| تعداد نشریات | 21 |
| تعداد شمارهها | 675 |
| تعداد مقالات | 9,814 |
| تعداد مشاهده مقاله | 69,672,876 |
| تعداد دریافت فایل اصل مقاله | 49,025,767 |
Ultrasonic Wave and the Analysis of Excitation Energy in Alkali Metals: Clogston-Chandrasekhar Limit | ||
| Progress in Physics of Applied Materials | ||
| دوره 6، شماره 2 - شماره پیاپی 11، بهمن 2026، صفحه 111-116 اصل مقاله (488.27 K) | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.22075/ppam.2025.39140.1173 | ||
| نویسندگان | ||
| Neda Ebrahimian1؛ Reza Afzali* 2؛ Reza Afzalzadeh2 | ||
| 1Department of Physics, Faculty of Basic Sciences, Shahed University, Tehran 3319118651, Iran | ||
| 2Department of Physics, K. N. Toosi University of Technology, Tehran 15875-4416, Iran | ||
| تاریخ دریافت: 03 مهر 1404، تاریخ بازنگری: 08 آبان 1404، تاریخ پذیرش: 10 آبان 1404 | ||
| چکیده | ||
| Ultracold alkali atoms refer to atoms such as lithium, sodium, and potassium. By applying a magnetic field, we can tune how the atoms attract or repel each other. We investigate the excitation energy of alkali atoms when the Clogston–Chandrasekhar limit is reached, leading to possible normal–superfluid phase separation. This separation occurs when the system is spin imbalanced. Spin in lithium-6 refers to its hyperfine states. Among the possible phase-separated states, we consider the case where an unpolarized superfluid component coexists with a partially polarized normal component. Unlike a conventional Fermi gas, the excitation energy in this system depends on several parameters that can be tuned by an external magnetic field. Then, using the second-order perturbation approach, the excitation energy is analyzed when the system is subjected to a weak ultrasonic wave. We assume that the frequency of the ultrasonic wave is lower than the breaking energy of each pair Using these results, we show that when the ultrasonic wave is applied, the energy absorption increases with increasing the average chemical potential. However, this is not due to the creation of new quasiparticles or quasiholes, since analysis of the dependence of the excitation energy on average chemical potential shows otherwise. Thermal quasiparticles already present in the system are responsible for the enhanced energy absorption as the average chemical potential increases. | ||
| کلیدواژهها | ||
| Alkali atoms؛ Ultrasonic wave؛ Phase separation؛ Clogston-Chandrasekhar limit | ||
| مراجع | ||
|
[1] Zwierlein, M.W., Schirotzek, A., Schunck, C.H. and Ketterle, W., 2006. Fermionic superfluidity with imbalanced spin populations. Science, 311(5760), pp.492-496.
[2] Partridge, G.B., Li, W., Kamar, R.I., Liao, Y.A. and Hulet, R.G., 2006. Pairing and phase separation in a polarized Fermi gas. Science, 311(5760), pp.503-505.
[3] Pilati, S. and Giorgini, S., 2008. Phase separation in a polarized Fermi gas at zero temperature. Physical Review Letters, 100(3), p.030401.
[4] Sheehy, D.E. and Radzihovsky, L., 2007. BEC–BCS crossover, phase transitions and phase separation in polarized resonantly-paired superfluids. Annals of Physics, 322(8), pp.1790-1924.
[5] Koponen, T.K., Paananen, T., Martikainen, J.P. and Törmä, P., 2007. Finite-temperature phase diagram of a polarized Fermi gas in an optical lattice. Physical review letters, 99(12), p.120403.
[6] Shin, Y.I., Zwierlein, M.W., Schunck, C.H., Schirotzek, A. and Ketterle, W., 2006. Observation of phase separation in a strongly interacting imbalanced Fermi gas. Physical Review Letters, 97(3), p.030401.
[7] Baroni, C., Lamporesi, G. and Zaccanti, M., 2024. Quantum mixtures of ultracold gases of neutral atoms. Nature Reviews Physics, pp.1-17.
[8] He, C., Gao, X.Y., Pak, K.K., Liu, Y.J., Ren, P., Guo, M., Zhao, E., Yan, Y. and Jo, G.B., 2025. Thermodynamics of Spin-Imbalanced Fermi Gases with SU (N)-Symmetric Interaction. Physical Review Letters, 134(18), p.183406.
[9] Clogston, A.M., 1962. Upper limit for the critical field in hard superconductors. Physical Review Letters, 9(6), p.266.
[10] Chandrasekhar, B.S., 1962. A note on the maximum critical field of high-field superconductors. Appl. Phys. Letters, 1.
[11] Van Schaeybroeck, B. and Lazarides, A., 2009. Normal-superfluid interface for polarized fermion gases. Physical Review A—Atomic, Molecular, and Optical Physics, 79(5), p.053612.
[12] Van Schaeybroeck, B. and Lazarides, A., 2007. Normal-superfluid interface scattering for polarized fermion gases. Physical review letters, 98(17), p.170402.
[13] de Gennes, P.G., 1999. Superconductivity of Metals and Alloys. Perseus Books Publishing, L.L.C.
[14] Ketterson, J.B., and Song, S.N., 1995. Superconductivity. Cambridge University Press.
[15] Karbaschi, H. and Rashedi, G., 2024. Electronic and spintronic transport in gapped graphene-based FG/SG/FG junctions. Progress in Physics of Applied Materials, 4(2), pp.115-121.
[16] Beane, S.R., Capatti, Z. and Farrell, R.C., 2025. Universal corrections to the superfluid gap in a cold Fermi gas. Physical Review A, 111(1), p.013309.
[17] Maruyama, H., 2025. Proposal for statistical mechanics-based UV regularization using fermion-boson transition functions. Frontiers in Physics, 13, p.1618853.
[18] Collins, J.C., 1984. Renormalization, Cambridge Univ. Press.
[19] Papenbrock, T. and Bertsch, G.F., 1999. Pairing in low-density Fermi gases. Physical Review C, 59(4), p.2052.
[20] Chien, C.C., Rittenhouse, S.T., Mistakidis, S. and Sadeghpour, H., 2025. Tunable pairing with local spin-dependent Rydberg molecule potentials in an atomic Fermi superfluid. Physical Review A, 111(4), p.043316.
[21] Orso, G. and Stringari, S., 2024. Superfluid fraction and Leggett bound in a density-modulated strongly interacting Fermi gas at zero temperature. Physical Review A, 109(2), p.023301. | ||
|
آمار تعداد مشاهده مقاله: 19 تعداد دریافت فایل اصل مقاله: 18 |
||