
تعداد نشریات | 21 |
تعداد شمارهها | 660 |
تعداد مقالات | 9,649 |
تعداد مشاهده مقاله | 68,717,774 |
تعداد دریافت فایل اصل مقاله | 48,224,816 |
Multiple nontrivial solutions to a class of fractional Schrödinger-Maxwell systems in Bessel potential space | ||
International Journal of Nonlinear Analysis and Applications | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 21 مهر 1404 اصل مقاله (427.51 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2024.35589.5293 | ||
نویسندگان | ||
Hamza Boutebba* ؛ Hakim Lakhal؛ Kamel Slimani | ||
Laboratory of Applied Mathematics and History and Didactics of Mathematics (LAMAHIS), Department of Mathematics, University of 20 August 1955, P.O. Box 26-21000, Skikda, Algeria | ||
تاریخ دریافت: 20 مهر 1403، تاریخ بازنگری: 26 آبان 1403، تاریخ پذیرش: 29 آبان 1403 | ||
چکیده | ||
This work deals with a class of fractional Schrödinger-Maxwell systems related to the distributional Riesz fractional gradient. First, we introduce the latter operator and investigate its appropriate functional framework. Then, we pose the given problem in that space. Applying variational methods combined with the Symmetric Mountain Pass critical point Theorem, we obtain the existence of infinitely many nontrivial solutions in Bessel potential space. | ||
کلیدواژهها | ||
Fractional Schrödinger-Maxwell systems؛ Bessel potential spaces؛ distributional Riesz fractional gradient؛ multiplicity of solutions | ||
مراجع | ||
[1] F. Abdolrazaghi and A. Razani, On the weak solutions of an overdetermined system of nonlinear fractional partial integro-differential equations, Miskolc Math. Notes 20 (2019), 3–16. [2] F. Abdolrazaghi and A. Razani, A unique weak solution for a kind of coupled system of fractional Schrodinger equations, Opus Math. 40 (2020), 313–322. [3] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381. [4] A. Azevedo, J.F. Rodrigues, and L. Santos, On a class of nonlocal problems with fractional gradient constraint, arXiv preprint arXiv:2202.03017 (2022). [5] F. Behboudi, A. Razani, and M.Oveisiha, Existence of a mountain pass solution for a nonlocal fractional (p, q)-Laplacian problem, Bound Val Pro. 2020 (2020), 149. [6] J.C. Bellido, J. Cueto, and C. Mora-Corral, Γ-convergence of polyconvex functionals involving s-fractional gradients to their local counterparts, Cal. Variations Partial Differ. Equ. 60 (2021), 7. [7] J.Bertoin, Levy Processes, Cambridge University Press, 1996. [8] G.M. Bisci, V. Radulescu, and R. Servadei, Variational methods for Nonlocal Fractional Problems, 162. Cambridge University Press, 2016. [9] H. Boutebba, H. Lakhal, and K. Slimani, The multiplicity of solutions to a new class of superlinear fractional Schrodinger-Poisson systems, Novi Sad J. Math. (accepted paper 2024) doi: 10.30755/NSJOM.16284. [10] H. Boutebba, H. Lakhal, and K.Slimani, Existence of multiple solutions for nonlinear fractional Schrodinger-Poisson system involving new fractional operator, Int. J. Nonlinear Anal. Appl. 15 (2024), 83–92. [11] H. Boutebba, H. Lakhal, and K. Slimani, Infinitely many distributional solutions to a general kind of nonlinear fractional Schrodinger-Poisson systems, J. Anal. 32 (2024), 1079–1091. [12] C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Vol. 20. Cham: Springer, 2016. [13] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ. 32 (2007), 1245–1260. [14] G. Cerami, An existence criterion for the critical points on unbounded manifolds, Istit. Lombardo Accad. Sci. Lett. Rend. 112 (1978), 332–336. [15] J. Chen, X. Tang, and H. Luo, Infinitely many solutions for fractional Schrodinger-Poisson systems with sign-changing potential, Electronic J. Differ. Equ. 2017 (2017), no. 97, 1--13. [16] M. D'Elia, M. Gulian, H. Olson, and G.E. Karniadakis, Towards a unified theory of fractional and nonlocal vector calculus, Fractional Cal. Appl. Anal. 24 (2021), no. 5, 1301-1355. [17] E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci Math. 136 (2012), 521-573. [18] Z. Gao, X. Tang, and S. Chen, Existence of ground state solutions for a class of nonlinear fractional Schrodinger-Poisson systems with super-quadratic nonlinearity, Complex Variables Elliptic Equ. 63 (2018), 802-814. [19] B. Hamza, H. Lakhal, S. Kamel, and B. Tahar, The nontrivial solutions for nonlinear fractional Schrodinger-Poisson system involving new fractional operator, Adv. Nonlinear Anal. Appl. 7 (2023), no. 1, 121-132. [20] J.M. Kim and J.H. Bae, Infinitely many solutions of fractional Schrodinger-Maxwell equations, J. Math. Phys. 62 (2021), 031508. [21] N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A. 268 (2000), 298-305. [22] N. Laskin, Fractional Schrodinger equation, Phys. Rev. E. 66 (2002), 056108. [23] C.W. Lo and J.F. Rodrigues, On a class of fractional obstacle type problems related to the distributional Riesz derivative, arXiv preprint arXiv:2101.06863 (2021). [24] N. Nyamoradi and A. Razani, Existence to fractional critical equation with Hardy-Littlewood-Sobolev nonlinearities, Act Math Sci. 41 (2021), 1321-1332. [25] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, 65. American Math Soc. 1986. [26] A. Razani and F. Behboudi, Weak solutions for some fractional singular (p, q)-Laplacian nonlocal problems with Hardy potential, Rendiconti del Circolo Matematico di Palermo Series 2. 72 (2023), 1639-1654. [27] E.M. Stein, *Singular Integrals and Differentiability Properties of Functions (PMS-30)*, Princeton University Press, 2016. [28] T.T. Shieh and D.E. Spector, On a new class of fractional partial differential equations, Adv. Calc. Vari. 8 (2015), 321-336. [29] T.T. Shieh and D.E. Spector, On a new class of fractional partial differential equations II, Adv. Calc. Vari. 11 (2018), 289-307. [30] M. Silhavy, Fractional vector analysis based on invariance requirements (critique of coordinate approaches), Contemp. Mech. Therm. 32 (2020), 207-228. [31] Z. Wei, Existence of infinitely many solutions for the fractional Schrodinger-Maxwell equations, arXiv preprint arXiv:1508.03088 (2015). [32] T. Jin and Z. Yang, The fractional Schrodinger-Poisson systems with infinitely many solutions, J. Korean Math. Soc. 57 (2020), 489-506. | ||
آمار تعداد مشاهده مقاله: 2 تعداد دریافت فایل اصل مقاله: 3 |