| تعداد نشریات | 21 |
| تعداد شمارهها | 671 |
| تعداد مقالات | 9,773 |
| تعداد مشاهده مقاله | 69,537,126 |
| تعداد دریافت فایل اصل مقاله | 48,654,640 |
Existence, uniqueness, and stability analysis of a fractional differential equation | ||
| International Journal of Nonlinear Analysis and Applications | ||
| مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 02 آذر 1404 اصل مقاله (378.23 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22075/ijnaa.2025.37402.5444 | ||
| نویسندگان | ||
| Safoura Tavousi؛ Hengameh Tamimi* ؛ Mohammad Bagher Ghaemi؛ Reza Saadati | ||
| School of Mathematics and Computer Sciences, Iran University of Science and Technology, Narmak, Tehran, Iran | ||
| تاریخ دریافت: 26 فروردین 1404، تاریخ بازنگری: 01 مرداد 1404، تاریخ پذیرش: 01 آذر 1404 | ||
| چکیده | ||
| This research is dedicated to establishing the existence and uniqueness of solutions for a Caputo-Fabrizino fractional differential system. Additionally, it explores the Hyers-Ulam-Rassias and Hyers-Ulam-Mittag-Leffler stability of these solutions. This study utilizes the alternative fixed point theorem as a fundamental tool in its analysis. In recent papers, authors used the Schauder fixed point theorem and the Laplace transform to prove the stability of Caputo-Fabrizio equations, but we use the alternative fixed point theorem to prove the stability of these equations. | ||
| کلیدواژهها | ||
| Stability theory of functional-differential equations؛ Functional-differential equations؛ fractional derivatives؛ Fixed-point theorems؛ Mittag-Leffler functions؛ Control/observation systems | ||
| مراجع | ||
|
[1] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Sci. 20 (2016), no. 2, 763. [2] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fractional Differ. Appl. 1 (2015), no. 2, 73–85. [3] J.B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), no. 6, 305–309. [4] L. Herrera Diez, R. Kruk, K. Leistner, and J. Sort, Magnetoelectric materials, phenomena, and devices, APL Mater. 9 (2021), no. 5. [5] R. Herrmann, Fractional Calculus: An Introduction for Physicists, World Scientific, 2011. [6] C. Jiang, F. Zhang, and T. Li, Synchronization and antisynchronization of n-coupled fractional-order complex chaotic systems with ring connection, Math. Meth. Appl. Sci. 41 (2018), no. 7, 2625–2638. [7] D. Jiles, Introduction to Magnetism and Magnetic Materials, CRC Press, 2015. [8] D.C. Jiles, Modelling the effects of eddy current losses on frequency dependent hysteresis in electrically conducting media, IEEE Trans. Magnet. 30 (2002), no. 6, 4326–4328. [9] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006. [10] J. Losada and J.J. Nieto, Fractional integral associated to fractional derivatives with nonsingular kernels, Prog. Fractional Differ. Appl. 7 (2021), no. 3, 137–143. [11] K.B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974. [12] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Elsevier, 1998. [13] H. Qin, Z. Gu, Y. Fu, and T. Li, Existence of mild solutions and controllability of fractional impulsive integrodifferential systems with nonlocal conditions, J. Funct. Spaces 2017 (2017). [14] T. Sardar, S. Rana, and J. Chattopadhyay, A mathematical model of dengue transmission with memory, Commun. Nonlinear Sci. Numer. Simul. 22 (2015), no. 1-3, 511–525. [15] N.A. Sheikh, F. Ali, M. Sagib, I. Khan, S.A.A. Jan, A.S. Alshomrani, and M.S. Alghamdi, Comparison and analysis of the Atangana-Baleanu and Caputo-Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction, Results Phys. 7 (2017), 789–800. [16] S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Chapman and Hall/CRC, 2024. [17] P. Wang, C. Li, J. Zhang, and T. Li, Quasilinearization Method for First-Order Impulsive Integro-Differential Equations, Texas State University, Department of Mathematics, 2019. [18] S. Wen, R. Hu, Y. Yang, T. Huang, Z. Zeng, and Y. Song, Memristor-based echo state network with online least mean square, IEEE Trans. Syst. Man Cybernet.: Syst. 49 (2018), no. 9, 1787–1796. | ||
|
آمار تعداد مشاهده مقاله: 3 تعداد دریافت فایل اصل مقاله: 2 |
||