| International Journal of Nonlinear Analysis and Applications | ||
| Articles in Press, Corrected Proof, Available Online from 16 November 2025 PDF (399.43 K) | ||
| DOI: 10.22075/ijnaa.2025.37087.5427 | ||
| Receive Date: 22 March 2025, Accept Date: 12 May 2025 | ||
| References | ||
|
[1] D. Afkhami Taba and H. Dehghan, Operator inequalities related to angular distances, Kyungpook Math. J. 57 (2017), no. 4, 623–630. [2] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396–414. [3] F. Dadipour, M. Fujii, and M.S. Moslehian, Dunkl-Williams inequality for operators associated with p-angular distance, Nihonkai Math. J., 21 (2010), no. 1, 11–20. [4] H. Dehghan, A characterization of inner product spaces related to the skew-angular distance, Math. Notes 93 (2013), no. 4, 556–560. [5] C.F. Dunkl and K.S. Williams, A simple norm inequality, Amer. Math. Monthly 71 (1964), 53–54. [6] L. Maligranda, Simple norm inequalities, Amer. Math. Monthly 113 (2006), no. 3, 256–260. [7] J. L. Massera and J.J. Schaffer, Linear differential equations and functional analysis I, Ann. of Math. 67 (1958), 517–573. [8] D.S. Mitrinovic, Analytic Inequalities, Springer-Verlag, New York, 1970. [9] J.E. Pecaric and R. Rajic, Inequalities of the Dunkl-Williams type for absolute value operators, J. Math. Inequal. 4 (2010), 1–10. [10] J. Rooin, S. Habibzadeh, and M.S. Moslehian, Geometric aspects of p-angular and Skew p-angular distances, Tokyo J. Math., 41 (2018), no. 1, 253–272. [11] J. Rooin, S. Rajabi, and M.S. Moslehian, Extension of Dunkl-Williams inequality and characterization of inner product spaces, Rocky Mountain J. Math., to appear. [12] K.-S. Saito and M. Tominaga, A Dunkl-Williams type inequality for absolute value operators, Linear Algebra Appl. 432 (2010) 3258–3264. [13] L. Zou, C. He, and S. Qaisar, Inequalities for absolute value operators, Linear Algebra Appl. 438 (2013), 436–442. | ||
|
Statistics Article View: 49 PDF Download: 46 |
||