQSEM BQLsso _

RMS Bias RMS Bias
par  RMS Bias RMS Bias RMS Bias RMS Bias

0.2582621  0.2186927 0.2876030 0.2459550
A21 0.2723786 0.2251264  0.2895677 0.2428582 0.2779994  0.2318954 0.2917239 0.2452200

0.1881680 0.1579935 0.2128413 0.1809846
A31 0.1908624 0.1559416  0.2050512 0.1729432 0.1962811 0.1625731 0.2082480 0.1752191

0.1902863  0.1902813 0.1811771 0.1811651
As2 0.2014524 0.2012309 0.1831696 0.1831486 0.2006136  0.2003969 0.1844621 0.1843456

0.1115734  0.1069998 0.1212607 0.1119983
A62 0.1380175 0.1253578  0.1215341 0.1122781 0.1247432  0.1142498 0.1197662 0.1076939

0.2131624  0.2131280 0.1896719 0.1894530
As3 0.2270678 0.2269210  0.1996226 0.1996048 0.2319345 0.2311487 0.1985172 0.1983994

0.4083165  0.4079739 0.3820790 0.3817064
A93 0.4260815 0.4259355  0.3910151 0.3908882 0.4257695 0.4250122 0.3924662 0.3922321

0.3664790 -0.3532595  0.2137805 -0.211589848
ay 0.2772910 -0.199912  0.1777285 -0.1536474 0.2681579  -0.2647822  0.2197093 -0.20844048

0.3771138  -0.3081385  0.2187482 -0.172034278
a 0.3399343 -0.188530  0.2262240 -0.13007292 0.2675158  -0.2191904  0.2472033 -0.17777998

0.4159396  -0.3443118  0.2660682 -0.212497004
as 0.3807948 -0.230275  0.2740716 -0.17601410 0.3170085 -0.2617000  0.2944871 -0.21897541

0.2459933  -0.0804526  0.1762964 -0.053776408
a 0.2747572 -0.128856  0.1947475 -0.0685311 0.2466052  -0.0988391  0.2351728 -0.10982790

0.1690368 -0.0260171  0.1168257 -0.002170028
as 0.1958347 -0.066282 0.1323766 -0.01356433 0.1655518 -0.0424665 0.1606776 -0.04971412

0.2989621 -0.2103864  0.2501125 -0.192978590
as 0.3318009 -0.250378  0.2675194 -0.20365583 0.3038372  -0.2280302  0.3040339 -0.23544626

0.2649451  -0.2216838  0.1863530 -0.176248619
ay 0.2989145 -0.239258 0.2156715 -0.18370155 0.2551209 -0.2264920  0.2439697 -0.19891463

0.2291696 -0.1113568  0.1499082 -0.067831678
ag 0.2718342 -0.129267  0.1921324 -0.06936999 0.2111867 -0.1046550  0.2211651 -0.08757637

0.2638958 -0.2304664  0.1798988 -0.172674511
ag 0.2967833 -0.244413  0.2011347 -0.17631868 0.2469740  -0.222384 0.2386273 -0.19934342

0.9666121  0.6561557 0.8008439 -0.30803225
$11 0.9624390 0.6415850  0.7782706 -0.3077184 0.9666163 0.6533229 0.8017693 -0.3121501

0.7413527  -0.2430368  0.7625531 -0.20609260
$11 0.7286783 -0.254164  0.7529228 -0.2137863 0.7429847  -0.244579 0.7488955 -0.2177580

0.7413527  -0.2430368  0.7625531 -0.20609260
$21 0.7286783 -0.254164  0.7529228 -0.2137863 0.7429847  -0.244579 0.7488955 -0.2177580

0.8666590 0.8214288 0.3253710 -0.07650527
$22 0.8531774 0.8084972  0.3261442 -0.1074465 0.8597813 0.8047740 0.3077471 -0.1069108

case of n = 25 and for the three error distributions. Also, the estimators of the measurement equation coefficients
equation (1.1)) shown in Table [4] Lasso estimators are the best and most efficient. Also, the Lasso method is preferable
in the case of n = 25.



The Bayesian Lasso of quantile structural equation model 11

6 Conclusion

In this article, the Bayesian Lasso technique has been applied to estimate the parameters of the divisional structural
equation model to provide a comprehensive analysis of the interrelationships between the latent variables and compare
them with the estimations of the parameters of the Quantile structural equation model.
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