
تعداد نشریات | 21 |
تعداد شمارهها | 657 |
تعداد مقالات | 9,620 |
تعداد مشاهده مقاله | 68,637,416 |
تعداد دریافت فایل اصل مقاله | 48,110,786 |
Nonexistence and Multiplicity results for binonlocal Leray-Lions type problems | ||
International Journal of Nonlinear Analysis and Applications | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 13 مهر 1404 اصل مقاله (388.26 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2025.34637.5180 | ||
نویسنده | ||
Zohreh Naghizadeh* | ||
Faculty of Sciences, Department of Mathematics, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran | ||
تاریخ دریافت: 12 تیر 1403، تاریخ پذیرش: 24 بهمن 1403 | ||
چکیده | ||
The Leray-Lions operators attract much attention because they are flexible enough to be specified for different elliptic operators. The goal of this paper is to obtain the existence of at least three distinct weak solutions for a Leray-Lions problem of $r(x)$-Kirchhoff type and a nonexistence result in the exponent constant case. The technique is constructed on variational methods. | ||
کلیدواژهها | ||
$r(x)$-Kirchhoff type problems؛ Leray-Lions type operators؛ Variational techniques | ||
مراجع | ||
[1] G. Bonanno, Some remarks on a three critical points theorem, Nonlinear Anal. Theory Meth. Appl. 54 (2003), no. 4, 651–665. [2] G. Bonanno and S.A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal. 89 (2010), no. 1, 1–10. [3] M.-M. Boureanu, Fourth-order problems with Leray-Lions type operators in variable exponent spaces, Discrete Contin. Dyn. Syst. Ser. S. 12 (2019), no. 2, 231–243. [4] L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, vol. 2017, Springer Science & Business Media, 2011. [5] X. Fan, On nonlocal p(x)-Laplacian Dirichlet problems, Nonlinear Anal. Theory Meth. Appl. 72 (2010), no. 7–8, 3314–3323. [6] X. Fan and D. Zhao, On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl. 263 (2001), no. 2, 424–446. [7] Y. Karagiorgos and N. Yannakakis, A Neumann problem involving the -Laplacian with in a subdomain, Adv. Calc. Var. 9 (2016), no. 1, 65–76. [8] K. Kefi and V. Rădulescu, On a p(x)-biharmonic problem with singular weights, Z. Angew. Math. Phys. 68 (2017), no. 4, 1–13. [9] K. Kefi, N. Irzi, and M.M. Al-shomrani, Existence of three weak solutions for fourth-order Leray-Lions problem with indefinite weights, Complex Var. Elliptic Equ. 68 (2023), no. 9, 1473–1484. [10] Z. Musbah and A. Razani, A class of biharmonic nonlocal quasilinear systems consisting of Leray-Lions type operators with Hardy potentials, Bound. Value Probl. 2022 (2022), no. 1, 1–14. [11] V.D. Rădulescu and D.D. Repovš, Partial Differential Equations with Variable Exponents: Variational methods and Qualitative Analysis, vol. 9, CRC Press, Boca Raton, 2015. [12] M. Růžička, Electrorheological Fluids: Modeling and mathematical theory, Lecture Notes in Math. 1748 (2000), 16–38. [13] K. Soualhine, M. Filali, M. Talbi, and N. Tsouli, Three weak solutions for a class of fourth order p(x)-Kirchhoff type problem with Leray-Lions operators, Bol. Soc. Paran. Mat. 42 (2024), 1–13. [14] C. Yun-mei and S. Levine, and R. Hurali, Variable exponent, linear growth functionals in image processing. I, SIAM J. Appl. Math. 66 (2024), no. 4, 1383–1406. | ||
آمار تعداد مشاهده مقاله: 3 تعداد دریافت فایل اصل مقاله: 3 |