| تعداد نشریات | 21 |
| تعداد شمارهها | 680 |
| تعداد مقالات | 9,920 |
| تعداد مشاهده مقاله | 70,159,585 |
| تعداد دریافت فایل اصل مقاله | 49,598,382 |
Existence of fixed point for generalized weak contraction satisfying rational type expression in partially ordered metric spaces | ||
| International Journal of Nonlinear Analysis and Applications | ||
| مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 16 دی 1404 اصل مقاله (350.66 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22075/ijnaa.2025.28350.3865 | ||
| نویسندگان | ||
| Joginder Paul* ؛ U.C. Gairola | ||
| Department of Mathematics, H.N.B. Garhwal University, B.G.R. Campus, Pauri-246001, Uttarakhand, India | ||
| تاریخ دریافت: 18 شهریور 1401، تاریخ پذیرش: 14 دی 1403 | ||
| چکیده | ||
| In this paper, we obtain some fixed point theorems of mappings satisfying a generalized rational type weak contractive condition in partially ordered metric spaces. The presented results generalize and extend various fixed point theorems of the literature. We also provide an example which supports our new results, but it contradicts the previously established results. Furthermore, we discuss the application of these results to the existence and uniqueness of solutions for first-order periodic boundary value problems arising in ordinary differential equations. | ||
| کلیدواژهها | ||
| Fixed point؛ Generalized weak contraction؛ Rational type؛ Ordered metric spaces | ||
| مراجع | ||
|
[1] Ya.I. Alber and S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces, Operator Theory Adv. Appl. 98 (1997), 7-22. [2] P. Borisut, P. Kumam, V. Gupta, and N. Mani, Generalized (ψ,α,β)- weak contractions for initial value problems, Mathematics 7 (2019), 1-14. [3] I. Cabrera, J. Harjani, and K. Sadarangani, A fixed point theorem for contractions of rational type in partially ordered metric spaces, Ann. Dell'Univ. Ferrara 59 (2013), 251-258. [4] B.K. Dass and S. Gupta, An extension of Banach contraction principle through rational expressions, Indian J. Pure Appl. Math. 6 (1975), 1455-1458. [5] D. Doric, Common fixed point for generalized (ψ,φ)-weak contractions, Appl. Math. Lett. 22 (2009), 1896-1900. [6] P. N. Dutta and B.S. Choudhury, A generalisation of contraction principle in metric spaces, Fixed Point Theory Appl. 2008 (2008), 1-8. [7] V. Gupta, N. Mani, and J. Jindal, Some new fixed point theorems for generalized weak contraction in partially ordered metric spaces, Comput. Math. Meth. 2 (2020), 1-9. [8] J. Harjani and K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. Theory Meth. Appl. 71 (2009), 3403-3410. [9] J. Harjani and K. Sadarangani, Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal. Theory Meth. Appl. 72 (2010), 1188-1197. [10] H.K. Nashine and B. Samet, Fixed point results for mappings satisfying (ψ,φ)-weakly contractive condition in partially ordered metric spaces, Nonlinear Anal. Theory Methods Appl. 74 (2011), 2201-2209. [11] J.J. Nieto and R.R. López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223-239. [12] J. Paul and U.C. Gairola, Fixed point theorem in partially ordered metric space for generalized weak contraction mapping satisfying rational type expression, J. Adv. Math. Stud. 16 (2023), 57-65. [13] G. Prasad and R.C. Dimri, Fixed point theorems for weakly contractive mappings in ordered metric spaces with an application, Anal. Theory Appl. 36 (2020), 1-11. [14] S. Radenović and Z. Kadelburg, Generalized weak contractions in partially ordered metric spaces, Comput. Math. Appl. 60 (2010), 1776-1783. [15] A.C.M. Ran and M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004), 1435-1443. [16] B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001), 2683-2693. [17] Q. Zhang and Y. Song, Fixed point theory for generalized φ-weak contractions, Appl. Math. Lett. 22 (2009), 75-78. | ||
|
آمار تعداد مشاهده مقاله: 11 تعداد دریافت فایل اصل مقاله: 18 |
||