| تعداد نشریات | 21 |
| تعداد شمارهها | 677 |
| تعداد مقالات | 9,871 |
| تعداد مشاهده مقاله | 69,991,634 |
| تعداد دریافت فایل اصل مقاله | 49,279,515 |
A new study for various solutions of the extended Korteweg-de Vries equation with conformable derivative | ||
| International Journal of Nonlinear Analysis and Applications | ||
| مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 03 دی 1404 اصل مقاله (3.09 M) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22075/ijnaa.2024.35417.5276 | ||
| نویسندگان | ||
| Ahmad Sharif* ؛ Aynaz Ataie؛ Razeieh Farokhzad Rostami | ||
| Department of Mathematics, Faculty of Sciences, Gonbad Kavous University, Gonbad, Iran | ||
| تاریخ دریافت: 02 مهر 1403، تاریخ پذیرش: 11 آبان 1403 | ||
| چکیده | ||
| The extended fractional Korteweg–de Vries (K-dV) equation is examined in this paper through the Jacobi elliptic method. This approach is a powerful technique capable of generating multiple forms of solutions, making it highly useful for representing various types of wave behaviors. The graphical interpretations clearly illustrate the dynamics of the obtained solutions. To the best of our knowledge, this work is the first to provide exact analytical solutions for the fractional K-dV equation, and the findings hold significant theoretical and practical value in areas such as optical signal transmission, plasma wave dynamics, and ocean wave propagation. | ||
| کلیدواژهها | ||
| The modified Sardar sub-equation method؛ Exact solution؛ the extended Korteweg-de Vries(K-dV) equation | ||
| مراجع | ||
|
[1] A.T. Ali, New generalized Jacobi elliptic function rational expansion method, J. Comput. Appl. Math. 235 (2011), no. 14, 4117-4127. [2] A. Bekir and A. Boz, Exact solutions for nonlinear evolution equations using exp-function method, Phys. Lett. A. 372 (2008), no. 10, 1619-1625. [3] J.h. He and X.H. Wu, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals 30 (2006), no. 3, 700-708. [4] M. Iqbal, A.R. Seadawy, and D. Lu, Construction of solitary wave solutions to the nonlinear modified Korteweg-de Vries dynamical equation in unmagnetized plasma via mathematical methods, Mod. Phys. Lett. B. 33 (2018), no. 2, 1850183. [5] W.X. Ma, T. Huang, and Y. Zhang, A multiple exp-function method for nonlinear differential equations and its application, Phys. Scr. 82 (2010), 065003. [6] M. Mehdipoor and A. Neiranneh, New soliton solutions to the (3+1)-dimensional Jimbo-Miwa equation, Optik. 126 (2015), no. 23, 4718-4722. [7] W.X. Ma and J.H. Lee, A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo-Miwa equation, Chaos Solitons Fractals 42 (2009), no. 3, 1356-1363. [8] S.T. Mohyud and M.A. Noor, Homotopy perturbation method for solving partial differential equations, Z. Naturforsch. 64a (2009), no. 4, 157-170. [9] S.T. Mohyud, A. Yildirim, and S. Sariaydin, Numerical soliton solutions of the improved Boussinesq equation, Int. J. Numer. Meth. Heat Fluid Flow 21 (2011), no. 7, 822-827. [10] A. Neiranneh, Binary simplest equation method to the generalized Sinh-Gordon equation, Optik. 126 (2015), no. 23, 4763-4770. [11] A. Neiranneh and M. Eslami, New travelling wave solutions for plasma model of extended K-dV equation, Afr. Mate. 30 (2019), 335-344. [12] A. Neiranneh and M. Eslami, New solitary wave solutions for fractional Jaulent-Miodek hierarchy equation, Mod. Phys. Lett. B. 36 (2022), no. 7, 2150612. [13] H. Rezazadeh, New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity, Optik 167 (2018), 218-227. [14] H. Rezazadeh, M. Inc, and D. Baleanu, New solitary wave solutions for variants of (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equations, Front. Phys. 8 (2020), 332. [15] N. Taghizadeh and A. Neiranneh, New complex solutions for some special nonlinear partial differential systems, Comput. Math. Appl. 62 (2011), no. 4, 2037-2044. [16] M. Wazwaz, The tanh-function method: Solitons and periodic solutions for the Dodd-Bullough-Mikhailov and the Tzitzeica-Dodd-Bullough equations, Chaos Solitons Fractals 25 (2005), no. 1, 55-63. | ||
|
آمار تعداد مشاهده مقاله: 8 تعداد دریافت فایل اصل مقاله: 8 |
||