 
				| تعداد نشریات | 21 | 
| تعداد شمارهها | 663 | 
| تعداد مقالات | 9,691 | 
| تعداد مشاهده مقاله | 68,984,813 | 
| تعداد دریافت فایل اصل مقاله | 48,480,009 | 
| On new subclasses of analytic functions associated with generalized Bessel functions | ||
| International Journal of Nonlinear Analysis and Applications | ||
| مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 03 آبان 1404 اصل مقاله (367.87 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22075/ijnaa.2024.34524.5155 | ||
| نویسندگان | ||
| Lolade Modupe Fatunsina* 1؛ Timothy Oloyede Opoola* 2 | ||
| 1Mathematics Programme, National Mathematical Centre, Abuja, Nigeria | ||
| 2Department of Mathematics. University of Ilorin, P.M.B. 1515, Ilorin, Nigeria | ||
| تاریخ دریافت: 01 تیر 1403، تاریخ بازنگری: 02 آذر 1403، تاریخ پذیرش: 20 آذر 1403 | ||
| چکیده | ||
| Bessel functions arise in the solution of many physical and mathematical problems. This, with some other special functions, has recently gained increased importance in the study of geometric function theory. The aim of this paper is to establish some geometric properties such as coefficient inequalities, characterization properties and convolution properties for the new subclasses $Q_n(\lambda,\alpha,\beta,\mu,t)$, $P_n(\lambda,\alpha,\beta,\mu,t)$ and $P^*_n(\lambda,\alpha,\beta,\mu,t)$ of univalent functions defined by Opoola Differential Operator in collaboration with generalized Bessel functions. | ||
| کلیدواژهها | ||
| Analytic and univalent functions؛ Opoola differential operator؛ Bessel functions؛ Geometric properties | ||
| مراجع | ||
| [1] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci. 2004 (2004), no. 27, 1429-1436. [2] J.W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. 17 (1915-1916), 12-22. [3] R. Bernhard, Grundlagen fur eine allgemeine Theorie der Functionen einer veranderlichen complexen Grosse, Gottingen, 1851. [4] L. Bieberbach, Uber die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl. (1916), 940-955. [5] A. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen 73 (2008), no. 1-2, 155-178. [6] A. Baricz, Geometric properties of generalized Bessel functions of complex order, Mathematica (Cluj) 48 (2006), no. 71, 13-18. [7] A. Baricz, Generalized Bessel Functions of the First Kind, Lecture Notes in Mathematics, Vol. 1994, Springer-Verlag, 2010. [8] S. Bitrus and T. O. Opoola, On a class of p-valent functions with negative coefficients defined by Opoola differential operator, Open J. Math. Anal. 6 (2022), no. 2, 35-50. [9] S. Bitrus and T.O. Opoola, A new univalent integral operator defined by Opoola differential operator, Int. J. Nonlinear Anal. Appl. 15 (2024), no. 8, 53-64 [10] N.E. Cho, G. Murugusundaramoorthy, and T. Janani, Inclusion properties for certain subclasses of analytic functions associated with Bessel functions, J. Comput. Anal. Appl. 20 (2016), no. 1. [11] K.K. Dixit and S.K. Pal, On a class of univalent functions related to complex order, Indian J. Pure Appl. Math. 26 (1995), no. 9, 889-896. [12] P.L. Duren, Univalent Functions, Springer, New York, NY, USA, 1983. [13] O.A. Ezekiel, S.R. Sammy, and T.O. Opoola, Ruschweg derivative and a new generalized operator involving convolution, Int. J. Math. Trends Technol. 67 (2021), no. 1, 88-100. [14] L.M. Fatunsin and T.O. Opoola, New results on subclasses of analytic functions defined by Opoola differential operator, J. Math. Sci. Syst. 7 (2017), 289-295. [15] L. M. Fatunsin and T.O. Opoola, Upper estimates of the initial coefficients of analytic functions belonging to a certain class of bi-univalent functions, Asian J. Math. Comput. Res. 29 (2022), no. 2, 1-6. [16] P. Koebe, Uber die Uniformisierung beliebiger analytischer Kurven, Math.-Phys. Kl. (1907), 191-210, 633-669. [17] A.O. Lasode and T.O. Opoola, Some properties of a family of univalent functions defined by a generalized Opoola differential operator, General Mathematics 30 (2022), no. 1. [18] A.O. Lasode, T.O. Opoola, I. Al-Shbeil, T.G. Shaba, and H. Alsaud, Concerning a novel integral operator and a specific category of starlike functions, Mathematics 11 (2023), 4519. [19] A.O. Lasode and T.O. Opoola, Some properties of a class of generalized Janowski-type q-starlike functions associated with Opoola q-differential operator and q-differential subordination, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 73 (2024), no. 2, 349-364. [20] D.O. Makinde, T.O. Opoola, and R.F. Efendiev, Fekete-Szego problem for a class of starlike and convex functions involving Hadamard product of certain analytic multiplier transform, 7th Int. Conf. Control Optim. Ind. Appl., 26-28 August, 2020, Baku, Azerbaijan, pp. 248-250. [21] Z. Nehari, Conformal Mapping, Dover, New York, NY, USA, 1975. [22] T.O. Opoola, On a subclass of univalent functions defined by a generalized differential operator, International Journal of Mathematical Analysis 11 (2017), no. 18, 869-876. [23] E.A. Oyekan, I.T. Awoleke, and P.O. Adepoju, Results for a new subclass of analytic functions connected with Opoola differential operator and Gegenbauer polynomials, Acta Univ. Apulensis 74 (2023), 23-42. [24] T.O. Opoola, E.A. Oyekan, S.D. Oluwasegun, and P.O. Adepoju, New subfamilies of univalent functions defined by Opoola differential operator and connected with sigmoid function, Malaya J. Mate. 11 (2023), no. S, 53-69. [25] C. Pommerenke, Univalent Functions, Studia Mathematica Mathematische Lehrbucher, Vandenhoeck and Ruprecht, 1975. [26] C. Ramachandran, S. Annamalai, and S. Sivasubramanian, Inclusion relations for Bessel functions for domains bounded by conical domains, Advances in Difference Equations (2014), 1-12. [27] B. Richard and B.S. Gabriel, Shaum Outline Series of Differential Equations, Third edition, 2006. [28] M.S. Robertson, On the theory of univalent functions, Ann. Math. 37 (1936), 374-408. [29] G.S. Salagean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian Seminar, Lecture Notes in Mathematics, Vol. 1013, Springer, Berlin, 1983, pp. 362-372. [30] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116. [31] G.S. Timilehin, G. Mural, and Halit Orhan, Fekete Szego problems for some subclasses of holomorphic functions defined by combination of Opoola and Babalola differential operators, Anal. Univ. Oradea Fasc. Math. 29 (2022), no. 2, 5-16. | ||
| آمار تعداد مشاهده مقاله: 18 تعداد دریافت فایل اصل مقاله: 55 | ||