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Abstract

Structural equation models have been extensively applied to medical, and social sciences, the most important latent
variable models are structural equation models. Structural equation modeling (SEM) is a popular multivariate tech-
nique for analyzing the interrelationships between latent variables. In general, structural equation models includes of
a measurement equation to characterize latent variables through multiple observable variables and a mean regression
type structural equation to investigate how the explanatory latent variables affect the outcomes of interest. In this
study, we apply Bayesian least absolute shrinkage and selection operator (Lasso) procedure to conduct estimation in
the Quantile SEM, and compare this estimator with estimator of Bayesian Quantile Structural equation model, and
apply the use of the Markov chain Monte Carlo (MCMC) method by Gibbs sampler to conduct Bayesian inference.
The simulation was implemented assuming-different distributions of the error term for the structural equations model
and values of the parameters for small sample size.
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1 Introduction

1.1 Structural equation modeling (SEM)

Structural equation modelling (SEM) is a versatile class of models that allow for complicated modelling of corre-
lated multivariate data to examine interrelationships between observable and latent variables. Many extensively used
statistical models, such as regression, factor analysis, canonical correlations, and analysis of variance and covariance,
are included in this class of models, which is well recognized in social and psychological sciences [10].

Most applications of SEMs are related to the study of interrelationships among latent variables. In particular,
they are useful for examining the effects of explanatory latent variables on outcome latent variables of interest. In
such situations, researchers usually consider what observed variables should be selected from the whole data set for
the analysis and how these observed variables are grouped to form latent variables.

The structural equation model consists of two components, as follows:
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1. Let yi = (yi1, ..., yip)
T be a p × 1 vector representing the ith observation in a random sample of size n, and

ωi = (ωi1, ..., ωiq)
T be a q × 1 vector of latent variables with (q < p). The link between yi and ωi is defined by

the following measurement equation:

yi = Aci + Λωi + εi, i = 1, ..., n (1.1)

where A(p× r1) and Λ(p× q) are matrices of unknown coefficients, ci(r1 × 1) is a vector of fixed covariates, and
εi(p× 1) is a random vector of error terms.

2. ηi can be assessed in the following structural equation

ηi = βτdi + Γτξi + δi, i = 1, ..., n. (1.2)

Then the quantile SEM is defined by Equations (1.1) and (1.2) [12]. To analyze the interrelationship among
latent variables, let partition ωi = (ηTi , ξ

T
i )

T , where ηi(q1 × 1) denote outcome latent variables and ξi(q2 × 1) is
explanatory latent variables. To simplify, we assume that q1 = 1. The primary goal of SEM is to analyze the
behaviour of latent variable ηi given the information n contained in a set of explanatory latent variables ξi.

The purpose of the measurement equation in an SEM is to relate the latent variables in ω to the observed variables
in y. It represents the link between observed and latent variables, through the specified factor loading matrix Λ, the
vector of measurement error ε is used to take the residual error into account. The important issue in formulating the
measurement equation is to specify the structure of the factor loading matrix Λ, based on the determination of the
observed variables in the study. Any element of Λ can be a free parameter or a fixed parameter with a predetermined
value.

The positions and the pre-assigned values of the fixed parameters are decided based on the prior knowledge of the
observed and latent variables, and they are also related to the interpretations of the latent variables. It can also be
known from previous studies [10].

2 Quantile structural equation model (QSEM)

The primary aim of SEM is to analyze the behaviour of the latent variable ηi given the information contained in a
set of explanatory latent variables ξi. This is done in traditional SEM by calculating the conditional mean of (ηi\ξi)
and fixed covariates di(r2 × 1) as follows [12]:

E(ηi\ξi, di) = Bdi + Γξi, i = 1, ..., n (2.1)

where B(q1 × r2) and Γ(q1 × q2) are the matrices of unknown coefficients to be estimated. The conditional mean does
not provide a complete description of the interrelationship among latent variables. A more comprehensive analysis
can be achieved from a combination of Q(ηi\ξi, di), the conditional quantile of ηi, under various quantiles τ ∈ (0, 1)
as follows:

Qτ (ηi\ξi, di) = Bτdi + Γτξi, i = 1, ..., n. (2.2)

The coefficient matrices Bτ and Γτ have a subscript τ because they might not be equal for different quantiles.
Unlike in conventional SEMs, here the distribution of δi is undefined. The only assumption is that the τ -quantile
of δi is 0 to guarantee that (2.2) holds. The rest of the paper is organized as follows. In section 2, we present
the Quantile Structural equation model (QSEM). In section 3 we present Bayesian inference of QSEM model with
display the conditional distributions of parameters and latent variable within the Bayesian analysis, in section 4 we
present Regularization technique in Bayesian Quantile SEM (Bayesian lasso) and display the conditional distributions
of parameters and latent variable within the Bayesian lasso analysis by using Gibbs sampling. And in section 5, we
perform simulation studies to examine the performance of the method used with different error term distributions.
We conclude with condensed conclusions in section 6.

3 Bayesian inference for quantile structural equation model

To speed up and increase the performance of the Bayesian method in the analysis of the QSEM model, and for
the reasons mentioned previously, this research was based on the proposal of Kozumi and Kobayshi [6] in using the
mixed representation of the skewed Laplace distribution (AL) for random error in the model. According to Wang’s
assumption [12], that will be adopted in this research for the error terms, specifically ϵij the kth component of the
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error terms ϵi is distributed AL(0, σyk, 0.5) for measurement equation (1.1) the median regression, and δi is distributed
AL(0, σyk, τ) for structural equation (1.2) the τ -quantile regression. Noting that the variables eyik and eηi are the
nuisance variables for augmenting ϵij and δi [12].

Let θy the unknown parameters in equation (1.1), and θω unknown parameters in equation (1.2), and θ = (θy, θω),
then the Bayesian for Quantile SEM by the following hierarchical representation:

(yi/ηi, ξi, θy, eyi)
ind∼ Np(Aci + Λωi,Ψi) (3.1)

(ηi/ξi, θω, eηi)
ind∼ N(Bτdi + Γτξi + κ1eηi, κ2σηeηi). (3.2)

eηi
i.i.d∼ exp(ση)

eyik
i.i.d∼ exp(σyk)

ξi
i.i.d∼ Nq2(0,Φ)

where eyik = (eyi1, ..., eyip)
T , Ψi = diag(8σy1eyi1, ..., 8σypeyip), and eη = (eη1, ..., eηn)

T . Let Λy = (A,Λ) = (λykj),
and in the structural equation (3.2), the unknown parameters are Λωτ = (Bτ ,Γτ ). Some elements of θy must be fixed
for identification purposes, for the measurement equation, an index matrix M = (Iykj) as its identification matrix is
created as follows [10]: when Iykj = 1 if λykj is subject to estimation and Iykj = 0 if the value of λykj for the purpose
of identification, is prefixed. The following conjugate prior distribution in Bayesian quantile SEM are:

� For measurement equation as follows:

θ1yk ∼ Nr1+q(Λ0yk, H0yk)

σ−1
yk ∼ Γ(a0yk, b0yk) (3.3)

� For structural equation as follows:

θ2ωτ ∼ Nr2+q2(Λ0ω, H0ω)

σ−1
η ∼ Γ(a0σ, b0σ)

Φ−1 ∼ Wishart(R0, ρ0) (3.4)

where (Λ0yk, a0yk, b0yk,Λ0ω, a0σ, b0σ) are hyperparameters and the positive-definite H0yk, H0ω are also hyperpa-
rameters, Noting that the values are given from previous research or professional knowledge.

Let Y = (y1, ..., yn), C = (c1, ..., cn), D = (d1, ..., dn) and Ω = (ω1, ..., ωn) be the matrix of latent variable. Given
the complexity of the model, direct inference of the common posterior distribution p(Ω, θ\Y,C,D, eη) is difficult and
complex. However, the full conditional distributions of the latent variables and all parameters are common. Therefore,
the Gibbs sampling method is used as an easy and uncomplicated method in obtaining Bayesian estimators, so that
the Gibbs sampling tool can be implemented easily, and a Bayesian estimate is taken for each parameter to be the
average of the sample random observations derived from each iteration.

As is well known the Bayesian estimate of parameters are obtained from the joint posterior distribution p (Ω, θ\Y , C,
D, eη) by drawing samples iteratively for parameters and latent variables, each component of the posterior distribution
is generated by the Gibbs sampling method from its full conditional posterior distribution in an iteratively. The
Bayesian estimates of θ and Ω are taken to be the sample mean of the random observations generated.

As mentioned earlier, the main objective is to use MCMC methods to obtain the Bayesian estimates of θ and Ω,
for this reason, a sequence of random observations from the joint posterior distribution [θ,Ω/Y ] will be generated via
the Gibbs sampler which is implemented as follows. At the jth iteration with current value θ(j) [6]:

a. Generate a random variate Ω(j + 1) from the condition [Ω/Y, θ(j)]

b. Generate a random variate θ(j + 1) from the condition [θ/Y,Ω(j + 1)] and return to step a if necessary
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Then the full conditional posterior distribution for Bayesian quantile SEM (BQSEM) as follows:

The Gibbs sampling algorithm is implemented with the following full conditional posterior distribution of param-
eters and latent variable [12].

Let θy = (A,Λ), θω = (Bτ ,Γτ ), ui = (cTi , ω
T
i )

T , vi = (dTi , ξ
T
i )

T , U = (u1, ..., ui), where Uk be its submatrix with
rows corresponding to Iykj = 0 are deleted, Y ∗

k = (y∗1k, ..., y
∗
nk) where

Y ∗
k = Yk −

r1+q∑
j=1

λykjuij(1− Iykj).

1. The full conditional posterior distribution of the latent variable Ω. The y distribution ia as follows:

(yi/θ1y, ηi, ξi, eyi)
ind∼ Np(Aci + Λωi,Ψi)

p(Y/θy, ηi, ξi, eyi)ηi = (Ψi)
−n
2 exp

{
−1

2

n∑
i=1

(yi − θ1yui)
TΨ−1

e (yi − θyui)

}
. (3.5)

It is known that
p(ωi/(yi, θy) ∝ p(ωi/θy)p(yi/(ωi, θy))).

Then, the full conditional posterior distribution of the latent variable is

(ωi\yiσyieyiθyσηeηiΛωΦ) ∼ Nq(µi,
−1∗∑
i

) (3.6)

where

µi =

∗−1∑
i

ΛTψ−1
i (yi −Aci) +

∗−1∑
i

−1∑
ωi

(
Bτdi + k1eηi

0

)
∗∑
i

=

−1∑
ωi

+ΛTψ−1
i Λ

∑
ωi

=

(
ΓτΦΓ

T
τ + k2σηeηi ΓτΦ
ΦΓT Φ

)
ψi = diag(8σy1eyi1, ..., 8σypeyio)

2. The full conditional posterior distribution of the eyik : for (i = 1, ..., n, k = 1, ..., p)

p(e−1
yik\yik, ωi, θ1yk, σyk) ∝ f(yik, ωi, θ1yk, σyk)f(eyik\σyk)

p(e−1
yik\yik, ωi, θ1yk, σyk) ∝

{
2σ−1

yk

2π(e−1
yik)

3

} 1
2

exp


2σ−1

yk

(
e−1
yik − 4

|yik−θ1ykui|

)2
2 [4|yik − θ1ykui|−1]

2
e−1
yik

 (3.7)

Thus, the full conditional distribution of eyih is an inverse Gaussian distribution with parameter (4|yik −
θ1ykui|−1, 2σ−1

yk ).
3. The full conditional posterior distribution of the θy, for (k = 1, ..., p):

p(θ1yk\Y, eyik, σyk) ∝

( −1∑
θ1k

)−1
2

exp

−1

2
(θ1yk −MΛk)

T

( −1∑
Λk

)−1

(θ1yk −MuΛk)

 (3.8)

where MuΛk =
∑−1

Λk

(
H−1

0y Λoy +
∑n

i=1
yikui

8σykeyik

)
, and

∑
Λk = H−1

0y +
∑n

i=1
uiu

T
i

8σykeyik
. Thus, the full conditional

posterior distribution of the θy in equation (3.8) is a normal distribution.
4. The full conditional posterior distribution of the σyk, for k = 1, ..., p,

p(σ−1
yk \Y,U,Λyk) ∝ (σ−1

yk )
n+a0yk−1 exp

{(
b0yk +

1

2

n∑
i=1

|yik − θ1ykui|

)
σ−1
yk

}
(3.9)

Thus, the full conditional posterior distribution of the σyk is Gamma distribution (n + a0yk, b0yk + 1
2 −

∑n
i=1

|yik − θ1ykui|).
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5. The full conditional posterior distribution of the Φ:

p(Φ\Ω2) ∝ p(Φ)

n∏
i=1

p(ξi\Φ)

p(Φ\Ω2) ∝ |Φ|−(n+ρ0+q2+1)/2 exp

{
−1

2
tr
[
Φ−1(Ω2Ω

T
2 +R−1

0 )
]}

(3.10)

Since the right-hand side of (3.10) is proportional to the density function of an inverted Wishart distribution
[14], it follows that the conditional posterior distribution of (Φ\Ω2) is given by

[Φ\Ω2] ∼ IWq2 [(Ω2Ω
T
2 +R−1

0 ), n+ ρ0]

6. The full conditional posterior distribution of the eηi : for (i = 1, ..., n)

p(e−1
ηi \ωi, θω, ση) ∝ f(ωi, θω, e

−1
ηi , ση)f(e

−1
ηi \σyk)

(e−1
ηi \ωi, θω, ση) ∝

{
k2

4ση

2π(e−1
ηi )

3

} 1
2

exp


k2

4ση

(
e−1
ηi − k2

2|ηi−Bτdi−Γτξi|

)2
2
[

k2

2|ηi−Bτdi−Γτξi|

]2
e−1
ηi

 . (3.11)

Thus, the full conditional posterior distribution of the eηi is the Inverse Gaussian distribution
(

k2

2|ηi−Bτdi−Γτξi| ,
k2

4ση

)
.

7. The full conditional posterior distribution of the θωτ

p(θωτ\Ω, eη, ση) ∝ (

−1∑
θω

)
−1
2 exp

(
−1

2
(θωτ −Muθω)

T (

−1∑
θω

)−1(θωτ −Muθω)

)
(3.12)

whereMuθω =
∑−1

θ2ω

(
H−1

oω θωτ +
∑n

i=1
(ηi−k1eηi)vi

k2σηeηi

)
and

∑
θ2ω = H−1

oω +
∑n

i=1
viv

T
i

k2σηeηi
. Thus, the full conditional

posterior distribution of the θ2ω is a normal distribution.

8. The full conditional posterior distribution of the ση :

p(σ−1
η \Ω, θ2ωτ ) ∝ (σ−1

η )n+a0δ−1 exp (b0δ +

n∑
i=1

ρτ |ηi − θωτvi|)σ−1
η (3.13)

Thus, the full conditional posterior distribution of the ση is Gamma distribution (n+a0δ, b0δ+
∑n

i=1 ρτ |ηi−θωτvi|).

4 Regularization technique in Bayesian quantile SEM (Bayesian Lasso)

Tibshirani [11] proposed a penalty function for the linear regression model known as Lasso, which is abbreviated
for (Least Absolute Shrinkage and Selection Operator) [9]. It is one of the important techniques that were used in
estimating the parameters of regression models. This technique is of great importance in controlling the variance of
the model parameters and selecting the important variables in the model. It can reach explanatory models, and it is
also of great importance in reducing the prediction error [11]. It was proposed to estimate the parameters of the linear
regression model and to perform the variable selection simultaneously [1]. The principle of the Lasso method is to
reduce the sum of squares of the residuals according to a constraint representing the absolute sum of the coefficients,
which are less than a certain constant. For the linear regression model. The Lasso estimator is the solution to the
following L1-penalized least squares problem [8]:

min
β

n∑
i=1

(yi − xTi β)
2 + γ

p∑
j=1

|βj | (4.1)

where
∑p

j=1 |βj | is penalty function or it is sometimes called Regularization function, β̂Lasso = (β̂1, β̂2, ..., β̂p). γ is a
tuning parameter (γ ≥ 0) that controls the penalty amount, such that the Lasso estimator is equal to the least squares
estimator when γ = 0 and shrinks towards zero as γ increases.

The Bayesian inference in Lasso technique has gained great interest in recent years in estimating the regression
model because of its great importance in achieving the accurate inference of this model, Park and Casella [9], proposed
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a Bayesian framework of the Lasso (BaLasso), they assumed they considered the error term of the model is follow the
normal distribution (0, σ2), they proposed the Bayesian Lasso estimator of β is defined as the posterior mode of β by
assuming that conditionally independent double-exponential prior distribution by the following [5]:

π(β/σ2)

p∏
j=1

γ

2σ
e−

γ|βj |
σ . (4.2)

So that produces the same effect in contraction as in the original equation of Lasso, as in equation (4.2). As it is
known that in achieving the Bayesian analysis with this technique, the Laplace distribution is assumed independently
as a prior distribution of the model parameters. To facilitate Gibbs sampling in Bayesian inference, in most research,
the mixed representation of the Laplace function assumed by Andrews and Mallows [2] is used, so that the probability
density function of the Laplace distribution is written with a mixed representation of the two distributions (Normal
and Exponantial), as follows [3]:

γ

2σ
e−γ|βj |/σ =

∫ ∞

0

1√
2πσ2sj

e−β2
j /(2σ

2sj)
γ2

2
e−γ2sj/2dsj (4.3)

According to the hierarchical formula, β has a normal distribution, as follows:

[β/σ2, sj ] ∼ Np(0, σ
2.sj)

where sj ∼ exponential(2/γ2), sj is diagonal matrix (s1, ..., sp). The tuning parameter γ2 ∼ Γ(aγ , bγ), when aγ , bγ
are predefined hyperparameters, where it was specified by Feng et al. [3], we set aγ = 1 and bγ = 0.05 for obtaining
dispersed priors. Based on the previously described hierarchical structure, Blasso and Balasoo may be easily used in
more complex models, such as quantile regression models or quantile SEM, to conduct simultaneous estimation and
variable selection. Quantile regression was pointed out by Koenker and Bassett Jr [4], where the frequentist approach
to the estimation of coefficients is to solve the following optimization problem:

min
β

n∑
i=1

ρτ (yi − xTi β) (4.4)

where ρτ (x) = x(τ–I(x < 0)) is the quantile loss function. Li and Zhu proposed the regularized quantile regression to
achieve estimation and variable selection, which uses the Lasso type penalty function, as follow [8]:

min
β

n∑
i=1

ρτ (yi − xTi β) + γ

p∑
j=1

|βj |. (4.5)

In a Bayesian quantile regression framework, we need to specify a working likelihood for the model error. According
to Yu and Moyeed [13], maximizing the likelihood under ALD error is equivalent to minimizing the objective loss
function (4.4) of quantile regression skewed Asymmetric Laplace (ALD) has its probability density function as follows:

f(y\µ, σ, τ) = τ(1− τ)

σ
exp

{
−ρτ

(
y − u

σ

)}
where µ is the location parameter, σ is the scale parameter and (0 < τ < 1) is the skewness parameter. According
to Yu and Moyeed (2001) implementing Bayesian inference for quantile regression [13], if the error term εi are follow
AL(0, σ, τ), then the conditional likelihood function for the quantile regression model as follows [3]:

L(β, σ; y,X) =
τn(1− τ)n

σn
exp

{
−
∑n

i=1 ρτ (yi − xTi β)

σ

}
. (4.6)

Hence, the minimization problem given by (4.2) is equivalent to maximizing the likelihood function (4.6), for the
conditional likelihood function (4.6), we suffer computation difficulty due to the inherent non-differentiability of the
QR check function. Nevertheless, Kozumi and Kobayashi [6] proved that the skewed Laplace distribution (4.6) can be
viewed as a mixture of normal and exponential distributions as follows [7]:

y = µ+ k1e+
√
k2σeς (4.7)
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where k1 = (1− 2τ)/(τ(1− τ)), k2 = 2/τ(1− τ), ς ∼ N [0, 1], e ∼ exp(1/σ). The resulting conditional distribution of
y is normal, with a mean (µ+ k1e) and variance (k2σe). The posterior distribution of β can be expressed as follows:

f(β/y,X) ∝ π(β) exp

{
−
∑n

i=1 ρτ (yi − xTi β)

σ

}
(4.8)

where π(β) is a prior distribution, The prior distribution of β is not unique, but there have been many attempts by
researchers, initially Yu and Moyeed [13] employed non-informative prior (π(β) ∝ 1) which yielded a proper joint
posterior distribution, and the posterior mode of β is also identical to the solution to quantile regression in (4.4), and
based on the aforementioned normal mixture representation of (εi) Kozumi and Kobayashi [6] specified a conjugate
normal prior for β, and the posterior of a normal distribution.

Feng et al. [3] have adopted Li et al. [7] proposing the Bayesian regularized quantile regression by employing
the double-exponential prior in equation (4.2), such that the maximization of the posterior of β is equivalent to the
minimization of equation (4.5) in Lasso technique, to implement the Gibbs sampling we need to generate the unknowns
from the fully conditional posterior distributions. The fully conditional posterior distributions are provided below.

Thus, by using this prior distribution, an easy posterior distribution analysis is obtained, as well as an easy
possibility to apply the Gibbs sampling method. Then the Bayesian hierarchical model based on the hierarchical
model presented by Feng et al. [3] was used in estimating the parameters of the structural equation as well as
the measurement equation within the structural equations model using the Lasso technique, which was explained
in this section. The common conjugated prior distributions were used in the Bayesian analysis of the structural
equations model, as follows [3, 7]. To simplify the expression of the distributions, we define several notations. For the
measurement equation (1.1), we let Ω = (ω1, ..., ωn), Λy = (A,Λ) = {λykj}, and define Ly = {lykj} as its identification
matrix. That is, lykj = 0 if the value of λykj is prefixed for identification purposes, and lykj = 1 if λykj is subject to
estimation.

We let ui = (cTi , ω
T
i )

T , U = (u1, ..., un), and define Uk as the submatrix of U after removing the rows corresponding
to lykj = 0. We let Y ∗ k = (y ∗ k1, ..., y ∗ kn)T with

y∗ik = yik −
r2+q2∑
j=1

λykjuij(1− lykj).

For the median regression in measurement equation (1.1), we can be expressed as follows:

(yi/ωi, θy, eyi)
ind∼ Np(Aci + Λωi,Ψi).

To simplify the notations, let ui = (cTi , ω
T
i )

T , θy = (A,Ξ), θykT be the kth row of θ1y for k = 1, ..., p. Then the
distribution of (γi/ωi, θγ , eγi) is in the following form

(yi/ωi, θy, eyi)
ind∼ Np(θiui,Ψi)

θyk ∼ N(Λ0yk, H0yk)

eyik ∼ exp(σyk)

σyk − 1 ∼ Γ(a0γk, b0γk)

where a0γ , b0γ ,Λ0yk and H0yk (positive-definite matrix) are the hyperparameters and eyi = (eyi1, ..., eyip)
T ,Ψi =

diag(8σy1eyi1, ..., 8σypeyip) and the structural equation (1.2) with Bayesian Lasso as follow: βτ = (βT
1τ , β

T
2τ )

T , vi =

(dTi , ξ
T
i )

T , (ηi/ξi, θ2ω, eηi)
ind∼ N(βT

τ vi, k1eηi, k2σηeηi), ξi
ind∼ Nq2(0,Φ), Φ

−1 ∼ Wishart(R0, ρ0), βτ ∼ Nγ2+q2(0, S),
where S = diag(s1, ..., sγ2+q2)

sj ∼ exp

(
2ση
γ2

)
γ2 ∼ Γ(aγ , bγ)

σ−1
η ∼ Γ(α0σ, β0σ)

eηi ∼ exp(ση)
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where a0γ , b0γ ,Λ0yk and H0yk (positive-definite matrix) are the hyperparameters and eη = (eη1, ..., eηn)
T Due to

the complexity of the model, direct inference of the common posterior distribution p(Ω, θ\Y,C,D, eη) is difficult
and complex. However, the full conditional distributions of the latent variables and all parameters are common
distributions. Therefore, the Gibbs sampling method is used as an easy and uncomplicated way to obtain Bayesian
estimates for the parameters and the latent variable, so that the Gibbs sampling tool can be easily implemented, and
the Bayesian estimate for each parameter is taken to be the mean of the sample of random observations derived from
each iteration.

As is known, a Bayesian estimate for parameters is obtained from the posterior joint distribution p(Ω, θ\Y,C,D, eη)
by an iterative sampling of the parameters and latent variables, each component of the posterior distribution is
generated by the Gibbs sampling method From the conditional complete post hoc distribution iteratively [3]. Bayes
estimates for and were taken to be the sample mean for the random observations generated as mentioned in Section 3.

1. The full conditional posterior distribution of the Φ:

p(ΦΩ2) ∝ p(Φ)

n∏
i=1

p(ξi\Φ), p(ΦΩ2) ∝ |Φ|−(n+ρ0+q2+1)/2 exp

{
−1

2
tr
[
Φ−1(Ω2Ω

T
2 +R−1

0 )
]}

. (4.9)

2. The full conditional posterior distribution of ση:

(σ−1
η \Ω, βτ , sj , γj) ∼ Γ(n+ aσ + r2 + q2, bσ +

n∑
i=1

ρτ (ηi − βT
τ vi) +

γ2

2

r2+q2∑
j=1

sj)

3. The full conditional posterior distribution of the eηi is a

Inverse Gaussian distribution

(
k2

2|ηi −Bτdi − Γτξi|
,
k2
4ση

)
(4.10)

4. The full conditional posterior distribution of βτ :

f(βτ\Ω, eη, ση) ∝ f(ηi\Ω, eη, ση)f(βτ ), f(βτ\Ω, eη, ση) ∝ Nγ2+q2

 −1∑
β

V E−1
σ Ξ∗,

−1∑
β

 (4.11)

where
∑−1

β = (S−1 + V E−1
σ V T )−1.

5. The full conditional posterior distribution of sj :

(s−1
j \βτj , γ, ση) ∼ Inverse−Gaussian

(
γ√
σ|βτj |

,
γ2

ση

)
(4.12)

6. The full conditional posterior distribution of Υ:

f(γ2\sj , ση) ∝ f(si\ση)f(γ2), f(γ2\sj , ση) ∼ Γ

(
a0γ + γ2 + q2, b0γ +

∑r2+q2
j=1 sj

2ση

)
. (4.13)

5 Simulation study

In this section, we employ simulation to evaluate the Bayesian quantile SEM’s empirical performance. We generated
the data set from SEM:

yi = Aci + Λωi + εi, ηi = b1di + γ1ξi1 + γ2ξi2 + δi

where p = 9, q = 3, q1 = 1, q2 = 2 and γ1 = γ2 = 1.

The simulation study’s main purpose is to estimate the quantile regression coefficients b1, γ1 and γ2 under different
quantiles with small sample size and compare them to their theoretical values. We are choose three sample size
n = (25, 50, 100) and the quantile we choose τ = 0.25, 0.5 and 0.75. The factor loading matrix Λ has the common
non-overlapping structure

ΛT =

1∗ λ21 λ31 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0∗ 0∗ 0∗ 1∗ λ52 λ62 0∗ 0∗ 0∗

0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 1∗ λ83 λ93
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where the zero and ones marked with are fixed in advance to allow for a clear interpretation of latent variables and
model identification, while the other λjk are unknown parameters. The true vales of parameters λjk and aj in the
measurement equation are taken to be λ21 = λ31 = λ52 = λ62 = λ83 = λ93 = 0.7, then the factor loading matrix Λ
will be in the following

ΛT =

1∗ 0.7 0.7 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0∗ 0∗ 0∗ 1∗ 0.7 0.7 0∗ 0∗ 0∗

0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 1∗ 0.7 0.7


The true values of parameters in the model are A = (0.5, · · · , 0.5)T , b1 = 0.1 and Γτ = (γ1, γ2) = (0.2, 0.3) and the

explanatory latent variable ξi = (ξi1, ξi2)
T is assumed to follow a normal distribution N(0, φ) where Φ =

[
1 0.2
0.2 1

]
and the fixed covariates c1i and di are independently generated from standard normal distribution N(0, 1). Also, the
prior distributions and the hyperparameters are as follows:

For the conjugate prior of Λyk ∼ Nr1 + q(Λ0yk, H0yk), the free elements in the prior mean Λ0yk and H0yk is
taken as a diagonal matrix with diagonal elements (10000), As well for structural equation the Λω the prior mean
Λ0ω = (1, 0.7, 0.7) and the covariance matrix H0ω = 100 an identity matrix. And for the conjugate inverse gamma
prior of σyk = (a0yk, b0yk) = (1, 1) and ση = (a0σ, b0σ) = (1, 1). For the inverse Wishart prior of Φ, we set ρ0 = 1. For
the error terms for SEM εi and δi, we consider the following different distribution for k = 1, ..., p:

(i) εik’s and δi’s follow the normal distribution N(0, 0.4).

(ii) εik’s and δi’s are distributed as the heavy- tailed central t-distribution t(5).

(iii) εik’s and δi’s are distributed as the skewed ln N(0, 0.35).

In the case (i), the normal distribution was chosen for the error terms as it aligns with that of traditional SEM., In
the case (ii), the heavy-tailed t-distribution is used to assess the quantile SEM’s performance in the presence of outliers
in both the observed and latent variables. In Case (iii), the quantile SEM with skewed outcome latent variables is
evaluated using a log-normal distribution we run 10,000 iterations with the initial 2,000 observations dropped in the
burn-in phase on the basis of 100 replications where the program was written in R language. The performance of the
Bayesian quantile structured equation model (QSEM) is assessed using the bias and root mean square error (RMS),
where the root mean square error (RMS) is:

RMS(θ̂) =

{
1

n

n∑
i=1

(θ̂ − θ)

} 1
2

The Bayesian Quantile estimators referred to in section 3 and Bayesian Lasso estimators referred to in section 4
were compared for the regression coefficients in the structural equation (1.1) presented in Table 1, Table 2 and Table 3
for different distributions of error terms. Also, the estimates of the measurement equation coefficients were presented
in table 4 within the structural equations model with a sample size of 25.

Table 1: Bayesian estimators of the regression coefficients for structural equation for sample size n = 25, εi ∼ N(0, 0.4)

δi n=25 N (0 0.4)
BQSEM BQLsso

Par τ RMS Bias RMS Bias

b1τ

0.25 0.06807999 -0.0140986 0.063584 -0.0522042
0.5 0.09094509 0.08902956 0.009783 -0.0093578
0.75 0.2809844 0.2372889 0.118061 0.08338740

γ1τ

0.25 0.16636208 0.1614523 0.076555 0.07208023
0.5 0.17667059 0.17661718 0.0930055 0.068673
0.75 0.1935929 0.1933980 0.09351625 0.05959757

γ2τ

0.25 0.57522667 0.5733104 0.39888852 0.07208023
0.5 0.63500834 0.62789313 0.4341381 0.433329
0.75 0.7171769 0.7129003 0.47395937 0.46795710

The results of the Quantile structural equation model were compared with Lasso estimators for the structural
equation (1.2), which are shown in Tables 1, 2 and 3 for all the hypotheses of error distributions, which areN(0, 0.4), t(5)
and LnN(0, 0.35). It has been proven that Lasso estimators are more efficient because it is less MSE and Bias in the
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Table 2: Bayesian estimators of the regression coefficients for structural equation for sample size n = 25, εi ∼ t(5)

δi n=25 t(5)
BQSEM BQLsso

Par τ RMS Bias RMS Bias

b1τ

0.25 0.07410148 -0.0118373 0.06568740 -0.0511498
0.5 0.08304162 0.08054925 0.01297118 -0.0124334
0.75 0.2727498 0.2235936 0.10316629 0.07475327

γ1τ

0.25 0.1704115 0.16709373 0.06886815 0.06620751
0.5 0.1763317 0.17632264 0.09179943 0.06549495
0.75 0.1869714 0.1860112 0.09142032 0.06389780

γ2τ

0.25 0.5614167 0.56016058 0.40046371 0.39962378
0.5 0.62791284 0.62107868 0.41763562 0.41597434
0.75 0.7293822 0.7253235 0.47400667 0.46586527

Table 3: Bayesian estimators of the regression coefficients for structural equation for sample size n = 25, εi ∼ ln N(0, 0.35)

δi n=25 ln N(0, 0.35)
BQSEM BQLsso

Par τ RMS Bias RMS Bias

b1τ

0.25 0.06419643 -0.0105932 0.05785819 -0.0484447
0.5 0.06242667 0.06231965 0.00776956 -0.0074559
0.75 0.2656497 0.2214283 0.1096436 0.07971700

γ1τ

0.25 0.15787750 0.15453646 0.07084877 0.06884314
0.5 0.16742392 0.16739034 0.087399142 0.06599080
0.75 0.2001441 0.1999136 0.1066480 0.06435982

γ2τ

0.25 0.54994305 0.54731377 0.41025828 0.40896808
0.5 0.61886252 0.61280847 0.42290513 0.4203174
0.75 0.7106546 0.7065425 0.4469011 0.43697801

Table 4: Bayesian estimates of the parameters for measurement equation for sample size n = 25 with εi ∼ N(0, 0.4)

case of n = 25 and for the three error distributions. Also, the estimators of the measurement equation coefficients
equation (1.1) shown in Table 4, Lasso estimators are the best and most efficient. Also, the Lasso method is preferable
in the case of n = 25.
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6 Conclusion

In this article, the Bayesian Lasso technique has been applied to estimate the parameters of the divisional structural
equation model to provide a comprehensive analysis of the interrelationships between the latent variables and compare
them with the estimations of the parameters of the Quantile structural equation model.
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