| تعداد نشریات | 21 |
| تعداد شمارهها | 667 |
| تعداد مقالات | 9,731 |
| تعداد مشاهده مقاله | 69,223,458 |
| تعداد دریافت فایل اصل مقاله | 48,540,473 |
Cohomological properties for certain Banach algebras on locally compact groups | ||
| International Journal of Nonlinear Analysis and Applications | ||
| مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 18 آبان 1404 اصل مقاله (376.08 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22075/ijnaa.2024.34388.5137 | ||
| نویسنده | ||
| Seyedeh Somayeh Jafari | ||
| Department of Mathematics, Payame Noor University, Tehran, Iran | ||
| تاریخ دریافت: 20 خرداد 1403، تاریخ بازنگری: 23 آبان 1403، تاریخ پذیرش: 29 آبان 1403 | ||
| چکیده | ||
| For a locally compact group \(G\), let \(L_0^\infty(G)\) be the Banach space of all essentially bounded measurable functions on \(G\) vanishing at infinity. Here, we deal with a derivation problem for the Banach algebra \(L_0^\infty(G)^*\) equipped with a multiplication of Arens type. We first show that the Singer-Wermer conjecture for \(L_0^\infty(G)^*\) is valid only in the case where $G$ is abelian. Also, we characterize various cohomological properties for \(L_0^\infty(G)^*\) according to algebraic and topological properties of \(G\); in particular, we obtain diverse properties of \(G\) in terms of these notions based on derivations of \(L_0^\infty(G)^*\). | ||
| کلیدواژهها | ||
| Amenability؛ Banach algebra؛ derivation؛ essentially bounded measurable functions؛ locally compact group؛ vanishing at infinity | ||
| مراجع | ||
|
[1] G. Brown and W. Moran, Point derivations on M(G), Bull. London Math. Soc. 8 (1976), 57–64. [2] M. Despic and F. Ghahramani, Weak amenability of group algebras of locally compact groups, Canad. Math. Bull. 37 (1994), 165–167. [3] M. Eshaghi-Gordji and T. Yazdanpanah, Derivations into duals of ideals of Banach algebras, Proc. Ind. Acad. Sci. Math. Sci. 114 (2004), 399–403. [4] G.H. Esslamzadeh, B. Shojaee, and A. Mahmoodi, Approximate Connes-amenability of dual Banach algebras, Bull. Belg. Math. Soc. Simon Stevin 19 (2012), 193–213. [5] F. Ghahramani, A.T. Lau, and V. Losert, Isometric isomorphisms between Banach algebras related to locally compact groups, Trans. Amer. Math. Soc. 321 (1990), 273–283. [6] F. Ghahramani and R.J. Loy, Generalized notions of amenability, J. Funct. Anal. 208 (2004), 229–260. [7] F. Ghahramani, R.J. Loy, and Y. Zhang, Generalized notions of amenability II, J. Funct. Anal. 254 (2008), 1776–1810. [8] F. Ghahramani and Y. Zhang, Pseudo-amenable and pseudo-contractible Banach algebras, Math. Proc. Camb. Philos. Soc. 142 (2007), 111–123. [9] A.Y. Helemskii, The Homology of Banach and Topological Algebras, Kluwer, Netherlands, 1989. [10] A.Y. Helemskii, Flat Banach modules and amenable algebras, Tr. Mosk. Math. Soc. 47 (1984), 179–218. [11] E. Hewitt and K. Ross, Abstract Harmonic Analysis, Springer-Verlag, New York, 1970. [12] B.E. Johnson, Cohomology in Banach Algebras, Mem. Amer. Math. Soc. 127 (1972). [13] A.T. Lau and J. Pym, Concerning the second dual of the group algebra of a locally compact group, J. London Math. Soc. 41 (1990), 445–460. [14] V. Losert, The derivation problem for group algebras, Annals Math. 168 (2008), 221–246. [15] S. Maghsoudi and R. Nasr-Isfahani, On the maximal and minimal left ideals of certain Banach algebras on locally compact groups, Results Math. 62 (2012), 157–165. [16] M.J. Mehdipour and R. Nasr-Isfahani, Compact left multipliers on Banach algebras related to locally compact groups, Bull. Austral. Math. Soc. 79 (2009), 227–238. [17] M.J. Mehdipour and A. Rejali, Homological and cohomological properties of Banach algebras and their second duals, arXiv:2210.16596, Preprint (2022). [18] M.J. Mehdipour and Z. Saeedi, Derivations on convolution algebras, Bull. Korean Math. Soc. 52 (2015), no. 4, 1123–1132. [19] M.J. Mehdipour and Z. Saeedi, Derivations on group algebras of a locally compact abelian group, Monatsh. Math. 180 (2016), no. 3, 595–605. [20] V. Runde, Amenability for dual Banach algebras, Studia Math. 148 (2001), 47–66. [21] V. Runde, Lectures on Amenability, Springer-Verlag, Berlin, 2002. [22] V. Runde, Connes-amenability and normal, virtual diagonals for measure algebras, II, Bull. Aust. Math. Soc. 68 (2003), 325–328. [23] Yu.V. Selivanov, Biprojective Banach algebras, their structure, cohomology, and relation with nuclear operators, Funct. Anal. Appl. 10 (1976), 78–79. [24] Yu.V. Selivanov, On Banach algebras of small global dimension zero, Usp. Mat. Nauk 31 (1976), 227–228. [25] I.M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260–264. [26] M. Thomas, The image of a derivation is contained in the radical, Ann. Math. 128 (1988), 435–460. | ||
|
آمار تعداد مشاهده مقاله: 2 تعداد دریافت فایل اصل مقاله: 1 |
||