| تعداد نشریات | 21 |
| تعداد شمارهها | 675 |
| تعداد مقالات | 9,847 |
| تعداد مشاهده مقاله | 69,903,107 |
| تعداد دریافت فایل اصل مقاله | 49,219,377 |
Extrapolation method on a long interval for a class of nonlinear system of Volterra integral equations of the second kind | ||
| International Journal of Nonlinear Analysis and Applications | ||
| مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 25 آذر 1404 اصل مقاله (616.59 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.24958.2858 | ||
| نویسنده | ||
| Bahman Babayar-Razlighi* | ||
| Department of Mathematics, Faculty of science, Qom University of Technology, Qom, Iran | ||
| تاریخ دریافت: 27 مهر 1400، تاریخ بازنگری: 13 بهمن 1400، تاریخ پذیرش: 12 اسفند 1400 | ||
| چکیده | ||
| In this paper, we develop and apply the extrapolation method to a large class of nonlinear systems of Volterra integral equations. These systems arise in many physical and medical phenomena models, such as plasma and diseases, which can be investigated through mathematical models. The solutions of such systems require to be obtained on a long independent variable interval. We show that for such kernels, this method converges on a long interval. We apply the method on the unit interval $[0,1]$ and obtain the solution through $[0,1]$. Then, we apply the method on $[1,2]$, and use the solution on $[0,1]$ as the lag term; hence, we obtain the solution on $[0,2]$. We continue this procedure on $[0,n]$, for some positive integer $n$. We show that in the presented kernel, the error on $[0,n]$ is not propagated to $[n,n+1]$. Hence, we can use the proposed method on a long interval and also for stiff problems. We give a total algorithm for the proposed method and then establish a convergence analysis for it. As we shall see in the last example, the method is a powerful technique for stiff problems. Finally, we show the applicability and accuracy of the method in some sample problems. | ||
| کلیدواژهها | ||
| Extrapolation method؛ Nonlinear Volterra integral system؛ Stiff problems؛ Lag terms؛ Long interval | ||
| مراجع | ||
|
[1] S.M.A. Alcomraninejad, M. Ghalandari, B. Babayar-Razlighi, and L. Lavaei, Variational method to spatial solution propagation in a waveguide with periodic parabolic index profile, Optik 142 (2017), 651–656. [2] K. Atkinson and W. Han, Theoretical Numerical Analysis, Springer, New York, 2001. [3] B. Babayar-Razlighi, Extrapolation method for numerical solution of a model for endemic infectious diseases, Math. Res. 5 (2019), no. 1, 29–38. [In Persian] [4] B. Babayar-Razlighi, Numerical Solution of nonlinear system of ordinary differential equations by the Newton–Taylor Polynomial and Extrapolation with application from a Corona Virus model, Int. J. Math. Model. Comput. 11 (2021), no. 4, 1–15. [5] R.L. Burden and J.D. Faires, Numerical Analysis, 7th ed., Brooks-Cole, Pacific Grove, CA, 2001. [6] D.S. Clark, Short proof of a discrete Gronwall inequality, Discrete Appl. Math. 16 (1987), 279–281. [7] A. Ebadian and A.A. Khajehnasiri, Block-pulse functions and their applications to solving systems of higher-order nonlinear Volterra integro-differential equations, Electron. J. Differ. Equ. 2014 (2014), 1–9. [8] D. Haji Taghi Tehrani, M. Solaimani, M. Ghalandari, and B. Babayar-Razlighi, Solitons propagation dynamics in a saturable PT-symmetric fractional medium, Phys. Scr. 96 (2021), 125531. [9] H.W. Hethcote and D. W. Tudor, Integral equation models for endemic infectious diseases, J. Math. Biol. 9 (1980), 37–47. [10] H.W. Hethcote, W. Wang, L. Han, and Z. Ma, A predator–prey model with infected prey, Theor. Popul. Biol. 66 (2004), 256–268. [11] A.A. Khajehnasiri, R. Ezzati, and A. Jafari, Walsh functions and their applications for solving nonlinear fractional-order Volterra integro-differential equation, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 2, 1577–1589. [12] A.A. Khajehnasiri, M. Safavi, Solving fractional Black–Scholes equation by using Boubaker functions, Math. Methods Appl. Sci. 44 (2021), no. 1, 8505–8515. [13] V. A. Kuznetsov, I.A. Makalkin, M.A. Taylor, and A.S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol. 56 (1994), no. 2, 295–321. [14] P. Linz, Theoretical Numerical Analysis, John Wiley and Sons Inc., 1979. [15] F. Nyabadza, Z. Mukandavire, S.D. Hove-Musekwa, Modelling the HIV/AIDS epidemic trends in South Africa: Insights from a simple mathematical model, Nonlinear Anal. Real World Appl. 12 (2011), 2091–2104. [16] G.M.M. Phillips and P.J. Taylor, Theory and Applications of Numerical Analysis, 2nd Edition, Elsevier Science & Technology Books, 1996. [17] A. Ralston and P. Rabinowitz, A First Course in Numerical Analysis, McGraw-Hill, New York, 1978. [18] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, New York, 1964. [19] M. Safavi, A. A. Khajehnasiri, A. Jafari, and J. Banar, A new approach to numerical solution of nonlinear partial mixed Volterra–Fredholm integral equations via two-dimensional triangular functions, Malays. J. Math. Sci. 15 (2021), no. 3, 489–507. [20] L. Tao and H. Yong, A generalization of discrete Gronwall inequality and its application to weakly singular Volterra integral equation of the second kind, J. Math. Anal. Appl. 282 (2003), 56–62. | ||
|
آمار تعداد مشاهده مقاله: 5 تعداد دریافت فایل اصل مقاله: 3 |
||