| International Journal of Nonlinear Analysis and Applications | ||
| Articles in Press, Corrected Proof, Available Online from 25 October 2025 PDF (367.87 K) | ||
| DOI: 10.22075/ijnaa.2024.34524.5155 | ||
| Receive Date: 21 June 2024, Revise Date: 22 November 2024, Accept Date: 10 December 2024 | ||
| References | ||
|
[1] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci. 2004 (2004), no. 27, 1429-1436. [2] J.W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. 17 (1915-1916), 12-22. [3] R. Bernhard, Grundlagen fur eine allgemeine Theorie der Functionen einer veranderlichen complexen Grosse, Gottingen, 1851. [4] L. Bieberbach, Uber die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl. (1916), 940-955. [5] A. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen 73 (2008), no. 1-2, 155-178. [6] A. Baricz, Geometric properties of generalized Bessel functions of complex order, Mathematica (Cluj) 48 (2006), no. 71, 13-18. [7] A. Baricz, Generalized Bessel Functions of the First Kind, Lecture Notes in Mathematics, Vol. 1994, Springer-Verlag, 2010. [8] S. Bitrus and T. O. Opoola, On a class of p-valent functions with negative coefficients defined by Opoola differential operator, Open J. Math. Anal. 6 (2022), no. 2, 35-50. [9] S. Bitrus and T.O. Opoola, A new univalent integral operator defined by Opoola differential operator, Int. J. Nonlinear Anal. Appl. 15 (2024), no. 8, 53-64 [10] N.E. Cho, G. Murugusundaramoorthy, and T. Janani, Inclusion properties for certain subclasses of analytic functions associated with Bessel functions, J. Comput. Anal. Appl. 20 (2016), no. 1. [11] K.K. Dixit and S.K. Pal, On a class of univalent functions related to complex order, Indian J. Pure Appl. Math. 26 (1995), no. 9, 889-896. [12] P.L. Duren, Univalent Functions, Springer, New York, NY, USA, 1983. [13] O.A. Ezekiel, S.R. Sammy, and T.O. Opoola, Ruschweg derivative and a new generalized operator involving convolution, Int. J. Math. Trends Technol. 67 (2021), no. 1, 88-100. [14] L.M. Fatunsin and T.O. Opoola, New results on subclasses of analytic functions defined by Opoola differential operator, J. Math. Sci. Syst. 7 (2017), 289-295. [15] L. M. Fatunsin and T.O. Opoola, Upper estimates of the initial coefficients of analytic functions belonging to a certain class of bi-univalent functions, Asian J. Math. Comput. Res. 29 (2022), no. 2, 1-6. [16] P. Koebe, Uber die Uniformisierung beliebiger analytischer Kurven, Math.-Phys. Kl. (1907), 191-210, 633-669. [17] A.O. Lasode and T.O. Opoola, Some properties of a family of univalent functions defined by a generalized Opoola differential operator, General Mathematics 30 (2022), no. 1. [18] A.O. Lasode, T.O. Opoola, I. Al-Shbeil, T.G. Shaba, and H. Alsaud, Concerning a novel integral operator and a specific category of starlike functions, Mathematics 11 (2023), 4519. [19] A.O. Lasode and T.O. Opoola, Some properties of a class of generalized Janowski-type q-starlike functions associated with Opoola q-differential operator and q-differential subordination, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 73 (2024), no. 2, 349-364. [20] D.O. Makinde, T.O. Opoola, and R.F. Efendiev, Fekete-Szego problem for a class of starlike and convex functions involving Hadamard product of certain analytic multiplier transform, 7th Int. Conf. Control Optim. Ind. Appl., 26-28 August, 2020, Baku, Azerbaijan, pp. 248-250. [21] Z. Nehari, Conformal Mapping, Dover, New York, NY, USA, 1975. [22] T.O. Opoola, On a subclass of univalent functions defined by a generalized differential operator, International Journal of Mathematical Analysis 11 (2017), no. 18, 869-876. [23] E.A. Oyekan, I.T. Awoleke, and P.O. Adepoju, Results for a new subclass of analytic functions connected with Opoola differential operator and Gegenbauer polynomials, Acta Univ. Apulensis 74 (2023), 23-42. [24] T.O. Opoola, E.A. Oyekan, S.D. Oluwasegun, and P.O. Adepoju, New subfamilies of univalent functions defined by Opoola differential operator and connected with sigmoid function, Malaya J. Mate. 11 (2023), no. S, 53-69. [25] C. Pommerenke, Univalent Functions, Studia Mathematica Mathematische Lehrbucher, Vandenhoeck and Ruprecht, 1975. [26] C. Ramachandran, S. Annamalai, and S. Sivasubramanian, Inclusion relations for Bessel functions for domains bounded by conical domains, Advances in Difference Equations (2014), 1-12. [27] B. Richard and B.S. Gabriel, Shaum Outline Series of Differential Equations, Third edition, 2006. [28] M.S. Robertson, On the theory of univalent functions, Ann. Math. 37 (1936), 374-408. [29] G.S. Salagean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian Seminar, Lecture Notes in Mathematics, Vol. 1013, Springer, Berlin, 1983, pp. 362-372. [30] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116. [31] G.S. Timilehin, G. Mural, and Halit Orhan, Fekete Szego problems for some subclasses of holomorphic functions defined by combination of Opoola and Babalola differential operators, Anal. Univ. Oradea Fasc. Math. 29 (2022), no. 2, 5-16. | ||
|
Statistics Article View: 109 PDF Download: 246 |
||