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Abstract

In this article, we deal with value distribution of transcendental meromorphic functions with finite order and obtain
some results which improve previous theorems given by Y.Liu, J.P. Wang and F.H. Liu [14].
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1 Introduction

In this paper, meromorphic functions are always defined as meromorphic functions in the complex plane. We
adopt the standard notations of Nevanlinna’s theory of meromorphic functions as explained in [9], [12] and [17]. For
a non-constant meromorphic function f , we denote by T (r, f) the Nevanlinna characteristic function of f and by
S(r, f) any quantity satisfying S(r, f) = o{T (r, f)} for all r outside a possible exceptional set of the finite logarithmic
measure, S(f) denotes the family of all meromorphic functions α such that T (r, α) = S(r, f), where r → ∞ outside a
possible exceptional set of finite logarithmic measure.

Let f(z) and g(z) be two nonconstant meromorphic functions. If for some a ∈ C ∪ {∞}, the zeros of f(z)− a and
g(z) − a (if a = ∞, zeros of f(z) − a and g(z) − a are the poles of f(z) and g(z), respectively) coincide in locations
and multiplicities, we say that f(z) and g(z) share the value a CM (counting multiplicities) and if they coincide in
locations only, we say that f(z) and g(z) share a IM (ignoring multiplicities). In 2010, Qi et al. [15] studied the
uniqueness of the difference monomials and obtained the following result:
Theorem A. Let f(z) and g(z) be transcendental entire functions with finite order, c a non–zero complex constant,
and n ≥ 6 an integer. If E(1, fn(z)f(z + c)) = E(1, gn(z)g(z + c)), then f(z) ≡ t1g(z) or f(z)g(z) = t2, for some
constants t1 and t2 that satisfy tn+1

1 = 1 and tn+1
2 = 1.

In 2015, Y. Liu, J.P.Wang and F.H. Liu [14] obtained the following results.
Theorem B. Let c ∈ C \ {0}. Let f(z) and g(z) be two transcendental meromorphic functions with finite order,
and n(≥ 14), k(≥ 3) be two positive integers. If Ek(1, f

n(z)f(z + c)) = Ek(1, g
n(z)g(z + c)), then f(z) ≡ t1g(z) or

f(z)g(z) = t2, for some constants t1 and t2 that satisfy tn+1
1 = 1 and tn+1

2 = 1.
Theorem C. Let c ∈ C and n ≥ 16 be an integer. Let f(z) and g(z) be two transcendental meromorphic functions
with finite order. If E2(1, f

n(z)f(z+c)) = E2(1, g
n(z)g(z+c)), then f(z) ≡ t1g(z) or f(z)g(z) = t2, for some constants

t1 and t2 that satisfy tn+1
1 = 1 and tn+1

2 = 1.
Theorem D. Let c ∈ C and n ≥ 22 be an integer. Let f(z) and g(z) be two transcendental meromorphic functions
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with finite order. If E1(1, f
n(z)f(z+c)) = E1(1, g

n(z)g(z+c)), then f(z) ≡ t1g(z) or f(z)g(z) = t2, for some constants
t1 and t2 that satisfy tn+1

1 = 1 and tn+1
2 = 1.

Let P (z) = anz
n+an−1z

n−1+ ...+a0 be a non-zero polynomial where an(̸= 0), an−1, ..., a0 are complex constants.
We denote Γ0 by Γ0 = m1 +m2 respectively, where m1 is the number of simple zeros of P (z) and m2 is the number
of multiple zeros of P (z). Also m is the total number of zeros of P (z), so m = m1 +m2.

This paper will investigate the value distribution of meromorphic functions and obtain the following result.

Theorem 1.1. Let f and g be transcendental meromorphic functions with finite order and c be a nonzero complex
constant. Let P (z) = anz

n + an−1z
n−1 + ... + a0 be a nonzero polynomial, where a0, a1, ...an(̸= 0) are complex

constants and let n > 2Γ0 + 9, where Γ0 = m1 + m2, m1 is the number of the simple zero of P (z) and m2 is the
number of multiple zeros of P (z). If El(1, P (f)f(z + c)) = El(1, P (g)g(z + c)) and l, n,m are integers satisfying one
of the following conditions:

(I) l = 2, n > 2Γ0 +
m
2 + 11− λ;

(II) l = 1, n > 2Γ0 + 2m+ 13− 2λ;

(III) l = 0, n > 2Γ0 + 3m+ 17− 6λ;

(IV) l ≥ 3, n > 2Γ0 + 11.

Then one of the following results holds:

(i) f ≡ tg for a constant t such that td = 1, where d = GCD{n+ 1, n, n− 1, ..., 1}.
(ii) f and g satisfy the algebraic equation R(f, g) ≡ 0, where R(ω1, ω2) = P (ω1)ω1(z + c)− P (ω2)ω2(z + c).

(iii) fg ≡ µ, where µ is a complex constant satisfying a2nµ
n+1 ≡ 1.

The following example exhibits that Theorem 1.1 improves Theorems B-D respectively by relaxing the nature of
sharing and by reducing the lower bound of n.

Example 1.2. Let P (z) = (z − 1)6(z + 1)6z11 , f(z) = sinz, g(z) = cosz, k = 0 and c = 2π. It immediately follows
that n > 2Γ2 + 1 and P (f)f(z + c) = P (g)g(z + c). Therefore P (f)f(z + c) and P (g)g(z + c) share 1 CM and hence
they share (1, 2).

Here f and g satisfy the algebraic equation R(f, g) = 0,where R(w1, w2) = P (w1)w1(z + c)− P (w2)w2(z + c).

2 Preliminaries

To prove our result, we need following lemmas:

Lemma 2.1. [4] Let f and g be two meromorphic functions and let l be a positive integer. If El(1; f) = El(1; g),
then one of the following cases must occur:

(i)

T (r, f) + T (r, g) ≤ N2(r, f) +N2(r, g) +N2(r,
1

f
) +N2(r,

1

g
) +N(r,

1

f − 1
) +N(r,

1

g − 1
)

−N11(r,
1

f − 1
) +N (l+1(r,

1

f − 1
) +N (l+1(r,

1

g − 1
) + S(r, f) + S(r, g);

(2.1)

(ii)

f ≡ (b+ 1)g + (a− b− 1)

bg + (a− b)
,

where a(̸= 0), b are two constants.

Lemma 2.2. [4] Let f and g be two meromorphic functions. If f and g share 1 IM, then one of the following cases
must occur:
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(i)

T (r, f)+T (r, g) ≤ 2[N2(r, f)+N2(r,
1

f
)+N2(r, g)+N2(r,

1

g
)]+3NL(r,

1

f − 1
)+3NL(r,

1

g − 1
)+S(r, f)+S(r, g); (2.2)

(ii)

f ≡ (b+ 1)g + (a− b− 1)

bg + (a− b)
,

where a(̸= 0), b are two constants.

Lemma 2.3. [18] Let f(z) be a transcendental meromorphic function of zero order and q a nonzero complex constant.
Then

T (r, f(qz)) = (1 + o(1))T (r, f(z))

and
N(r, f(qz)) = (1 + o(1))N(r, f(z))

on a set of logarithmic density 1.

Lemma 2.4. [14] Let f(z) be a transcendental meromorphic function of zero order and q, η two nonzero complex
constants. Then

T (r, f(qz + η)) = T (r, f(z)) + S(r, f),

N(r,
1

f(qz + η)
) ≤ N(r,

1

f
) + S1(r, f),

N(r, f(qz + η)) ≤ N(r, f) + S1(r, f),

N(r,
1

f(qz + η)
) ≤ N(r,

1

f
) + S1(r, f),

N(r, f(qz + η)) ≤ N(r, f) + S1(r, f).

Lemma 2.5. [14] Let f be a trancendental meromorphic function of zero order, q(̸= 0), η complex constants, and let
P (z) = anz

n + an−1z
n−1 + ...+ a1z + a0 be a polynomial, where a0, a1, a2...an(̸= 0) are complex constants. Then we

have
(n− 1)T (r, f) + S1(r, f) ≤ T (r, P (f)f(qz + η)) ≤ (n+ 1)T (r, f) + S1(r, f).

If f is a transcendental entire function of zero order, we have

T (r, P (f)f(qz + η)) = T (r, P (f)f) + S1(r, f) = (n+ 1)T (r, f) + S1(r, f).

Lemma 2.6. [14] Let f(z) and g(z) be transcendental entire functions of zero order, P (z) = anz
n+an−1z

n−1+ · · ·+
a1z+a0 be a polynomial, where a0, a1, a2, ..., an(̸= 0) are complex constants. If n ≥ 2, and P (f)f(qz+η)P (g)g(qz+η) =
t where q(̸= 0), η, t(̸= 0) are constants, then we have fg = µ, where a2nµ

n+1 = t.

Lemma 2.7. [14] Let f(z) be a nonconstant zero order meromorphic function and q ∈ C \ {0}. Then m(r, f(qz+η)
f(z) ) =

S(r, f), on a set of logarithmic density 1.

Lemma 2.8. [16] Let f be a nonconstant meromorphic function and P (f) = a0 + a1f + a2f
2 + ... + anf

n, where
a0, a1, a2, ..., an are constants and an ̸= 0. Then

T (r, P (f)) = nT (r, f) + S(r, f).
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3 Proof of the Theorem 1.1

Let F (z) = P (f)f(z + c) and G(z) = P (g)g(z + c). From the assumptions of Theorem 1.1, we have El(1;F (z)) =
El(1;G(z)).

(I) l = 2. Since

N(r,
1

F − 1
) +N(r,

1

G− 1
)−N11(r,

1

F − 1
) +

1

2
N (l+1(r,

1

F − 1
) +

1

2
)N (l+1(r,

1

G− 1
)

≤ 1

2
N(r,

1

F − 1
) +

1

2
N(r,

1

G− 1
) ≤ 1

2
T (r, F ) +

1

2
T (r,G) + S(r, F ) + S(r,G).

(3.1)

N (l+1(r,
1

F − 1
) ≤1

2
N(r,

F

F ′ ) =
1

2
N(r,

F ′

F
) + S(r, F )

≤1

2
N(r,

1

F
) + S(r, F )

≤m

2
T (r, f) +

1

2
N(r,

1

f
) + S1(r, f).

So,

1

2
N (l+1(r,

1

F − 1
) ≤ m

4
T (r, f) +

1

4
N(r,

1

f
) + S1(r, f),

1

2
N (l+1(r,

1

G− 1
) ≤ m

4
T (r, g) +

1

4
N(r,

1

g
) + S1(r, g).

Case 1. If F (z), G(z) satisfy Lemma 2.1(i), from transcendental meromorphic function f(z), g(z) and (3.1), we
have

T (r, F (z)) + T (r,G(z)) ≤ 2N2(r, F ) + 2N2(r,G) + 2N2(r,
1

F
) + 2N2(r,

1

G
) +

m

2
T (r, f) +

m

2
T (r, g)

+
1

2
N(r,

1

f
) +

1

2
N(r,

1

g
) + S1(r, f) + S1(r, g).

From Lemma 2.5 and λ = min{Θ(0, f),Θ(0, g)}, we have

(n− 1)(T (r, f) + T (r, g)) ≤ 8(T (r, f) + T (r, g)) + 2(T (r, f) + T (r, g)) + 2Γ0(T (r, f) + T (r, g))

+
m

2
(T (r, f) + T (r, g)) +

1

2

{
N(r,

1

f
) +N(r,

1

g
)

}
+ S1(r, f) + S1(r, g)

(n− 2Γ0 −
m

2
− 11 + λ)[T (r, f) + T (r, g)] ≤ S1(r, f) + S1(r, g). (3.2)

Since n > 2Γ0 +
m
2 + 11− λ and f, g are transcendental functions, we can get a contradiction.

Case 2. If F (z), G(z) satisfy Lemma 2.1(ii), that is,

F ≡ (b+ 1)G+ (a− b− 1)

bG+ (a− b)
, (3.3)

where a( ̸= 0), b are two constants. We consider three cases as follows.

Subcase 2.1. b ̸= 0,−1. If a− b− 1 ̸= 0, then by (3.3), we know

N(r,
1

G+ a−b−1
b+1

) = N(r,
1

F
).
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Since f, g are meromorphic functions of zero order, by the Second Fundamental Theorem and Lemmas 2.3 and 2.4,
we have

T (r,G) ≤ N(r,G) +N(r,
1

G
) +N(r,

1

G+ a−b−1
b+1

) + S(r, g)

≤ N(r, P (g)g(z + c)) +N(r,
1

P (g)g(z + c)
) +N(r,

1

F
) + S(r, g)

≤ (2 +m+ 1)T (r, g) +mT (r, f) +N(r,
1

f
) + S1(r, f) + S1(r, g).

Then, from Lemma 2.5, we have

(n−m− 4)T (r, g) ≤ mT (r, f) +N(r,
1

f
) + S1(r, f) + S1(r, g).

Similarly, we have

(n−m− 4)T (r, f) ≤ mT (r, g) +N(r,
1

g
) + S1(r, f) + S1(r, g).

From the above two inequalities, we have

(n− 2m− 6 + 2λ)[T (r, f) + T (r, g)] ≤ S1(r, f) + S1(r, g). (3.4)

From the definitions of m and Γ0, we have m = m1 +m2. Since 2Γ0 +
m
2 + 11 − λ − (2m + 6 − 2λ) ≥ 0 that is,

n > 2Γ0 +
m
2 + 11− λ ≥ (2m+ 6− 2λ). From (3.4) and since f, g are transcendental, we can get a contradiction.

If a− b− 1 = 0, then by (3.3) we know F = ((b+1)G)/(bG+1). Since f, g are meromorphic functions, we get that
−1
b is a Picard’s exceptional value of G(z). By the Second fundamental theorem, we have

T (r,G) ≤ N(r,
1

G
) + S(r,G) ≤ (m+ 1)T (r, g) + S1(r, g).

Then, from Lemma 2.5 and n > 2Γ0 +
m
2 + 11− λ, we know T (r, g) ≤ S1(r, g), a contradiction.

Subcase 2.2. b = −1. Then (3.3) becomes F = a/(a+ 1−G). If a+ 1 ̸= 0, then a+ 1 is a Picard’s exceptional
value of G. Similarly to the discussion in Subcase 2.1, we can deduce a contradiction again.

If a+ 1 = 0, then FG = 1, that is,
P (f)f(z + c)P (g)g(z + c) ≡ 1.

Since n > 2Γ0 +
m
2 + 11− λ ≥ 2, by Lemma 2.6, we can get that fg = µ for a constant µ such that a2nµ

n+1 ≡ 1.

Subcase 2.3. b = 0. Then (3.3) becomes F = (G+ a− 1)/a.

If a−1 ̸= 0, then N(r, 1
G+a−1 ) = N(r, 1

F ). Similarly to the discussion in Subcase 2.1, we can deduce a contradiction
again.

If a− 1 = 0, then F ≡ G, that is,
P (f)f(z + c) ≡ P (g)g(z + c). (3.5)

Set h = f
g . If h is not a constant, from (3.5), we can get that f and g satisfy the algebraic equation R(f, g) ≡ 0,

where R(ω1, ω2) = P (ω1)ω1(z + c)− P (ω2)ω2(z + c). If h is a constant. Substituting f = gh into (3.5), we can get

g(z + c)[ang
n(hn+1 − 1) + an−1g

n−1(hn − 1) + ...+ a0(h− 1)] ≡ 0, (3.6)

where an(̸= 0), an−1, ..., a0 are constants. Since g is transcendental meromorphic function, we have g(z+c) ̸≡ 0. Then,
from (3.6), we have

ang
n(hn+1 − 1) + ang

n−1(hn − 1) + ...+ a0(h− 1) ≡ 0. (3.7)

If an ̸= 0 and an−1 = an−2 = ... = a0 = 0, then from (3.7) and g being a transcendental function, we can get
hn+1 = 1. Since an ̸= 0 and there exists ai ̸= 0(i ∈ {0, 1, 2, ...n− 1}). Suppose that hn+1 ̸= 1, by Lemma 2.8 and (3.7),
we have T (r, g) = S(r, g) which is a contradiction with a transcendental function g. Then hn+1 = 1. Similarly to this
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discussion, we can get that hj+1 = 1. when aj ̸= 0 for some j = 0, 1, ..., n. Thus, from the definition of d, we can get
that f ≡ tg, where t is a constant such that td = 1, d = GCD{n+ 1, n, n− 1, ..., 1}.

(II) l = 1. Since

N(r,
1

F − 1
) +N(r,

1

G− 1
)−N11(r,

1

F − 1
) ≤ 1

2
N(r,

1

F − 1
) +

1

2
N(r,

1

G− 1
)

≤ 1

2
T (r, F ) +

1

2
T (r,G) + S(r, F ) + S(r,G).

(3.8)

From Lemma 2.4, we have

N (2(r,
1

F
) ≤ N(r,

F

F ′ ) = N(r,
F ′

F
) + S(r, f) ≤ N(r,

1

F
) + S(r, f)

≤ mT (r, f) +N(r,
1

f
) + S1(r, f),

(3.9)

and

N (2(r,
1

G
) ≤ mT (r, g) +N(r,

1

g
) + S1(r, g). (3.10)

Case 1. If F (z), G(z) satisfy Lemma 2.1(i), from f, g as meromorphic functions and (3.8)-(3.10), we have

T (r, F ) + T (r,G) ≤2N2(r, F ) + 2N2(r,G) + 2N2(r,
1

F
) + 2N2(r,

1

G
) + 2m(T (r, f) + T (r, g)) + 2N(r,

1

f
)

+ 2N(r,
1

g
) + S1(r, f) + S1(r, g)

≤8(T (r, f) + T (r, g)) + 2(Γ0 +m+ 1)(T (r, f) + T (r, g)) + (2− 2λ)(T (r, f) + T (r, g))

+ S1(r, f) + S1(r, g).

From Lemma 2.5 and λ = min{Θ(0, f),Θ(0, g)}, we have

[n− 2Γ0 − 2m− 13 + 2λ][T (r, f) + T (r, g)] ≤ S1(r, f) + S1(r, g). (3.11)

Since n > 2Γ0 + 2m+ 13− 2λ, from (3.11) and since f, g are transcendental, we can get a contradiction.

Case 2. If F (z), G(z) satisfy Lemma 2.1(ii). Similarly to the proof of Case 2 in (I) we can get the conclusion of
Theorem 1.1.

(III) l = 0, that is, F (z), G(z), share 1 IM. From the definition of F (z), G(z), we have

NL(r,
1

F − 1
) ≤ N(r,

F

F ′ ) = N(r,
F ′

F
) + S(r, F ) ≤ N(r,

1

F
) + S(r, F )

≤ mT (r, f) +N(r,
1

f
) + S1(r, f)

(3.12)

Similarly, we have

NL(r,
1

G− 1
) ≤ mT (r, g) +N(r,

1

g
) + S1(r, g). (3.13)

Case 1. Suppose that F (z), G(z) satisfy Lemma 2.2(i). From (3.12) and (3.13), we have

T (r, F (z)) + T (r,G(z)) ≤2N2(r, F ) + 2N2(r,G) + 2N2(r,
1

F
) + 2N2(r,

1

G
) + 3mT (r, f) + 3mT (r, g) + 3N(r,

1

f
)

+ 3N(r,
1

g
) + S1(r, f) + S1(r, g)

≤8(T (r, f) + T (r, g)) + (2Γ0 + 3m+ 2)(T (r, f) + T (r, g)) + 3(2− 2λ)(T (r, f) + T (r, g))

+ S1(r, f) + S1(r, g).
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From Lemma 2.5, we have

(n− 2Γ0 − 3m− 17 + 6λ)(T (r, f) + T (r, g)) ≤ S1(r, f) + S1(r, g)

Since n > 2Γ0 + 3m+ 17− 6λ, we get a contradiction.

Case 2. Suppose that F (z), G(z) satisfy Lemma 2.2(ii). Similarly to the proof of the Case 2 in (I), we can easily
get the conclusion of Theorem 1.1.

(IV) l ≥ 3. Since

N(r,
1

F (z)− 1
) +N(r,

1

G(z)− 1
) +N (l+1(r,

1

F (z)− 1
) +N (l+1(r,

1

G(z)− 1
)−N11(r,

1

F (z)− 1
)

≤ 1

2
N(r,

1

F (z)− 1
) +

1

2
N(r,

1

G(z)− 1
) + S(r, F ) + S(r,G)

≤ 1

2
T (r, F ) +

1

2
T (r,G) + S(r, F ) + S(r,G)

(3.14)

Case 1. Suppose that F (z), G(z) satisfy Lemma 2.1(i). From Lemmas 2.4 and 2.7, we have

(n− 1)(T (r, f) + T (r, g)) ≤ (8 + 2Γ0 + 2)[T (r, f) + T (r, g)] + S1(r, f) + S1(r, g)

that is,
(n− 11− 2Γ0)[T (r, f) + T (r, g)] ≤ S1(r, f) + S1(r, g). (3.15)

Since n > 2Γ0 + 11 and f, g are transcendental functions, we can get a contradiction.

Case 2. Suppose that F (z), G(z) satisfy Lemma 2.1(ii). Similarly to the proof of Case 2 of (I), we can easily get
the conclusions of Theorem 1.1.

Thus, the proof of Theorem 1.1 is complete.
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